Modeling of optical properties of 2D crystals: Silicene, germanene and stanene

Size: px
Start display at page:

Download "Modeling of optical properties of 2D crystals: Silicene, germanene and stanene"

Transcription

1 Modeling of optical properties of 2D crystals: Silicene, germanene and stanene Friedhelm Bechstedt 1 collaboration: L. Matthes 1 and O. Pulci 2 1 Friedrich-Schiller-Universität Jena, Germany 2 Università di Roma Tor Vergata, Rome, Italy

2 Motivation: 2D materials beyond graphene? Graphene Other 2D materials? Silicene (Graphene-like Si) K. Takeda, K. Shiraishi, PRB 50, (1994) G. G. Guzmán-Verri, et al., PRB 76, (2007) Theory: Silicene is energetically stable and has similar electronic properties as graphene S. Cahangirov et al., PRL 102, (2009) Is silicene the next graphene? L.C. Lew Yan Voon et al., MRS Bulletin 39, 366 (2014) but problem: no graphite for Si, Ge and Sn

3 Silicon-based 2D honeycomb crystals Top view + functionalization silicene +H Side view silicane =0.44 Å Experiment: P. Vogt et al., PRL 108, (2012) Not planar!!! larger atomic radii =0.70 Å Theory: L.C.L. Yan Voon, APL 97, (2010) realization (Ge): E. Bianco et al., ACS Nano 7, 4414 (20013)

4 2D honeycomb crystals: Prototype: Silicene Atomic structure Brillouin zone sp 2 /sp 3 -bonding not flat (buckling) Dirac cones at K, K (because of symmetry)

5 Band structure of σ* bands silicene π* bands Dirac cones π bands σ bands

6 Outline 1. Modeling / general results 2. Infrared optical absorbance 3. Boundary conditions / global properties 4. Summary

7 (Ab initio) Modeling of atomically thin crystals? artificial superlattice (hexagonal crystal with a and L 20 Å) density functional theory electronic bands and wave functions dielectric function / (ω) (independent-particle / QP approximation) optical properties of isolated sheet (= ^ 2D optical conductivity) Compensation of QP blue shift and excitonic red shift L. Yang et al., PRL 103, (2009) / / σ2d( ω ) = εω i 0 L ( ω) 1

8 Quasiparticle band structures graphene silicene germanene stanene Dirac cones at K, K despite sp 3 and buckling opening of small gaps due to SOC L. Matthes,, F.B., J. Phys. CM 25, (2013)

9 Freestanding 2D group-iv allotropes stable in DFT (QP) computations property graphene silicene germanene tinene lattice constant (Å) buckling (Å) v F (10 6 m/s) 0.83 (1.01) 0.53 (0.65) 0.52 (0.62) 0.48 (0.55) SOC-induced gap (mev) 0.0 (0.0) 1.6 (1.9) 24 (33) 73 (101) L. Matthes, F.B., J. Phys. CM 25, (2013) germanene band structure with Dirac cones (modified conical linear bands) massive Dirac particle)

10 Optical conductivity in units of ac conductivity graphene stanene silicene germanene L. Matthes et al., New J. Phys. 16, (2014)

11 Infrared absorbance A(ω) of graphene Fine Structure Constant Defines Visual Transparency of Graphene R.R. Nair, 1 P. Blake, 1 A.N Grigorenko, 1 K.S. Novoselov, 1 T.J. Booth, 1 T. Stauber, 2 N.M.R. Peres, 2 A.K. Geim 1 * Science 320, 1308 (2008) AA = ππππ 2.3% (Sommerfeld fine structure constant α) for massless Dirac fermions and transversal gauge Same optical absorbance for other 2D group-iv honeycomb crystals despite sp 3 hybridization and buckling?

12 Joint band structure and density of states graphene silicene germanene For vanishing photon energies still linear dispersion and Dirac cones near K Van Hove singularities M 0 or M 1 near Γ and M.

