Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Size: px
Start display at page:

Download "Nanostructured Carbon Allotropes as Weyl-Like Semimetals"

Transcription

1 Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute

2 symmetry In quantum mechanics, symmetry can be critically important. Consider, for example, a two-particle system. Under particle exchange, bosons satisfy ψ r 1, r 2 = ψ r 2, r 1, whereas fermions satisfy ψ r 1, r 2 = ψ r 2, r 1. Just because the symmetry, bosons and fermions are very different from classical particles. Recent development in solid-state physics is also about symmetry: in case of Weyl fermions, chiral symmetry leads to novel properties/topological protection not envisioned before. 2

3 topological protection a Mobius ring a normal ring One cannot deform a normal ring into a Mobius ring without cutting the strip and then rejoin. 3

4 solid and its bloch wave A solid is a periodic system in which electron wavefunction may be written as a Bloch wave ψ k r = e ik r u k r = e ik r u k. The reciprocal space of r is the k space in which the smallest repeating unit defines the Brillouin zone. Brillouin zone (BZ) forms a closed loop in the sense that a k-point exiting from one face of the BZ is equivalent to reentering from the opposite face of the BZ. 4

5 berry curvature & chiral quantum number Electron living inside the Brillouin zone feels an (effective) vector potential A k = i u k k u k (Berry connection). The corresponding (Berry) curvature F k = k A k defines a field (similar to a magnetic field B). Chiral quantum number is defined by χ = 1 2π FS F k d S k (Chern number). Non-trivial Chern number (+1 or 1) tells the chirality (righthanded or left-handed). 5

6 low-energy particles Tomorrow's condensed matter physics will be rooted in manybody physics studying collective excitations and quasiparticles Theory developed for elementary particles can be shipped here to explore many-body interactions which cannot be easily obtained from experiment via serendipity. Theory is and will lead the way. Compared to traditional particle physics, condensed matter is a much richer field and experimental test should be easier. An emerging battlefield of particle physics. Good condensed matter physicist needs to be intradisplinary! 6

7 spin-half dirac fermions Dirac Hamiltonian (3D): H = mv2 v σ p v σ p mv 2 = mv 2 0 vp z v p x ip y 0 mv 2 v p x + ip y vp z vp z v p x ip y mv 2 0 v p x + ip y vp z 0 mv 2 Massless Dirac fermions (m = 0), H = 0 v σ p v σ p 0 Dirac semimetal (4x4 matrix; doublydegenerate Dirac cones; linear dispersion in all three directions). (2-Dirac points) M. Koshino 7

8 3-dimensional spin-half weyl fermions Separate in k- space the two Dirac cones : NJP 9, 356 (2007) Now, each cone is described by a 2x2 Weyl Hamiltonian: H ± = ± v p z p x ip y. Weyl fermions are protected by the chiral p x + ip y p z symmetry discussed earlier, so they are robust against perturbations. 8

9 surface states: fermi arcs Weyl points of different chirality's can be viewed as magnetic monopoles (MMP) with ±charges On the surfaces of a slab, Fermi arcs appear, which is characteristic of Weyl semimetal. A state moving in the (+y)-direction on top surface cannot be scattered back. y To observe Weyl points, the material must do not have either time reversal symmetry or inversion symmetry. 9

10 why bother? Weyl semimetal exhibits chiral anomaly, meaning chiral charges are not conserved. One can use B E fields to pump charge from one chiral channel to another. Experimental ramifications include negative magnetoresistance; quantum anomalous Hall effect (for dissipationless carrier transport like superconductivity); non-local transport; and non-conservation of ordinary current (at least locally). It can also give rise to unusual optical conductivity, and many more. real-part of optical conductivity σ xx versus chemical potential μ & optical frequency ω. 10

11 dirac/weyl semimetal as an intermediate phase A Dirac or Weyl semimetal is an intermediate phase in the transition between a topological insulator (TI) phase and a normal insulator (NI) phase. Topological insulator are materials with large spin-orbit coupling (SOC), such as Bi 2 Te 3 Search for Weyl semimetals also follows the same line of thought. 11

