Redox Reactions. key terms: oxidizing agent reducing agent oxidation number

Size: px
Start display at page:

Download "Redox Reactions. key terms: oxidizing agent reducing agent oxidation number"

Transcription

1 Redox Reactions key terms: oxidizing agent reducing agent oxidation number

2 Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign oxidation numbers. Electrochemistry 2012 Pearson Education, Inc.

3 0 1+ Zn (s) + 2HCl (aq) Zn Cl - H + H + Cl - Cl - H + H + Cl -

4 0 1+ Zn (s) + 2HCl (aq) Zn Cl - H + H + Cl - Cl - H + H + Cl -

5 Zn (s) + 2HCl (aq) H 2 (g) + ZnCl 2 (aq) H 2 H 2 Zn Cl - Zn 2+ H + Cl - Cl - Zn 2+ Cl -

6 Using the activity series provided, write the net ionic chemical equations for the following reaction. If no reaction occurs, simply write NR 2+ 0 a) Cu 2+ (aq) + Mg (s)?

7 best reducing agents worst oxidizing agents worst reducing agents best oxidizing agents

8 best reducing agents best oxidizing agents

9 Using the activity series provided, write the net ionic chemical equations for the following reactions. If no reaction occurs, simply write NR reducing agent a) 2+ oxidized Cu 2+ (aq) + reduced oxidizing agent 0 Mg (s) 0 Cu (s) + 2+ Mg 2+ (aq)

10 oxidation-reduction reactions In studying a redox reaction we often think of it as two half reactions. Cu 2+ (aq) + Mg(s) Cu (s) + Mg 2+ (aq) oxidation Mg(s) Mg 2+ (aq) + 2e - reduction Cu 2+ (aq) + 2e - Cu (s)

11 oxidation-reduction reactions Cu 2+ (aq) + Mg(s) Cu (s) + Mg 2+ (aq) oxidation Mg(s) Mg 2+ (aq) + 2e - reduction Cu 2+ (aq) + 2e - Cu (s)

12 Balancing Oxidation-Reduction Equations

13 Using the activity series provided, write the net ionic chemical equations for the following reactions. If no reaction occurs, simply write NR 2+ 0 e) Co 2+ (aq) + Al(s)

14 best reducing agents best oxidizing agents

15 Using the activity series provided, write the net ionic chemical equations for the following reactions. If no reaction occurs, simply write NR 3 x 2+ 0 e) 3 Co 2+ (aq) + gaining 6 electrons 2Al(s) 0 2 x 3+ 3Co (s) + 2Al 3+ (aq) losing 6 electrons

16 Half-Reaction Method in Acid 1. Write the unbalanced equation in ionic form. 2. Separate the equation into two half-reactions. 3. Balance each half reaction (except for O and H). 4. In acid solution, balance O by adding H 2 O and H by adding H + 5. Balance the charges by adding electrons. 6. Add the half reactions 7. Check to make sure atoms and charges are balanced

17 Example Balance the following equation for the reaction in acid solution. * MnO Fe 2+ Mn 2+ + Fe 3+ *All species are (aq)

18 1. Write the unbalanced equation in ionic form. MnO Fe 2+ Mn 2+ + Fe Separate the equation into two half-reactions Fe 2+ Fe 3+ MnO 4 - Mn 2+

19 3. Balance each half reaction (except for O and H). 4. In acid solution, balance O by adding H 2 O and H by adding H + Fe 2+ Fe 3+ MnO H + Mn H 2 O

20 5. Balance the charges by adding electrons. You need the same number of electrons on both sides of the equation. 5 x ( Fe 2+ Fe e - ) 1 x( MnO H + + 5e - Mn H 2 O)

21 5. Balance the charges by adding electrons. 5Fe 2+ 5Fe e - MnO H + + 5e - Mn H 2 O

22 6. Add the half reactions 5Fe 2+ 5Fe e - MnO H + + 5e - Mn H 2 O MnO H + + 5Fe 2+ Mn H 2 O + 5Fe 3+ This is the balanced equation

23 Half-Reaction Method in Base 1. Use the half-reaction method as specified for acidic solutions to obtain the final balanced equation as if H + ions were present. 2. Add the number of OH - ions to both sides of the equation to turn the remaining H + ions to H 2 O 3. Eliminate waters that appear on both sides of the equation.