13 Band structure and optical matrix elements normalized to v F graphene silicene germanene Interband energies and optical transition matrix elements near K (K ) are rather independent of group-iv element if normalization with v F F. Bechstedt et al., APL 100, (2012) L. Matthes et al., PRB 87, (2013)

14 AA ωω = αα Independent-particle approximation (vertical interband transitions) ħ 1 mm 2 ωω 2 cckk pp AA kk cc,vv jj=xx,yy jj vvkk 2 δδ(εε cc kk εε vv kk ħωω) RRRRσσ 2DD (ωω) germanene silicene graphene A(0) = πα A(ω) A(ω) independent of buckling, hybridization, element, and gauge quadratic increase with ω deviations in the range of interband transitions F. Bechstedt et al., APL 100, (2012)

15 Problem: Modeling of boundaries for atomically thin sheets 1 only σ 2D (ω) boundary condition with surface charge density ρ = j q /ω T. Staufer, PRB 78, (2008) L. Matthes, New J. Phys. 16, (2014) σ 2D 2 3 σ 2D (ω) transfer matrix method Tianvong Zhan, J. Phys. CM 25, (2013) σ 2D (ω) and σ 2D (ω) transfer matrix method Xin-Hua Deng, EPL 109, (2015) L. Matthes, PhD thesis (2015) analogous d L d = + L L 1 d 1 L d 1 = + L L sheet SL environment sheet SL environment R, T, A independent for normal incidence but different for grazing incidence and p-polarization

16 Freestanding sheets at normal incidence Reflectance Transmittance RR = TT = σσ 1 + σσ σσ 2 1-πα significant effects due one atomically thin layer (especially: in resonances) Absorbance AA = 2RRRR σσ 1 + σσ 2 πα = 1 RR TT with σ = σ 2D (ω)/2σ 0

17 Optical properties graphene stanene R T 1 A Re σ 2D (ω)/σ 0 silicene germanene L. Matthes et al., New J. Phys. 16, (2014) huge effect in resonances graphene resonances near π and π + σ plasmons first resonance graphene & silicene M 1 saddle point (M point) first resonance germanene & stanene M 0 minimum (Γ point)

18 Experiment Kin Fai Mak et al., PRL 106, (2011) 4.62 ev saddle point exciton Fano lineshape (excitons of M 1 with continuum of interband transitions near K)

19 Modeling Summary / Conclusions Isolated sheet from superlattice (σ 2D (ω), σ 2D (ω)) IR properties A(ω) = πα: Vertical π π * transitions near K with vanishing interband energy (spin-orbit?!) Global properties problem: boundary conditions frequency variation: van Hove singularities huge effects on R, T, A near resonances

Topological Dirac & Weyl fermions in optical properties

Topological Dirac & Weyl fermions in optical properties Topological Dirac & Weyl fermions in optical properties Friedhelm Bechstedt 1 L. Matthes 1, S. Küfner 1, J. Furthmüller 1 A. Mosca Conte 2, D. Grassano 3, O. Pulci 2,3 1 Friedrich-Schiller-Universität

More information

Electronic and optical properties of graphene- and graphane-like SiC layers

Electronic and optical properties of graphene- and graphane-like SiC layers Electronic and optical properties of graphene- and graphane-like SiC layers Paola Gori, ISM, CNR, Rome, Italy Olivia Pulci, Margherita Marsili, Università di Tor Vergata, Rome, Italy Friedhelm Bechstedt,

More information

A comparative computational study of the electronic properties of planar and buckled silicene

A comparative computational study of the electronic properties of planar and buckled silicene A comparative computational study of the electronic properties of planar and buckled silicene Harihar Behera 1 and Gautam Mukhopadhyay 2 Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

More information

Puckering and spin orbit interaction in nano-slabs

Puckering and spin orbit interaction in nano-slabs Electronic structure of monolayers of group V atoms: Puckering and spin orbit interaction in nano-slabs Dat T. Do* and Subhendra D. Mahanti* Department of Physics and Astronomy, Michigan State University,

More information

Physical Properties of Mono-layer of

Physical Properties of Mono-layer of Chapter 3 Physical Properties of Mono-layer of Silicene The fascinating physical properties[ 6] associated with graphene have motivated many researchers to search for new graphene-like two-dimensional

More information

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin This manuscript was submitted first in a reputed journal on Apri1 16 th 2015 Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin Sumit Saxena 1, Raghvendra Pratap Choudhary, and Shobha Shukla

