Cold atoms in optical lattices

Size: px
Start display at page:

Download "Cold atoms in optical lattices"

Transcription

1 Cold atoms in optical lattices Tarruel, Nature Esslinger group

2 Optical lattices the big picture We have a textbook model, which is basically exact, describing how a large collection of atoms will behave in free space H = H = T 2 pi 2m i + V + g ij + U i, j δ ( r r ) pair-wise contact interactions i j We can add a potential term (V), modify the kinetic energy term (T), and even get qualitatively new, effective interaction terms (U) by putting the atoms into optical lattices

3 Optical lattices the big picture One obvious analogy: motion of atomic matter waves in laser crystals ~ motion of electron waves in ionic crystal lattices Electron matter in solid-state crystals Atomic matter in light crystals ~ nm Extremely dilute less dense than H 2 O Ultracold nk and pk temperatures No disorder (no phonons or defects) λ/2 ~ μm exact microscopic model low energy scales EE 1/mmLL 2

4 Optical lattices the big picture Not just limited to studying electronic systems many problems can be mapped from continuum to lattice (example: lattice QCD)

5 Optical lattices the big picture Aside from quantum simulation / studying many-body physics, also just a great way to keep atoms from moving Campbell et al., Science 358, (2017) rid of Doppler shifts for atomic clocks

6 Optical lattices the big picture Aside from quantum simulation / studying many-body physics, also just a great way to keep atoms from moving Wang et al., Science 352, (2016) trapping of qubits

7 Optical lattices laser interference Immanuel Bloch Nature (2008) VV rr, tt = αα ωω II rr, tt αα ωω 1 ωω ωω 0 II rr, tt typically formed by laser interference

8 Optical lattices laser interference Greiner/Vuletić/Lukin collab, CUA

9 Optical lattices laser interference Saffman group, Wisconsin

10 Optical lattices laser interference Browaeys group, Palaiseau Note: such potentials have large inter-well spacing, not particularly well-suited to studying coherent tunneling (exceptions: Jochim / Regal groups)

11 Optical lattices laser interference Immanuel Bloch Nature (2008) VV rr, tt = αα ωω II rr, tt αα ωω 1 ωω ωω 0 II rr, tt = nn EE nn rr, tt εε 2 nn typically formed by laser interference Lattice pattern depends on: frequencies polarizations directions of propagation relative phases

12 Simplified 1D optical lattice Immanuel Bloch Nature (2008) VV rr, tt EE 1 ee ii kkkk ωωωω+φφ 1 + EE 2 ee ii kkkk ωωωω+φφ 2 2 VV rr, tt = VV offset + VV 0 cos 2 ππ zz zz 0 dd Note: for real laser beams (~Gaussian, not plane-wave), also get confinement (or deconfinement) in radial direction [i.e. V 0 is a slowly-varying function of rr)

13 Simplified 1D optical lattice Immanuel Bloch Nature (2008) VV rr, tt EE 1 ee ii kkkk ωωωω+φφ 1 + EE 2 ee ii kkkk ωωωω+φφ 2 2 VV rr, tt = VV offset + VV 0 cos 2 ππ zz zz 0 dd = VV offset + VV 0 2 cos 2ππzzz dd Note: for real laser beams (~Gaussian, not plane-wave), also get confinement (or deconfinement) in radial direction [i.e. V 0 is a slowly-varying function of rr)

14 Relevant energy scale The recoil energy --- for counter-propagating beams, EE RR = ħ2 kk LL 2 2mm 2θθ EE RR = h2 2mmdd 2 ss = VV 0 /EE RR dd = λλ 2 sin θθ

15 The energy band structure ss = VV 0 EE RR = 5 ss = 5 Blue: extended zone scheme energy bands vs. momentum w.r.t. crystal Black: folded zone scheme band structure

16 The energy band structure ss = VV 0 EE RR = 5 ss = 5 Blue: extended zone scheme energy bands vs. momentum w.r.t. crystal Black: folded zone scheme band structure Bloch wave functions Φ nn qq zz n = band index q = quasimomentum Note: for sinusoidal potentials, there is an exact, analytical solution for the Bloch wavefunctions / energies in terms of the Mathieu equation (characteristic Mathieu functions)

17 Localized Wannier orbitals ss = 5 ww nn zz zz jj = 1 NN qq ee iiiiii/ħ Φ qq nn zz

18 Deep lattice (s >> 1), harmonic approx. ss 2 EE RR cos 2kkkk CC + ssee RR 4 2kkkk 2 CC mmωω2 zz 2 ħωω 2 ssee RR Can approximate the Wannier states as HO orbitals (Gaussian wfs) with πσσ/dd ss 1/4 This approximation is valid, for some HO level n, for E n << se R

19 Moving optical lattices ωω 1 ωω 2 Immanuel Bloch Nature (2008) VV rr, tt ssee RR cos 2 ππzz dd + φφ 2 φφ 1 2 A sudden phase jump by ππ/2 between the two fields will shift the lattice by ¼ of a wavelength A continuous linear phase shift will make the lattice move with some fixed velocity --- this is equivalent to a fixed frequency detuning between the interfering beams

20 Moving optical lattices ωω 1 ωω 2 Immanuel Bloch Nature (2008) VV rr, tt ssee RR cos 2 ππzz dd + φφ 2 φφ 1 2 A sudden phase jump by ππ/2 between the two fields will shift the lattice by ¼ of a wavelength A continuous linear phase shift will make the lattice move with some fixed velocity --- this is equivalent to a fixed frequency detuning between the interfering beams vv llllllll = ff λλ/2

21 The energy band structure ss = VV 0 EE RR = 5 What would happen to atoms if you suddenly turned on a moving lattices, such that v latt = v R, or k = k L?