24 Example Balance the following equation for the reaction in basic solution. * HS - + NO 3 - S + NO 2 - HS - S + H + + 2e - 2e - + 2H + + NO 3 - NO H 2 O *All species are (aq)

25 Example Balance the following equation for the reaction in basic solution. * HS - + NO 3 - S + NO 2 - HS - S H + + NO 3 - NO H 2 O OH - + HS - + H + + NO - 3 NO S + H 2 O + OH -

26 Example Balance the following equation for the reaction in basic solution. * HS - + NO 3 - S + NO 2 - HS - S H + + NO 3 - NO H 2 O OH - + HS - + H + + NO - 3 NO S + H 2 O + OH -

27 Example Balance the following equation for the reaction in basic solution. * HS - + NO 3 - S + NO 2 - HS - S H + + NO 3 - NO H 2 O H 2 O + HS - + NO - 3 NO S + H 2 O + OH -

28 Example Balance the following equation for the reaction in basic solution. * HS - + NO 3 - S + NO 2 - HS - + NO - 3 NO S + OH -

29 a) Complete and balance the following equations, and identify the oxidizing and reducing agents: acidic solution Cr2O7 2- (aq) + I - (aq) Cr 3+ (aq) + IO3 - (aq) 6 e - + 3H2O + I - IO3-14H + + Cr2O7 2-2 Cr H + + 6e H2O 8H + + I - + Cr2O IO3 + 2Cr H2O

30 Complete and balance the following equations, and identify the oxidizing and reducing agents: b) acidic solution I2 (s) + OCl - (aq) IO3 - (aq) + Cl - (aq) 6H2O + I2 2 IO H e ( 2 e - + 2H + + OCl - Cl - + H2O ) H2O + I2 + 5OCl - - 2IO3 + 5Cl - + 2H +

31 Complete and balance the following equations, and identify the oxidizing and reducing agents: c) acidic solution As2O3 (s) + NO3 - (aq) H3 AsO4 (aq) + N2O3 (aq) 5H2O + As2O3 2 H3 AsO4 + 4H + + 4e - 4 e - + 6H NO3 - N2O3 + 3H2O 2H + + 2H2O + 2NO3 - + As2O3 2H3 AsO4 + N2O3

32 Half-Reaction Method in Base 1. Use the half-reaction method as specified for acidic solutions to obtain the final balanced equation as if H + ions were present. 2. Add the number of OH - ions to both sides of the equation to turn the remaining H + ions to H 2 O 3. Eliminate waters that appear on both sides of the equation.

33 Complete and balance the following equations, and identify the oxidizing and reducing agents: d) basic solution MnO4 - (s) + Br - (aq) MnO2 (s) + BrO3 - (aq) ( 3 e - + 4H + + MnO4 - MnO2 + 2H2O ) 3H2O + Br - BrO H + + 6e - 2OH - + 2H + + Br - + 2MnO4 - BrO3 - + H2O + Br - + 2MnO4-2 MnO2 + H2O + 2OH - BrO MnO2 + 2OH -

34 Complete and balance the following equations, and identify the oxidizing and reducing agents: e) acidic solution BrO3 - (s) + N2H4 (g) Br - (aq) + N2 (g) ( N2H4 N2 + 4H + + 4e - ) ( 6 e - + 6H + + BrO3 - Br - + 3H2O ) 3N2H4 + 2BrO3-2Br - + 3N2 + 6H2O

35 Complete and balance the following equations, and identify the oxidizing and reducing agents: f) basic solution NO2 - (aq) + Al (s) NH4 + (aq) + AlO2 - (g) 6 e - + 8H + + NO2 - NH H2O ( 2H2O + Al AlO H + + 3e - ) 2H2O + 2BrO Al AlO2 - + NH4 +

36 36

37 Complete and balance the following equations, and identify the oxidizing and reducing agents: acid solution MnO4 - (s) + Br - (aq) Mn 2+ (aq) + Br2 (aq) ( 5 e - + 8H + + MnO4 - Mn H2O ) ( 2 Br - Br2 + 2e - ) 16H Br MnO4-5 Br2 + 2 Mn H2O

38 38

39 Half-Reaction Method in Acid 1. Write the unbalanced equation in ionic form. 2. Separate the equation into two half-reactions. 3. Balance each half reaction (except for O and H). 4. In acid solution, balance O by adding H 2 O 5. In acid solution, balance H by adding H + 6. Balance the charge in the half reaction by adding electrons. 7. multiply by half reactions by an integer to make the electrons lost equal to the electrons gained 8. Add the half reactions (canceling anything that is redundant) 9 Check to make sure atoms and charges are balanced Half-Reaction Method in base 1. Use the acid method, then add the number of OH - ions to both sides of the equation to turn the remaining H + ions to H 2 O 2. Eliminate waters that appear on both sides of the equation.

40 problems refer to the chemical reaction below NH4NO3 (s) + Zn (s) ZnO (s) + 2H2O (g) + N2 (g) which atom is acting as the oxidizing agent? What is the oxidation state of zinc ion at the end of the reaction? Which element is reduced during the reaction reaction?