More information

Strain-induced energy band gap opening in two-dimensional bilayered silicon film

Strain-induced energy band gap opening in two-dimensional bilayered silicon film Strain-induced energy band gap opening in two-dimensional bilayered silicon film Z. Ji 1, R. Zhou 2, L. C. Lew Yan Voon 3, Y. Zhuang 1 1 Department of Electrical Engineering, Wright State University, Dayton,

More information

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś Spin-orbit effects in graphene and graphene-like materials Józef Barnaś Faculty of Physics, Adam Mickiewicz University, Poznań & Institute of Molecular Physics PAN, Poznań In collaboration with: A. Dyrdał,

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Electronic properties of Graphene and 2-D materials

Electronic properties of Graphene and 2-D materials Electronic properties of Graphene and 2-D materials 2D materials background Carbon allotropes Graphene Structure and Band structure Electronic properties Electrons in a magnetic field Onsager relation

More information

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017) ISBN: 978-1-60595-482-0 Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate Miao-Juan REN

More information

Optics and Response Functions

Optics and Response Functions Theory seminar: Electronic and optical properties of graphene Optics and Response Functions Matthias Droth, 04.07.2013 Outline: Light absorption by Dirac fermions Intro: response functions The optics of

More information

& Dirac Fermion confinement Zahra Khatibi

& Dirac Fermion confinement Zahra Khatibi Graphene & Dirac Fermion confinement Zahra Khatibi 1 Outline: What is so special about Graphene? applications What is Graphene? Structure Transport properties Dirac fermions confinement Necessity External

More information

Two-phonon Raman scattering in graphene for laser excitation beyond the π-plasmon energy

Two-phonon Raman scattering in graphene for laser excitation beyond the π-plasmon energy Journal of Physics: Conference Series PAPER OPEN ACCESS Two-phonon Raman scattering in graphene for laser excitation beyond the π-plasmon energy To cite this article: Valentin N Popov 2016 J. Phys.: Conf.

More information

Hybrid-Monte-Carlo simulations at the van Hove singularity in monolayer graphene

Hybrid-Monte-Carlo simulations at the van Hove singularity in monolayer graphene Hybrid-Monte-Carlo simulations at the van Hove singularity in monolayer graphene Michael Körner Institut für Theoretische Physik, Justus Liebig Universität Gießen Lunch Club Seminar January 24, 2018 Outline

More information

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Nanostructured Carbon Allotropes as Weyl-Like Semimetals Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute symmetry In quantum mechanics, symmetry can be

More information

From Graphene to Silicene: Topological Phase Diagram and Transition

From Graphene to Silicene: Topological Phase Diagram and Transition From Graphene to Silicene: Topological Phase Diagram and Transition EQPCM Symposium Motohiko Ezawa Department of Applied Physics University of Tokyo 1 Outline Silicene is a graphene-like silicon structure

More information

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Table of Contents Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Bilayer graphene Building a bilayer graphene structure Calculation and analysis Silicene Optimizing

More information

arxiv: v1 [cond-mat.mes-hall] 13 Feb 2012

arxiv: v1 [cond-mat.mes-hall] 13 Feb 2012 Controlling Band Gap in Silicene Monolayer Using External Electric Field C. Kamal 1 arxiv:1202.2636v1 [cond-mat.mes-hall] 13 Feb 2012 1 Indus Synchrotrons Utilization Division, Raja Ramanna Centre for

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Supplemental material. The conflicting role of buckled structure in phonon. transport of 2D group-iv and group-v materials

Supplemental material. The conflicting role of buckled structure in phonon. transport of 2D group-iv and group-v materials Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supplemental material The conflicting role of buckled structure in phonon transport of 2D group-iv

More information

The twisted bilayer: an experimental and theoretical review. Graphene, 2009 Benasque. J.M.B. Lopes dos Santos

The twisted bilayer: an experimental and theoretical review. Graphene, 2009 Benasque. J.M.B. Lopes dos Santos Moiré in Graphite and FLG Continuum theory Results Experimental and theoretical conrmation Magnetic Field The twisted bilayer: an experimental and theoretical review J.M.B. Lopes dos Santos CFP e Departamento

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

GRAPHENE the first 2D crystal lattice

GRAPHENE the first 2D crystal lattice GRAPHENE the first 2D crystal lattice dimensionality of carbon diamond, graphite GRAPHENE realized in 2004 (Novoselov, Science 306, 2004) carbon nanotubes fullerenes, buckyballs what s so special about

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study

S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study INFN Laboratori Nazionali Frascati (LNF), Italy Univ. Calabria,

More information

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube Journal of Physics: Conference Series PAPER OPEN ACCESS Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube To cite this article: Jyotirmoy Deb et al 2016 J. Phys.: Conf. Ser.