12 in pursuit of weyl semimetal (current status ) (ev) Photonic crystal: Science 349, 622 (2015) TaAs (Ta is heavy, large spin-orbit coupling): Science 349, 613 (2015); PRX 5, (2015). TaAs Band Structure (E versus k) 30-meV gap Drawbacks with TaAs: Too many Weyl points (24 in total) and they are too close (only ~% of BZ), unlike graphene Trivial Fermi pockets at Fermi level dominate (zero gap in the DOS). 12

13 what might be the next? # papers with Weyl in topic Regardless, experimental discovery of Weyl semimetal is an APS Highlight of the Year You bet, the study of Weyl fermion will continue # papers with graphene in topic: 0 ( ); 95,366 ( ); 1,803 (2016 alone); >100 per day now. 13

14 graphene: an example of 2d dirac weyl semimetal r-space: A,B sublattice k-space: K K Near K and K : H = v p0 z p x ip y p x + ip y p 0 z 2 Dirac cones separated by 1 3 b 1 b 2. K K 14

15 carbon allotropes Graphene Graphite + many more Carbon has many allotropes due to its exceptionally strong C-C bonds. Once formed, these allotropes are hard to break. Carbon nanotube C 60 15

16 dp in graphene: unique orbital interactions p z p z atomic p orbitals graphene atomic p z -orbital 2D Dirac point p y p x graphene network atomic (p x, p y )- orbitals 3D Weyl point? 16

17 so, here is our charge Search for systems whose orbital interactions have the form of 3D Weyl Hamiltonian However, different from others searching for existing materials of limited use and supply, we target materials of broad use but in forms not yet synthesized In the process, we also uncovered structures with Hamiltonians that do not fit into any of the currently known models. 17

18 why weyl-like semimetal? Light elements have exceedingly small spin-orbit coupling (SOC for carbon ~1 millikelvin) At room temperature, (thermal scattering)/soc is 300K/0.001K = Hence, for most applications, spin may be treated as a dummy variable, leading to Weyl-like semimetals Conclusion: Weyl physics exists in solids made of purely light elements (the lighter, the better). 18

19 interpenetrated graphene network (IGN) sp 3 sp 2 Formation energy (ev/c) Graphene Diamond IGN C No imaginary-frequency phonons kinetically stable. 19

20 weyl line nodes Brillouin zone Z T θ G Y Weyl wedge E F Line nodes are the only Fermi surface for the entire system, along which the energy dispersion looks like a wedge. Nano Letters 15, 6974 (2015) 20

21 emergence of weyl points One may break the inversion symmetry either (1) by displacing some carbon atoms or (2) by inserting He interstitials, both turn the Weyl line nodes into points (1) (2) 21

22 fermi arcs appear on the [010] surface Schematic Actual calculation Nano Letters 15, 6974 (2015) 22

23 back to line nodes: what is unique? Chern number: χ = 1 2π A k d l k Co-dimension = 2 (even) weaker but non-vanishing topological protection. Line node gives rise to topologicallyprotected flat bands on surfaces. On a flat band, Coulomb repulsion U is exceptionally large, leading to a strong electron-electron correlation PRB 82, (2010) Can you imaging strongly-correlated carbon? 23

24 line nodes are robust under uniaxial strain θ reducing θ Topological protection remains until a critical angle θ =

25 at θ = 64 transition from IGN to CKL Interpenetrated graphene network (IGN) Carbon Kagome lattice (CKL) G-3 1/3 C 4fold; 2/3 C 3fold (sp 2 ) All C 4fold (sp 3 ) Nano Letters 15, 6974 (2015) PRL113, (2014) 25