41 Complete and balance the following equations, and identify the oxidizing and reducing agents: acidic solution a) Cr2O7 2- (aq) + I - (aq) Cr 3+ (aq) + IO3 - (aq) acidic solution b) I2 (s) + OCl - (aq) IO3 - (aq) + Cl - (aq) acidic solution c) As2O3 (s) + NO3 - (aq) H3 AsO4 (aq) + N2O3 (aq)

42 basic solution d) MnO4 - (s) + Br - (aq) MnO2 (s) + BrO3 - (aq) acidic solution e) BrO3 - (s) + N2H4 (g) Br - (aq) + N2 (g) basic solution f) NO2 - (aq) + Al (s) NH4 + (aq) + AlO2 - (g)

43 Example Balance the following equation for the reaction in acid solution. * HNO 3(aq) + H 3 PO 3 (aq) NO (g ) + H 3 PO 4 aq) + H 2 O(l)

44 1. Write the unbalanced equation in ionic form. H + (aq) NO 3 - (aq) + H 3 PO 3 (aq) NO (g ) + H 3 PO 4 aq) + H 2 O(l) 2. Separate the equation into two half-reactions NO 3 - NO H 3 PO 3 H 3 PO 4

45 3. Balance each half reaction (except for O and H). 4. In acid solution, balance O by adding H 2 O and H by adding H + 4H + + NO 3 - NO + 2H 2 O H 2 O + H 3 PO 3 H 3 PO 4 + 2H +

46 5. Balance the charges by adding electrons. 3e - + 4H + + NO 3 - NO + 2H 2 O H 2 O + H 3 PO 3 H 3 PO 4 + 2H + + 2e -

47 5. Balance the charges by adding electrons. 2 x ( 3e - + 4H + + NO 3 - NO + 2H 2 O ) 3 x ( H 2 O + H 3 PO 3 H 3 PO 4 + 2H + + 2e - )

48 5. Balance the charges by adding electrons. 6e - + 8H + + 2NO- 3 2NO + 4H 2 O 3H 2 O + 3H 3 PO 3 3H 3 PO 4 + 6H + + 6e -

49 6. Add the half reactions 6e - + 8H + + 2NO- 3 2NO + 4H 2 O 3H 2 O + 3H 3 PO 3 3H 3 PO 4 + 6H + + 6e -

50 6. Add the half reactions 6e - + 2H + + 2NO- 3 2NO + 4H 2 O 3H 2 O + 3H 3 PO 3 3H 3 PO 4 + 6H + + 6e -

51 6. Add the half reactions 6e - + 2H + + 2NO- 3 2NO + H 2 O 3H 2 O + 3H 3 PO 3 3H 3 PO 4 + 6H + + 6e - 2H + + 2NO H 3 PO 3 2NO + H 2 O + 3H 3 PO 4

52 6. Add the half reactions 2H + + 2NO H 3 PO 3 2NO + H 2 O + 3H 3 PO 4 This is the balanced equation

53 Example Balance the following equation for the reaction in acid solution. * Fe(s) + HCl(aq) HFeCl 4 (aq) + H 2 (aq ) 3 2e - + ( 2 H + H ) 2 2 ( H + + 4Cl - + Fe HFeCl 4 + 3e - )

54 Example Balance the following equation for the reaction in acid solution. * Fe(s) + HCl(aq) HFeCl 4 (aq) + H 2 (aq ) 6e H + 3H 2 2H + + 8Cl - + 2Fe 2HFeCl 4 + 6e -

55 Example 6e H + 3H 2 2H + + 8Cl - + 2Fe 2HFeCl 4 + 6e - 8H + + 8Cl - + 8HCl + 2Fe 2HFeCl 4 or 2Fe 2HFeCl 4 + 3H 2 + 3H 2

Balancing Redox Equations in Acidic Solutions. 6 2Cr H 2 O. 6 2Cr 3+ Example 1: Balance the following equation for the reaction of Cr 2 O 7

Balancing Redox Equations in Acidic Solutions. 6 2Cr H 2 O. 6 2Cr 3+ Example 1: Balance the following equation for the reaction of Cr 2 O 7 Balancing Redox Equations in Acidic Solutions Example 1: Balance the following equation for the reaction of Cr 2 O 7 2 with Fe 2+ in an acidic solution. Cr 2 O 7 2 + Fe 2+ 6 Cr 3+ + Fe 3+ Step 1: Divide

More information

REVIEW QUESTIONS Chapter 19

REVIEW QUESTIONS Chapter 19 Chemistry 10 ANSWER KEY REVIEW QUESTIONS Chapter 19 1. For each of the following unbalanced equations, (i) write the half-reactions for oxidation and reduction, and (ii) balance the overall equation in

More information

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas.

Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. Oxidation Numbers #00 Directions: Use the rules for Assigning Oxidation numbers to determine the oxidation number assigned to each element in each of the given formulas. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

More information

Reduction: 2 H + (aq) + 2 e H2(g)

Reduction: 2 H + (aq) + 2 e H2(g) Balancing Redox Reactions Homework Answers page 617 # 1-3, 5, 7-9 Mrs. Giovannone 1. (a) Solution: Step 1: Write the unbalanced equation for the reaction. Mg(s) + HCl(aq) H2(g) + MgCl2(aq) Step 2: Write

More information

(aq) 5VO2 + (aq) + Mn 2+ (aq) + 10H + + 4H 2 O. (aq) 5VO2 + (aq) + Mn 2+ (aq) + 2H + (aq) basic solution. MnO2 + 2H 2 O) 3H 2 O + I IO 3

(aq) 5VO2 + (aq) + Mn 2+ (aq) + 10H + + 4H 2 O. (aq) 5VO2 + (aq) + Mn 2+ (aq) + 2H + (aq) basic solution. MnO2 + 2H 2 O) 3H 2 O + I IO 3 Chem 1515 Section 2 Problem Set #15 Spring 1998 Name ALL work must be shown to receive full credit. Due Due in lecture at 1:30 p.m. Friday, May 1st. PS15.1. Balance the following oxidation-reduction reactions

More information

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions Lesson Topics Covered Homework Questions and Assignments 1 Introduction to Electrochemistry definitions 1. Read pages 462 467 2. On page

More information

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic)

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic) Step by Step: Oxidation Numbers and Balancing Redox reactions. Ex. 1) MnO 4-1 + H 2 SO 3 Mn 2+ + HSO 4-1 (acidic) Rules for Oxidation Numbers (for individual atoms): 1) Any free element (without a charge)

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 15 Redox Reactions Module 16 Half-Reaction Balancing Module 15 Redox Reactions... 380 Lesson 15A: Oxidation Numbers... 380 Lesson 15B: Balancing Charge... 385 Lesson 15C:

More information

Redox Worksheet 1: Numbers & Balancing Reactions

Redox Worksheet 1: Numbers & Balancing Reactions Name: Date: Per: Redox Worksheet 1: Numbers & Balancing Reactions Assigning Oxidation Number rules: Elements and Compounds have an oxidation number/total of 0 Group I and II In addition to the elemental

More information

Chapter 19: Electrochemistry I. Chem 102 Dr. Eloranta

Chapter 19: Electrochemistry I. Chem 102 Dr. Eloranta Chapter 19: Electrochemistry I Chem 102 Dr. Eloranta 2 Electrochemistry The study of the relationships between electrical processes and chemical processes Batteries, electroplating, fuel cells, hydrogen

More information

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals. Chapter 17 Oxidation-Reduction Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) copper wire colorless solution silver crystals pale blue solution Introduction to General, Organic, and Biochemistry 10e John

More information

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1 Redox Reactions Sections 4.9, 18.2 RW Session ID = MSTCHEM1 Oxidation Reduction Reactions Redox Reactions Electrons are transferred from one reactant to another Oxidation loss of electrons Reduction gain

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion. #19 Notes Unit 3: Reactions in Solutions Ch. Reactions in Solutions I. Solvation -the act of dissolving (solute (salt) dissolves in the solvent (water)) Hydration: dissolving in water, the universal solvent.

More information

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS

AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS AP CHEMISTRY NOTES 2-1 ASSIGNING OXIDATION NUMBERS RULES FOR ASSIGNING OXIDATION NUMBERS: 1. The oxidation number of any free element (including diatomic elements) is always 0. 2. The sum of the oxidation

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 4 Section 9 & 10 Oxidation Reduction Reactions Reactions in which one or more electrons are transferred. That means elements change their charge from reactants to

More information

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions Ch. 20 Oxidation-Reduction Reactions AKA Redox Reactions 20.1 THE MEANING OF OXIDATION AND REDUCTION Early Chemistry Oxidation: a substance gains oxygen Reduction: a substance loses oxygen Nothing can

More information

Unit 5 Part 2: Redox Reactions and Electrochemistry

Unit 5 Part 2: Redox Reactions and Electrochemistry Unit 5 Part 2: Redox Reactions and Electrochemistry Oxidation Numbers Oxidizing and Reducing Agents Balancing Redox Reactions Acidic solutions Basic solutions Galvanic Cells Nernst Equation This reaction

More information

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014 REDOX REACTIONS Reactions involve the transfer of electrons between reactants When a substance loses electrons, it undergoes oxidation: Ca(s)

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

Homework #3 Chapter 11 Electrochemistry

Homework #3 Chapter 11 Electrochemistry Homework #3 Chapter 11 Electrochemistry Chapter 4 83. a) Oxidation ½ Reaction Fe + HCl HFeCl 4 Fe + 4HCl HFeCl 4 Fe + 4HCl HFeCl 4 + 3H + Fe + 4HCl HFeCl 4 + 3H + + 3e Reduction ½ Reaction H 2 2H + H 2