More information

From an Experimental Test of the BGS Conjecture to Modeling Relativistic Effects in Microwave Billards

From an Experimental Test of the BGS Conjecture to Modeling Relativistic Effects in Microwave Billards From an Experimental Test of the BGS Conjecture to Modeling Relativistic Effects in Microwave Billards Oriol Bohigas Memorial Orsay 2014 Some personal recollections Some experimental tests of the BGS conjecture

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Band Gap Engineering of Two-Dimensional Nitrogene

Band Gap Engineering of Two-Dimensional Nitrogene Band Gap Engineering of Two-Dimensional Nitrogene Jie-Sen Li, Wei-Liang Wang, Dao-Xin Yao* State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University,

More information

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. (a,b) Magneto-transmission ratio spectra T(B)/T(B 0 ) of graphene/h-bn

More information

Why all the fuss about 2D semiconductors?

Why all the fuss about 2D semiconductors? Why all the fuss about 2D semiconductors? Andres Castellanos-Gomez Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience). 28049 Madrid, Spain. andres.castellanos@imdea.org The isolation

More information

2D Materials and Electromagnetic Applications

2D Materials and Electromagnetic Applications 2D Materials and Electromagnetic Applications November 10 th, 2016 Tel Aviv University Antenna Symposium George Hanson Dept. of Electrical Engineering and Computer Science University of Wisconsin-Milwaukee

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Cocoyoc 2012 Something about graphene and microwave billiards Dirac spectrum in a photonic crystal Experimental

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Γ M. Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides. Yusuke Sugita

Γ M. Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides. Yusuke Sugita Γ M K Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides Yusuke Sugita collaborators Takashi Miyake (AIST) Yukitoshi Motome (U.Tokyo) 2017/10/24 @ NQS 2017 1 Outline Introduction

More information

arxiv: v1 [cond-mat.str-el] 16 Jan 2011

arxiv: v1 [cond-mat.str-el] 16 Jan 2011 Direct observation of room temperature high-energy resonant excitonic effects in graphene I. Santoso 1,3,4,8, P.K Gogoi 1,2, H.B. Su 5, H. Huang 2, Y. Lu 2, D. Qi 1,2,3, W. Chen 2,4, M.A. Majidi 1,2, Y.

More information

Surface electromagnetic wave in two-dimensional materials

Surface electromagnetic wave in two-dimensional materials PhD Thesis Surface electromagnetic wave in two-dimensional materials Muhammad Shoufie Ukhtary Department of Physics, Graduate School of Science Tohoku University September, 18 Acknowledgments "You do

More information

Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion

Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 01 Enhanced optical conductance in graphene superlattice

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/e1701373/dc1 Supplementary Materials for Atomically thin gallium layers from solid-melt exfoliation Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick,

More information

Electronic and Vibrational Properties of Monolayer Hexagonal Indium Chalcogenides

Electronic and Vibrational Properties of Monolayer Hexagonal Indium Chalcogenides Electronic and Vibrational Properties of Monolayer Hexagonal Indium Chalcogenides V. Zólyomi, N. D. Drummond and V. I. Fal ko Department of Physics, Lancaster University QMC in the Apuan Alps IX, TTI,

More information

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook TO and C.-C. Lee, Phys. Rev. Lett. 118, 026401

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Strain-Induced Energy Band-Gap Opening of Silicene

Strain-Induced Energy Band-Gap Opening of Silicene Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2015 Strain-Induced Energy Band-Gap Opening of Silicene Zhonghang Ji Wright State University Follow this

More information

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material]

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] S. K. Panda, I. dasgupta, E. Şaşıoğlu, S. Blügel, and D. D. Sarma Partial DOS, Orbital projected band structure