26 understanding electronic properties Polyacetylene is the root for most carbon allotropes. By connecting the chains, one builds graphene, anti-bonding state bonding state E F G A(=Z) diamond, IGN, Kagome lattice, etc. Different characters of the occupied and empty states are the reason for Weyl semimetal. 26

27 band inversion yields topological protection Increasing uniaxial strain 1D 3D polyacetylene IGN CKL E F A G Red = Blue = Green =

28 ckl is as remarkable as ign 3.4-eV direct gap (blue color) (by HSE calc.) Effective mass m s comparable to Si Light absorption comparable to GaN Realization of optical-electronic integration in one material. Phys. Rev. Lett. 113, (2014) 28

29 frustration in triangular lattice p-orbital carbon Kagome lattice Frustration in life + p-down p-up Frustration in physics Upon doping, will carriers in CKL act as spin-like liquid? 29

30 there is a whole family of 3d-graphene weyl semimetals 2-type carbon rings (more stable than IGN) Weyl surface nodes as Fermi level Co-dimension = 1 (odd) more topological protection (?) Colors denote different types of carbon 30

31 (b) ordered random Transmission Electron Microscopy (TEM) images of carbon channels. Most of the channels are perpendicular to the page. (a) Featured in Physics & Editor s Suggestion 31

32 summary Weyl-line nodes in interpenetrated carbon network [Nano Letters 15, 6974 (2015)] Carbon Kagome lattice [Phys Rev Lett 113, (2014)] Weyl-surface nodes in three-dimensional graphene [under review by Nanoscale (2016)] 32

33 acknowledgements Yuanping Chen Vincent Meunier Marvin Cohen, UCB Yiyang Sun Han Wang Damien West S.Y. Yang, Rensselaer Polytechnic Institute Singapore Fan Zhang, UT Dallas 33

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function of temperature (T) at zero magnetic field. (b) Magnetoresistance

More information

Weyl semi-metal: a New Topological State in Condensed Matter

Weyl semi-metal: a New Topological State in Condensed Matter Weyl semi-metal: a New Topological State in Condensed Matter Sergey Savrasov Department of Physics, University of California, Davis Xiangang Wan Nanjing University Ari Turner and Ashvin Vishwanath UC Berkeley

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12 Supporting Information for Chern insulator and Chern half-metal states in the two-dimensional spin-gapless semiconductor Mn 2 C 6 S 12 Aizhu Wang 1,2, Xiaoming Zhang 1, Yuanping Feng 3 * and Mingwen Zhao

More information

Dirac and Weyl fermions in condensed matter systems: an introduction

Dirac and Weyl fermions in condensed matter systems: an introduction Dirac and Weyl fermions in condensed matter systems: an introduction Fa Wang ( 王垡 ) ICQM, Peking University 第二届理论物理研讨会 Preamble: Dirac/Weyl fermions Dirac equation: reconciliation of special relativity

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Weyl fermions and the Anomalous Hall Effect

Weyl fermions and the Anomalous Hall Effect Weyl fermions and the Anomalous Hall Effect Anton Burkov CAP congress, Montreal, May 29, 2013 Outline Introduction: Weyl fermions in condensed matter, Weyl semimetals. Anomalous Hall Effect in ferromagnets

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA Predicting New BCS Superconductors Marvin L. Cohen Department of Physics, University of California, and Materials Sciences Division, Lawrence Berkeley Laboratory Berkeley, CA CLASSES OF SUPERCONDUCTORS

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Weyl semimetals and topological phase transitions

Weyl semimetals and topological phase transitions Weyl semimetals and topological phase transitions Shuichi Murakami 1 Department of Physics, Tokyo Institute of Technology 2 TIES, Tokyo Institute of Technology 3 CREST, JST Collaborators: R. Okugawa (Tokyo

More information

Band Topology Theory and Topological Materials Prediction

Band Topology Theory and Topological Materials Prediction Band Topology Theory and Topological Materials Prediction Hongming Weng ( 翁红明 ) Institute of Physics,! Chinese Academy of Sciences Dec. 19-23@IOP, CAS, Beijing 2016 Nobel Prize in Physics TKNN number Haldane