More information

Activity Balancing Oxidation-Reduction Reactions

Activity Balancing Oxidation-Reduction Reactions Activity 201 3 Balancing Oxidation-Reduction Reactions Directions: This GLA worksheet goes over the half-reaction method of balancing oxidation-reduction (redox) reactions. Part A introduces the oxidation

More information

Redox reactions. You can remember this by using OiLRiG: Oxidation is Loss Reduction is Gain. Definition 1: Oxidation

Redox reactions. You can remember this by using OiLRiG: Oxidation is Loss Reduction is Gain. Definition 1: Oxidation Redox reactions If you have seen a piece of rusty metal then you have seen the end result of a redox reaction (iron and oxygen forming iron oxide). Redox reactions are also used in electrochemistry and

More information

Chemistry 30: Reduction-Oxidation Reactions. Single replacement Formation Decomposition Combustion. Double replacement

Chemistry 30: Reduction-Oxidation Reactions. Single replacement Formation Decomposition Combustion. Double replacement Chemistry 30: Reduction-Oxidation Reactions BIG IDEA: Reduction-oxidation (redox) reactions occur by the transfer of one or more electrons from one atom to another. By assigning oxidation numbers, we can

More information

http://redoxanswers.weebly.com REDOX LESSON LEARNING GOALS http://redoxanswers.weebly.com Lesson 1: Introduction to Redox Relate to examples of oxidation-reduction reactions in the real-world. Understand

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH Today: Redox Reactions Oxidations Reductions Oxidation Numbers Half Reactions Balancing in Acidic Solution Balancing in Basic Solution QUIZ 3 & EXAM 3 moved up by one day: Quiz 3 Wednesday/Thursday next

More information

Acidic Solution. Example #1: ClO3 + SO2 ---> SO4 2 + Cl. Solution: 1) Split into unbalanced half-reactions: ClO3 ---> Cl SO2 ---> SO4 2

Acidic Solution. Example #1: ClO3 + SO2 ---> SO4 2 + Cl. Solution: 1) Split into unbalanced half-reactions: ClO3 ---> Cl SO2 ---> SO4 2 Balance the following REDOX reactions in an acidic solution: 1. ClO3 + SO2 ---> SO4 2 + Cl 2. H2S + NO3 ---> S8 + NO 3. MnO4 + H2S ---> Mn 2+ + S8 4. Cu + SO4 2 ---> Cu 2+ + SO2 5. MnO4 + CH3OH ---> HCOOH

More information

Homework 12 (Key) First, separate into oxidation and reduction half reactions

Homework 12 (Key) First, separate into oxidation and reduction half reactions Homework 12 (Key) 1. Balance the following oxidation/reduction reactions under acidic conditions. a. MnO 4 - + I - I 2 + Mn 2+ First, separate into oxidation and reduction half reactions Oxidation half

More information

Electrochemistry Crash Course

Electrochemistry Crash Course Electrochemistry Crash Course Electrochemistry is essentially the study of reactions involving the transfer of electrons from one element to another or the study of systems that allow for the flow of voltage

More information

Half Cell / redox potentials. Context. Task. Evaluation

Half Cell / redox potentials. Context. Task. Evaluation Half Cell / redox potentials Context Students often struggle when asked to apply redox potentials and to combine reduction half equations correctly. This activity aims to involve all the individuals in

More information

Another substance, called a reducing agent, causes or promotes the reduction of a metal compound to an elemental compound.

Another substance, called a reducing agent, causes or promotes the reduction of a metal compound to an elemental compound. Electrochemistry Oxidation and Reducation The technology of metalurrgy has allowed humanity to progress from the Stone Age, through the Bronze Age and the Iron Age to modern times. Very few metals exist

More information

Balancing Redox Reactions

Balancing Redox Reactions Balancing Redox Reactions 1. What is a redox reaction? a. Redox is an abbreviation to say reduction/oxidation is taking place during a chemical reaction. In the old days oxidation was when an element combined

More information

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework Name Period Date Ch. 19: OxidationReduction Reactions Homework Answer each of the following questions in as much detail as you can. Be sure to show all your work for any calculations and follow all rules

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

CHEMISTRY. Chapter 6 Oxidation Reduction Reactions. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 6 Oxidation Reduction Reactions. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 6 Oxidation Reduction Reactions Copyright 2012 by John Wiley & Sons, Inc. Hierarchy of Rules for Assigning Oxidation

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Chemistry Grade:12 CHAPTER 19 REVIEW Oxidation-Reduction Reactions SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. All the following equations involve redox reactions except

More information

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions Dr. Sapna Gupta Types of Reactions Two classifications: one how atoms are rearrangement and the other is chemical

More information

Unit 8: Redox and Electrochemistry

Unit 8: Redox and Electrochemistry May 20, 2014 Unit 8: Redox and Electrochemistry http://www.firefly.org/firefly-pictures.html Oxidation Number numbers assigned to atoms that allow us to keep track of electrons. Rule #1: Oxidation number

More information

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed.