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Manipulation of Dirac cones in artificial graphenes

Manipulation of Dirac cones in artificial graphenes Manipulation of Dirac cones in artificial graphenes Gilles Montambaux Laboratoire de Physique des Solides, Orsay CNRS, Université Paris-Sud, France - Berry phase Berry phase K K -p Graphene electronic

More information

Observation of an Electric-Field Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy. Cleveland, OH 44106, USA

Observation of an Electric-Field Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy. Cleveland, OH 44106, USA Observation of an Electric-Field Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy Kin Fai Mak 1, Chun Hung Lui 1, Jie Shan 2, and Tony F. Heinz 1* 1 Departments of Physics and Electrical Engineering,

More information

Structural And Electronic Properties of Two- Dimensional Silicene, Graphene, and Related Structures

Structural And Electronic Properties of Two- Dimensional Silicene, Graphene, and Related Structures Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2012 Structural And Electronic Properties of Two- Dimensional Silicene, Graphene, and Related Structures

More information

Two-Dimensional Honeycomb Monolayer of Nitrogen Group. Elements and the Related Nano-Structure: A First-Principle Study

Two-Dimensional Honeycomb Monolayer of Nitrogen Group. Elements and the Related Nano-Structure: A First-Principle Study Two-Dimensional Honeycomb Monolayer of Nitrogen Group Elements and the Related Nano-Structure: A First-Principle Study Jason Lee, Wei-Liang Wang, Dao-Xin Yao * State Key Laboratory of Optoelectronic Materials

More information

Adsorption of Group IV Elements on Graphene, Silicene, Germanene, and Stanene: Dumbbell Formation

Adsorption of Group IV Elements on Graphene, Silicene, Germanene, and Stanene: Dumbbell Formation pubs.acs.org/jpcc Adsorption of Group IV Elements on Graphene, Silicene, Germanene, and Stanene: Dumbbell Formation V. Ongun O zcȩlik,, D. Kecik,, E. Durgun,*,, and S. Ciraci*, UNAM-National Nanotechnology

More information

Tunable band gap in germanene by surface adsorption

Tunable band gap in germanene by surface adsorption Tunable band gap in germanene by surface adsorption Meng Ye, 1, Ruge Quhe, 1,3, Jiaxin Zheng, 1,2 Zeyuan Ni, 1 Yangyang Wang, 1 Yakun Yuan, 1 Geoffrey Tse, 1 Junjie Shi, 1 Zhengxiang Gao, 1 and Jing Lu

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance

Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance Mark O. Goerbig J. Sári, C. Tőke (Pécs, Budapest); J.-N. Fuchs, G. Montambaux, F. Piéchon ; S. Tchoumakov,

More information

Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets

Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets Supporting Information Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets Verena A. Hintermayr 1,2, Lakshminarayana Polavarapu 1,2, Alexander

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

Lecture 3: Density of States

Lecture 3: Density of States ECE-656: Fall 2011 Lecture 3: Density of States Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 8/25/11 1 k-space vs. energy-space N 3D (k) d 3 k

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Dumbbell Stanane: A large-gap quantum spin Hall insulator

Dumbbell Stanane: A large-gap quantum spin Hall insulator Dumbbell Stanane: A large-gap quantum spin Hall insulator Xin Chen, Linyang Li, Mingwen Zhao* School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100,

More information

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene GCOE Symposium Tohoku University 2011 Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene Danny Haberer Leibniz Institute for Solid State and Materials Research Dresden Co-workers Supervising

More information

reversible hydrogenation

reversible hydrogenation Strain engineering on graphene towards tunable and reversible hydrogenation Zhiping Xu 1,* and Kun Xue 2 1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge

More information

Graphene: fundamentals

Graphene: fundamentals Graphene: fundamentals François Peeters Condensed Matter Theory group Department of Physics University of Antwerp Email: francois.peeters@uantwerpen.be https://www.uantwerpen.be/en/rg/cmt/ Chemistry Graphitic

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Electronic Properties of Silicon-Based Nanostructures

Electronic Properties of Silicon-Based Nanostructures Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2006 Electronic Properties of Silicon-Based Nanostructures Gian Giacomo Guzman-Verri Wright State University