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Marino Marsi Laboratoire de Physique des Solides CNRS Univ. Paris-Sud - Université Paris-Saclay IMPACT, Cargèse, August 26

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials

Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials Alexey Belyanin Department of Physics and Astronomy Texas A&M University Zhongqu Long, Sultan Almutairi, Ryan

More information

Quantum Spin Liquids and Majorana Metals

Quantum Spin Liquids and Majorana Metals Quantum Spin Liquids and Majorana Metals Maria Hermanns University of Cologne M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arxiv:1506.01379

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation

Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation Oct 26, 2017 Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation Theory Patrick Lee (MIT) Experiment Ching-Kit Chan University of California Los Angeles Su-Yang Xu,

More information

Photoinduced Anomalous Hall Effect in Weyl Semimetal

Photoinduced Anomalous Hall Effect in Weyl Semimetal Photoinduced Anomalous Hall Effect in Weyl Semimetal Jung Hoon Han (Sungkyunkwan U) * Intense circularly polarized light will modify the band structure of WSM, its Berry curvature distribution, and leads

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

arxiv: v2 [cond-mat.mtrl-sci] 3 Nov 2016

arxiv: v2 [cond-mat.mtrl-sci] 3 Nov 2016 SPIN Vol. 06, No. 1640003 (2016) 1 19 c World Scientific Publishing Company arxiv:1609.06482v2 [cond-mat.mtrl-sci] 3 Nov 2016 Dirac and Weyl Materials: Fundamental Aspects and Some Spintronics Applications

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Topological response in Weyl metals. Anton Burkov

Topological response in Weyl metals. Anton Burkov Topological response in Weyl metals Anton Burkov NanoPiter, Saint-Petersburg, Russia, June 26, 2014 Outline Introduction: Weyl semimetal as a 3D generalization of IQHE. Anomalous Hall Effect in metallic

More information

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Chiral Majorana fermion from quantum anomalous Hall plateau transition Chiral Majorana fermion from quantum anomalous Hall plateau transition Phys. Rev. B, 2015 王靖复旦大学物理系 wjingphys@fudan.edu.cn Science, 2017 1 Acknowledgements Stanford Biao Lian Quan Zhou Xiao-Liang Qi Shou-Cheng

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

Graphene: massless electrons in flatland.

Graphene: massless electrons in flatland. Graphene: massless electrons in flatland. Enrico Rossi Work supported by: University of Chile. Oct. 24th 2008 Collaorators CMTC, University of Maryland Sankar Das Sarma Shaffique Adam Euyuong Hwang Roman

More information

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES)

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) PART A: ARPES & Application Yulin Chen Oxford University / Tsinghua University www.arpes.org.uk

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Weyl semimetals from chiral anomaly to fractional chiral metal

Weyl semimetals from chiral anomaly to fractional chiral metal Weyl semimetals from chiral anomaly to fractional chiral metal Jens Hjörleifur Bárðarson Max Planck Institute for the Physics of Complex Systems, Dresden KTH Royal Institute of Technology, Stockholm J.

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Weyl semimetal phase in the non-centrosymmetric compound TaAs Weyl semimetal phase in the non-centrosymmetric compound TaAs L. X. Yang 1,2,3, Z. K. Liu 4,5, Y. Sun 6, H. Peng 2, H. F. Yang 2,7, T. Zhang 1,2, B. Zhou 2,3, Y. Zhang 3, Y. F. Guo 2, M. Rahn 2, P. Dharmalingam

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

Emergent Frontiers in Quantum Materials:

Emergent Frontiers in Quantum Materials: Emergent Frontiers in Quantum Materials: High Temperature superconductivity and Topological Phases Jiun-Haw Chu University of Washington The nature of the problem in Condensed Matter Physics Consider a

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Topological Defects in the Topological Insulator