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed. Ch. 5 Oxidation-Reduction Reactions Brady & Senese, 5 th Ed. 1 Index 5.1. Oxidation-reduction reactions involve electron transfer 5.2. The ion-electron method creates balanced net ionic equations for redox

More information

Q.1 What is the oxidation state of the elements in?

Q.1 What is the oxidation state of the elements in? Oxidation and Reduction 1 OXIDATION NUMBERS Used to tell if oxidation or reduction has taken place work out what has been oxidised and/or reduced construct half equations and balance redox equations Atoms

More information

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred:

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred: 1.7 REDOX Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Our understanding of oxidation and reduction was limited

More information

Oxidation-Reduction (Redox) Reactions (4.4) 2) The ox. state of an element in a simple ion is the charge of the ion. Ex:

Oxidation-Reduction (Redox) Reactions (4.4) 2) The ox. state of an element in a simple ion is the charge of the ion. Ex: Redox reactions: Oxidation-Reduction (Redox) Reactions (4.4) Oxidation & reduction always occur simultaneously We use OXIDATION NUMBERS to keep track of electron transfers Rules for Assigning Oxidation

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Single Displacement Reactions

Single Displacement Reactions Let s writing NIE s for these reaction types, and answering questions about each. 3) Oxidation Reduction Reactions Single Displacement (aka Single Replacement) These may include the following reaction

More information

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Name Period CRHS Academic Chemistry UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry

More information

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM Chemical Reactions Chapter 4 Notes Oct 21 8:44 AM Oct 22 10:14 AM 1 There are several things to keep in mind writing reactions and predicting products: 1. States of matter of elements/compounds 2. Diatomics

More information

Types of Reactions: Reactions

Types of Reactions: Reactions 1 Reactions On the A.P. Test there will be one question (question #4) that will say: Give the formulas to show the reactants and the products for the following chemical reactions. Each occurs in aqueous

More information

REDOX AND ELECTROCHEMISTRY

REDOX AND ELECTROCHEMISTRY SOUTH HIGH SCHOOL REDOX AND ELECTROCHEMISTRY Regents Chemistry Dr. Lombardo NAME Content Objectives REDOX & ELECTROCHEMISTRY What will students know and be able to do by the end of this instructional unit?

More information

REDOX test practice. 2 Cr(s) + 3 Sn 2+ (aq) 2 Cr 3+ (aq) + 3 Sn(s)

REDOX test practice. 2 Cr(s) + 3 Sn 2+ (aq) 2 Cr 3+ (aq) + 3 Sn(s) 1. Which polyatomic ion has a charge of 3? A) chromate ion B) oxalate ion C) phosphate ion D) thiocyanate ion 2. What is the oxidation state of nitrogen in NaNO2? A) +1 B) +2 C) +3 D) +4 3. What are the

More information

Types of Reactions: Reactions

Types of Reactions: Reactions 1 Reactions On the A.P. Test there will be one question (question #4) that will say: Give the formulas to show the reactants and the products for the following chemical reactions. Each occurs in aqueous

More information

Problem Solving. Redox Equations

Problem Solving. Redox Equations Skills Worksheet Problem Solving Redox Equations The feature that distinguishes redox reactions from other types of reactions is that elements change oxidation state by gaining or losing electrons. Compare

More information

Worksheet 25 - Oxidation/Reduction Reactions

Worksheet 25 - Oxidation/Reduction Reactions Worksheet 25 Oxidation/Reduction Reactions Oxidation number rules: Elements have an oxidation number of 0 Group I and II In addition to the elemental oxidation state of 0, Group I has an oxidation state

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Table of Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Chapter 4 Reactions in Aqueous Solutions Some typical kinds of chemical reactions: 1. Precipitation reactions: the formation of a salt of lower solubility causes the precipitation to occur. precipr 2.

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

Chapter 18 problems (with solutions)

Chapter 18 problems (with solutions) Chapter 18 problems (with solutions) 1) Assign oxidation numbers for the following species (for review see section 9.4) a) H2SO3 H = +1 S = +4 O = -2 b) Ca(ClO3)2 Ca = +2 Cl = +5 O = -2 c) C2H4 C = -2

More information

POGIL: Oxidation and Reduction

POGIL: Oxidation and Reduction NAME: DATE: AP Chemistry POGIL: Oxidation and Reduction Why? Many of the items you use on a daily basis rely on batteries for power. Most batteries supply electricity through oxidation-reduction reactions

More information

Unit 12 Redox and Electrochemistry

Unit 12 Redox and Electrochemistry Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation

More information

Reactions in Aqueous Solution

Reactions in Aqueous Solution 1 Reactions in Aqueous Solution Chapter 4 For test 3: Sections 3.7 and 4.1 to 4.5 Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. 2 A solution is a homogenous

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

AP Chapter 4: Reactions in Aqueous Solution Name

AP Chapter 4: Reactions in Aqueous Solution Name AP Chapter 4: Reactions in Aqueous Solution Name WarmUps (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 4: Reactions in Aqueous Solution 2 WarmUps

More information

Oxidation Numbers, ox #

Oxidation Numbers, ox # Oxidation Numbers, ox # are or numbers assigned to each or assuming that the are transferred from the electronegative element to the electronegative element. now mimic systems. ox # are written followed

More information

OXIDATION AND REDUCTION

OXIDATION AND REDUCTION OXIDATION AND REDUCTION IMPORTANT FACTS: IMPORTANT DEFINATIONS Many chemical reactions involve the addition of oxygen or hydrogen to the reactants. The reaction in which oxygen is added is called oxidation

More information

Assignment #1: Redox Reaction Skill Drills

Assignment #1: Redox Reaction Skill Drills Assignment #1: Redox Reaction Skill Drills Skill #1 Assigning Oxidation Numbers (Text Reference: p. 639 641) All elements have an oxidation number of 0. In compounds, oxidation numbers add up to 0. o Group

More information

Chapter 12 Redox reactions and Electrochemistry

Chapter 12 Redox reactions and Electrochemistry Chapter 12 Redox reactions and Electrochemistry 11 Balancing Redox Equations 12 Electrochemical Cells 13 Stoichiometry in Electrochemical Cells 14 (Skip) Metals and Metallurgy 15 (Skip) Electrometallurgy

More information

Solving Stoichiometry Problems for Reactions in Solution

Solving Stoichiometry Problems for Reactions in Solution Section 4.7 Stoichiometry of Precipitation Reactions Solving Stoichiometry Problems for Reactions in Solution 1. Determine what reaction if any occurs. If a reaction occurs write a balanced molecular equation.

More information

(note: each ½ reaction has balanced the number of atoms and the charge.)

(note: each ½ reaction has balanced the number of atoms and the charge.) Oxidation- Reduction Reactions in Aqueous Solutions Introduction: When a piece of copper wire is immersed in a clear, colorless solution of silver nitrate, silver whiskers grow on the surface of the wire

More information

5.5 Oxidation-Reduction (Redox) Reactions LEARNING OBJECTIVE

5.5 Oxidation-Reduction (Redox) Reactions LEARNING OBJECTIVE 5.5 Oxidation-Reduction (Redox) Reactions LEARNING OBJECTIVE 1. Identify a chemical reaction as an oxidation- reduction reaction. When zinc metal is submerged into a quantity of aqueous HCl, the following

More information

CHAPTER 17 ELECTROCHEMISTRY

CHAPTER 17 ELECTROCHEMISTRY Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 17 ELECTROCHEMISTRY Day Plans for the day Assignment(s) for the day 17.1 Galvanic Cells Assignment

More information

Chem II. Zn(s) + CuSO4(aq)

Chem II. Zn(s) + CuSO4(aq) Redox Review Chem II 1. What is the sum of the oxidation numbers of the atoms in the compound CO2? A) 0 B) 2 C) 4 D) +4 2. In which substance does phosphorus have a +3 oxidation state? A) P4O10 B) PCl5

More information

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions:

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions: ELECTROCHEMISTRY A. INTRODUCTION 1. Electrochemistry is the branch of chemistry which is concerned with the conversion of chemical energy to electrical energy, and vice versa. Electrochemical reactions

More information

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part In oxidation-reduction (or redox) reactions, the key chemical event is the net movement of electrons from one reactant to the

More information

Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where

Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where electrons are transferred to convert the chemical energy into

More information

AP Chemistry Semester 1 Practice Problems

AP Chemistry Semester 1 Practice Problems AP Chemistry Semester 1 Practice Problems 1. Adipic Acid contains 49.32% C, 43.84% O, and 6.85% H by mass. What is the empirical formula? a) C 3 H 5 O 2 b) C 3 H 3 O 4 c) C 2 HO 3 d) C 2 H 5 O 4 e) C 3

More information

Regents review Electrochemistry(redox)

Regents review Electrochemistry(redox) 2011-2012 1. Chlorine has an oxidation state of +3 in the compound A) HClO B) HClO2 C) HClO3 D) HClO4 2. What is the oxidation number of iodine in KIO4? A) +1 B) 1 C) +7 D) 7 3. What is the oxidation number

More information

Practice Final CH142, Spring 2012

Practice Final CH142, Spring 2012 Practice Final CH142, Spring 2012 First here are a group of practice problems on Latimer Diagrams: 1. The Latimer diagram for nitrogen oxides in given below. Is NO stable with respect to disproportionation