More information

Refraction and Dispersion in Nonlinear Photonic Crystal Superlattices

Refraction and Dispersion in Nonlinear Photonic Crystal Superlattices Refraction and Dispersion in Nonlinear Photonic Crystal Superlattices LEOS 18 th Annual Meeting Sydney, Australia Monday, 24 October 2005 Curtis W. Neff, Tsuyoshi Yamashita and Christopher J. Summers Presented

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were performed for the Platonic model of PbI 3 -based perovskites

More information

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018 Nanoscale antennas Said R. K. Rodriguez 24/04/2018 The problem with nanoscale optics How to interface light emitters & receivers with plane waves? Ε ii(kkkk ωωωω) ~1-10 nm ~400-800 nm What is an antenna?

More information

Nonlinear and quantum optics of twodimensional

Nonlinear and quantum optics of twodimensional Nonlinear and quantum optics of twodimensional systems Alexey Belyanin Department of Physics and Astronomy Texas A&M University Xianghan Yao, Ryan Kutayah, and Yongrui Wang Texas A&M University Collaborations:

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

The ac conductivity of monolayer graphene

The ac conductivity of monolayer graphene The ac conductivity of monolayer graphene Sergei G. Sharapov Department of Physics and Astronomy, McMaster University Talk is based on: V.P. Gusynin, S.G. Sh., J.P. Carbotte, PRL 96, 568 (6), J. Phys.:

More information

Rippling and Ripping Graphene

Rippling and Ripping Graphene Rippling and Ripping Graphene Michael Marder Professor of Physics Center for Nonlinear Dynamics and Department of Physics The University of Texas at Austin Clifton Symposium, June 2012, Symi Marder (UT

More information

photonic crystals School of Space Science and Physics, Shandong University at Weihai, Weihai , China

photonic crystals School of Space Science and Physics, Shandong University at Weihai, Weihai , China Enhanced absorption in heterostructures with graphene and truncated photonic crystals Yiping Liu 1, Lei Du 1, Yunyun Dai 2, Yuyu Xia 2, Guiqiang Du 1,* Guang Lu 1, Fen Liu 1, Lei Shi 2, Jian Zi 2 1 School

More information

Columbia University in the City of New York

Columbia University in the City of New York Columbia University in the City of New York 2012 Einstein Scholar Lecture for Chinese Academy of Sciences Peking University, May 21 CAS National Center for Nanoscience and Technology, Beijing, May 17 CAS

More information

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Dominik Smith Lorenz von Smekal smith@theorie.ikp.physik.tu-darmstadt.de 1. August 2013 IKP TUD / SFB

More information

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Supplementary Material Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Youngjae Kim, Won Seok Yun, and J. D. Lee* Department

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Design of Graphene-based Nano-antennas for Terahertz Band Communication Date Submitted: 12 November, 2012 Source:

More information

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons Int J Thermophys (2012) 33:986 991 DOI 10.1007/s10765-012-1216-y Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons Jiuning Hu Xiulin Ruan Yong P. Chen Received: 26 June 2009 / Accepted:

More information

Charge Transport in Organic Crystals

Charge Transport in Organic Crystals Charge Transport in Organic Crystals Karsten Hannewald European Theoretical Spectroscopy Facility (ETSF) & Friedrich-Schiller-Universität Jena Karsten Hannewald (Uni Jena) www.ifto.uni-jena.de/~hannewald/

More information

Supporting Information for. Interfacial Electronic States and Self-Formed p-n Junctions in

Supporting Information for. Interfacial Electronic States and Self-Formed p-n Junctions in Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2018 Supporting Information for Interfacial Electronic States and Self-Formed

More information

Cold atoms in optical lattices

Cold atoms in optical lattices Cold atoms in optical lattices www.lens.unifi.it Tarruel, Nature Esslinger group Optical lattices the big picture We have a textbook model, which is basically exact, describing how a large collection of

More information

Exotic Phenomena in Topological Insulators and Superconductors

Exotic Phenomena in Topological Insulators and Superconductors SPICE Workshop on Spin Dynamics in the Dirac System Schloss Waldthausen, Mainz, 6 June 2017 Exotic Phenomena in Topological Insulators and Superconductors Yoichi Ando Physics Institute II, University of

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information