Topological Defects in the Topological Insulator Topological Defects in the Topological Insulator Ashvin Vishwanath UC Berkeley arxiv:0810.5121 YING RAN Frank YI ZHANG Quantum Hall States Exotic Band Topology Topological band Insulators (quantum spin

More information

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material]

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] S. K. Panda, I. dasgupta, E. Şaşıoğlu, S. Blügel, and D. D. Sarma Partial DOS, Orbital projected band structure

More information

Carbon Kagome lattice and orbital frustration-induced metal-insulator. transition for optoelectronics

Carbon Kagome lattice and orbital frustration-induced metal-insulator. transition for optoelectronics Carbon Kagome lattice and orbital frustration-induced metal-insulator transition for optoelectronics Yuanping Chen,, Y.Y. Sun, H. Wang, D. West, Yuee Xie, J. Zhong, V. Meunier, Marvin L. Cohen and S. B.

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

Γ M. Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides. Yusuke Sugita

Γ M. Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides. Yusuke Sugita Γ M K Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides Yusuke Sugita collaborators Takashi Miyake (AIST) Yukitoshi Motome (U.Tokyo) 2017/10/24 @ NQS 2017 1 Outline Introduction

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc.

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. NOV 23, 2015 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209] Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. November 23, 2015 Magnetic

More information

Topological insulator gap in graphene with heavy adatoms

Topological insulator gap in graphene with heavy adatoms Topological insulator gap in graphene with heavy adatoms ES2013, College of William and Mary Ruqian Wu Department of Physics and Astronomy, University of California, Irvine, California 92697 Supported

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Exploring topological states with cold atoms and photons

Exploring topological states with cold atoms and photons Exploring topological states with cold atoms and photons Theory: Takuya Kitagawa, Dima Abanin, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Immanuel Bloch, Eugene Demler Experiments: I. Bloch s group

More information

GRAPHENE the first 2D crystal lattice

GRAPHENE the first 2D crystal lattice GRAPHENE the first 2D crystal lattice dimensionality of carbon diamond, graphite GRAPHENE realized in 2004 (Novoselov, Science 306, 2004) carbon nanotubes fullerenes, buckyballs what s so special about

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Non-Abelian Berry phase and topological spin-currents

Non-Abelian Berry phase and topological spin-currents Non-Abelian Berry phase and topological spin-currents Clara Mühlherr University of Constance January 0, 017 Reminder Non-degenerate levels Schrödinger equation Berry connection: ^H() j n ()i = E n j n

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Novel Magnetic Properties of Carbon Nanotubes. Abstract

Novel Magnetic Properties of Carbon Nanotubes. Abstract Novel Magnetic Properties of Carbon Nanotubes Jian Ping Lu Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 jpl@physics.unc.edu arxiv:cond-mat/94779v1

More information

ĝ r = {R v} r = R r + v.

ĝ r = {R v} r = R r + v. SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS134 Topological semimetal in a fermionic optical lattice Kai Sun, 1 W. Vincent Liu,, 3, 4 Andreas Hemmerich, 5 and S. Das Sarma 1 1 Condensed Matter Theory Center

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

Effective theory of quadratic degeneracies

Effective theory of quadratic degeneracies Effective theory of quadratic degeneracies Y. D. Chong,* Xiao-Gang Wen, and Marin Soljačić Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 28

More information

From optical graphene to topological insulator

From optical graphene to topological insulator From optical graphene to topological insulator Xiangdong Zhang Beijing Institute of Technology (BIT), China zhangxd@bit.edu.cn Collaborator: Wei Zhong (PhD student, BNU) Outline Background: From solid

More information

Symmetry Protected Topological Phases of Matter

Symmetry Protected Topological Phases of Matter Symmetry Protected Topological Phases of Matter T. Senthil (MIT) Review: T. Senthil, Annual Reviews of Condensed Matter Physics, 2015 Topological insulators 1.0 Free electron band theory: distinct insulating

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information