More information

Chemistry 12 JANUARY Course Code = CH. Student Instructions

Chemistry 12 JANUARY Course Code = CH. Student Instructions MINISTRY USE ONLY MINISTRY USE ONLY Place Personal Education Number (PEN) here. Place Personal Education Number (PEN) here. MINISTRY USE ONLY Chemistry 12 2002 Ministry of Education JANUARY 2002 Course

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Oxidation and Reduction by Christopher Hamaker 1 Oxidation Reduction Reactions Oxidation reduction reactions are

More information

Week 9 Solubility & Redox

Week 9 Solubility & Redox Week 9 Solubility & Redox Q UEST IO N 1 2 The solubility of Ag 2CO 3 is 3.5 10 g/l at 25 C. What is the value of Ks p at this temperature? 12 A. 2.2 10 8 B. 3.4 10 12 C. 8.2 10 4 D. 1.7 10 E. 4.3 10 Q

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Oxidation refers to any process in which the oxidation number of an atom becomes more positive

Oxidation refers to any process in which the oxidation number of an atom becomes more positive Lecture Notes 3 rd Series: Electrochemistry Oxidation number or states When atoms gain or lose electrons they are said to change their oxidation number or oxidation state. If an element has gained electrons

More information

Chapter 4 Electrolytes and Aqueous Reactions. Dr. Sapna Gupta

Chapter 4 Electrolytes and Aqueous Reactions. Dr. Sapna Gupta Chapter 4 Electrolytes and Aqueous Reactions Dr. Sapna Gupta Aqueous Solutions Solution - a homogeneous mixture of solute + solvent Solute: the component that is dissolved Solvent: the component that does

More information

Homework #3 Chapter 4 Types of Chemical Reactions and Solution Stoichiometry

Homework #3 Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Homework #3 Chapter 4 Types of Chemical Reactions and Solution Stoichiometry 13. Determine the concentrations of the solutions Solution A 4 particles 1.0 L Solution B 6 paticles 4.0 L Solution C 4 particles

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

The relevant half cell reactions and potentials are: Calculate the equilibrium constant, K, for the reaction at 25 C. lnk

The relevant half cell reactions and potentials are: Calculate the equilibrium constant, K, for the reaction at 25 C. lnk CHEM1405 2004-J-3 June 2004 Calculate the initial cell potential for the following unbalanced reaction at 25 C from the standard electrode potentials. Assume the concentration of all species is initially

More information

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Water, the Common Solvent One of the most important substances on Earth. Can dissolve many different substances. A polar molecule because

More information

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions By the end of today, you will have an answer to: How do we determine if a reaction is a redox reaction? Do Now: 1. Which compound has both ionic

More information

Acids and Bases. Properties of Acids. Properties of Bases

Acids and Bases. Properties of Acids. Properties of Bases Chemistry 2A/2B Term 3 Notes B 1 Coghlan Chemistry 2A/2B Term 3 Notes B Properties of Acids Acids and Bases 1. Neutralise. 2. Turns litmus red. 3. Conducts when in with water form an (acids ). 4. React

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

Danyal Education (Contact: ) A commitment to teach and nurture

Danyal Education (Contact: ) A commitment to teach and nurture Chemistry of Reactions: Redox (#) Candidates should be able to: a) define oxidation and reduction (redox) in terms of oxygen/hydrogen gain/loss b) define redox in terms of electron transfer and changes

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

Unit B: Electrochemical Changes Solutions

Unit B: Electrochemical Changes Solutions Unit B: Electrochemical Changes Solutions Question 1 Assign oxidation numbers and identify the reducing agent (RA) and oxidizing agent (OA): 0 0 2 Na(g) + Cl 2 (g) 2 RA OA It is the OA that undergoes reduction

More information

Chemistry COPYRIGHT SASTA 2018 WORKBOOK TOPICS. SACE STAGE 1 Australian Curriculum. SECOND EDITION Rhys Lewis. > Materials and their atoms

Chemistry COPYRIGHT SASTA 2018 WORKBOOK TOPICS. SACE STAGE 1 Australian Curriculum. SECOND EDITION Rhys Lewis. > Materials and their atoms WORKBOOK SACE STAGE 1 Australian Curriculum Chemistry TOPICS > Materials and their atoms > Combining atoms > Molecules > Mixtures and solutions > Acids and bases > Redox reactions Supporting Teachers of

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Advanced Chemistry Name Hour Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Day Plans

More information

Electrochemical Reactions

Electrochemical Reactions 1 of 20 4/11/2016 1:00 PM Electrochemical Reactions Electrochemical Reactions Electrical Work From Spontaneous Oxidation- Reduction Reactions Predicting Spontaneous Redox Reactions from the Sign of E Line

More information