22 Diffraction from moving lattices Incoming Laser Field 87 Rb BEC Retro Laser Field EE/ħ ee large ωω + ωω 0,1 Laser spectrum ωω + ωω 0,1 gg p/2ħkk ωω + ωω 0,1 δδδδ

23 Diffraction from moving lattices Incoming Laser Field 87 Rb BEC Retro Laser Field EE/ħ ee large ωω + ωω 0,1 Laser spectrum ωω + ωω 0,1 gg p/2ħkk ωω + ωω 0,1 δδδδ Two-photon Bragg transition

24 What about applying a force? E q ( x) = V Fx V latt + φφ tt tt 2

25 What about applying a force? E Nägerl group, Innsbruck q ( x) = V Fx V latt + φφ tt tt 2

26 Release of atoms from a lattice One typically sees a diffraction pattern the weights of the different momentum orders relates to the projection of the Bloch states onto free particles states

27 Band-mapping Map population in different lattice bands to unique momentum states. Slow (adiabatic) with respect to band gap, but fast with respect to bandwidth Greiner, et al.

28 Higher-dimensional lattices Immanuel Bloch Nature (2008) Immanuel Bloch Nature (2008)

29 Higher-dimensional lattices (lower-dimensional systems ) Bloch, Dalibard, Zwerger (2008)

30 Optical superlattices Bloch group, Porto group, others

31 Multi-beam lattice structures

32 Multi-beam lattice structures Tunable 4-beam lattice (Porto group)

33 Multi-beam lattice structures Tunable 6-beam lattice (Esslinger group)

34 Triangular lattices Sengstock group

35 Triangular lattices Sengstock group

36 Kagome lattices Stamper-Kurn group

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Physics 371 Spring 2017 Prof. Anlage Review

Physics 371 Spring 2017 Prof. Anlage Review Physics 71 Spring 2017 Prof. Anlage Review Special Relativity Inertial vs. non-inertial reference frames Galilean relativity: Galilean transformation for relative motion along the xx xx direction: xx =

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition Wave Motion Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Waves: propagation of energy, not particles 2 Longitudinal Waves: disturbance is along the direction of wave propagation

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Quantum state measurement

Quantum state measurement Quantum state measurement Introduction The rotation properties of light fields of spin are described by the 3 3 representation of the 0 0 SO(3) group, with the generators JJ ii we found in class, for instance

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

CHAPTER 4 Structure of the Atom

CHAPTER 4 Structure of the Atom CHAPTER 4 Structure of the Atom Fall 2018 Prof. Sergio B. Mendes 1 Topics 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Interacting atoms and molecules in triangular lattices with varying geometry. Dan Stamper-Kurn, UC Berkeley

Interacting atoms and molecules in triangular lattices with varying geometry. Dan Stamper-Kurn, UC Berkeley Interacting atoms and molecules in triangular lattices with varying geometry Dan Stamper-Kurn, U erkeley perspective on atoms in optical lattices Gedanken laboratory for study of single-, few- and many-body

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

Dressing up for length gauge: Aspects of a debate in quantum optics

Dressing up for length gauge: Aspects of a debate in quantum optics Dressing up for length gauge: Aspects of a debate in quantum optics Rainer Dick Department of Physics & Engineering Physics University of Saskatchewan rainer.dick@usask.ca 1 Agenda: Attosecond spectroscopy

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

The Bose Einstein quantum statistics

The Bose Einstein quantum statistics Page 1 The Bose Einstein quantum statistics 1. Introduction Quantized lattice vibrations Thermal lattice vibrations in a solid are sorted in classical mechanics in normal modes, special oscillation patterns

More information

Lecture 22 Highlights Phys 402

Lecture 22 Highlights Phys 402 Lecture 22 Highlights Phys 402 Scattering experiments are one of the most important ways to gain an understanding of the microscopic world that is described by quantum mechanics. The idea is to take a

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following.

Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following. Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following. σσ(νν) = AA 21 λλ 2 8ππnn 2 gg(νν) AA 21 = 6 10 6 ssssss 1 From the figure, the emission

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers

Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers Institute of Advanced Study, Tsinghua, April 19, 017 Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers Haiwen Liu ( 刘海文 ) Beijing Normal University

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi 1 Wikipedia Small-angle X-ray scattering (SAXS) is a small-angle scattering (SAS) technique where the elastic scattering of X-rays (wavelength

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) December 4, 2017 IAS:

More information

Review of Last Class 1

Review of Last Class 1 Review of Last Class 1 X-Ray diffraction of crystals: the Bragg formulation Condition of diffraction peak: 2dd sin θθ = nnλλ Review of Last Class 2 X-Ray diffraction of crystals: the Von Laue formulation

More information

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell Background Benefits of Spectral Analysis Type of data Basic Idea

More information

Inferring the origin of an epidemic with a dynamic message-passing algorithm

Inferring the origin of an epidemic with a dynamic message-passing algorithm Inferring the origin of an epidemic with a dynamic message-passing algorithm HARSH GUPTA (Based on the original work done by Andrey Y. Lokhov, Marc Mézard, Hiroki Ohta, and Lenka Zdeborová) Paper Andrey

More information

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space.

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space. Problem 3. (Verdeyen 5.3) First, I calculate the ABCD matrix for beam traveling through the lens and space. T = dd 0 0 dd 2 ff 0 = dd 2 dd ff 2 + dd ( dd 2 ff ) dd ff ff Aording to ABCD law, we can have

More information

Coulomb s Law and Coulomb s Constant

Coulomb s Law and Coulomb s Constant Pre-Lab Quiz / PHYS 224 Coulomb s Law and Coulomb s Constant Your Name: Lab Section: 1. What will you investigate in this lab? 2. Consider a capacitor created when two identical conducting plates are placed

More information

(2) Orbital angular momentum

(2) Orbital angular momentum (2) Orbital angular momentum Consider SS = 0 and LL = rr pp, where pp is the canonical momentum Note: SS and LL are generators for different parts of the wave function. Note: from AA BB ii = εε iiiiii

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Interaction with matter

Interaction with matter Interaction with matter accelerated motion: ss = bb 2 tt2 tt = 2 ss bb vv = vv 0 bb tt = vv 0 2 ss bb EE = 1 2 mmvv2 dddd dddd = mm vv 0 2 ss bb 1 bb eeeeeeeeeeee llllllll bbbbbbbbbbbbbb dddddddddddddddd

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity Fall 2018 Prof. Sergio B. Mendes 1 Topics 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Inertial Frames of Reference Conceptual and Experimental

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

Synthetic momentum-space lattices:

Synthetic momentum-space lattices: Synthetic momentum-space lattices: exploring the interplay of topology, frustration, disorder, and interactions Gadway group University of Illinois at Urbana-Champaign Acknowledgments Jackson Ang ong a

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 3. Solar energy conversion with band-gap materials ChE-600 Kevin Sivula, Spring 2014 The Müser Engine with a concentrator T s Q 1 = σσ CffT ss 4 + 1 Cff T pp

More information

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin A Posteriori DG using Non-Polynomial Basis 1 A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions Lin Lin Department of Mathematics, UC Berkeley;

More information

Measurement at the quantum frontier

Measurement at the quantum frontier Measurement at the quantum frontier J. Ye Boulder Summer School, July 24, 2018 Quantum sensing Table-top search for new physics Many-body dynamics Marti et al., PRL (2018). S. Blatt et al., PRL (2008).

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation Big Bang Planck Era Source: http://www.crystalinks.com/bigbang.html Source: http://www.odec.ca/index.htm This theory: cosmological model of the universe that is best supported by several aspects of scientific

More information

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant Bloch oscillations of ultracold-atoms and Determination of the fine structure constant Pierre Cladé P. Cladé Bloch oscillations and atom interferometry Sept., 2013 1 / 28 Outlook Bloch oscillations of

More information

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cos"t{ e g + g e } " = q e r g

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cost{ e g + g e }  = q e r g E e = h" 0 The Two Level Atom h" e h" h" 0 E g = " h# 0 g H A = h" 0 { e e # g g } r " = q e r g { } + r $ E r cos"t{ e g + g e } The Two Level Atom E e = µ bb 0 h" h" " r B = B 0ˆ z r B = B " cos#t x

More information

Fermi Surfaces and their Geometries

Fermi Surfaces and their Geometries Fermi Surfaces and their Geometries Didier Ndengeyintwali Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA (Dated: May 17, 2010) 1. Introduction The Pauli exclusion principle

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition Gravitation Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 What you are about to learn: Newton's law of universal gravitation About motion in circular and other orbits How to

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

Wave nature of particles

Wave nature of particles Wave nature of particles We have thus far developed a model of atomic structure based on the particle nature of matter: Atoms have a dense nucleus of positive charge with electrons orbiting the nucleus

More information

Acceleration to higher energies

Acceleration to higher energies Acceleration to higher energies While terminal voltages of 20 MV provide sufficient beam energy for nuclear structure research, most applications nowadays require beam energies > 1 GeV How do we attain

More information

Modeling of a non-physical fish barrier

Modeling of a non-physical fish barrier University of Massachusetts - Amherst ScholarWorks@UMass Amherst International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish

More information

Classical RSA algorithm

Classical RSA algorithm Classical RSA algorithm We need to discuss some mathematics (number theory) first Modulo-NN arithmetic (modular arithmetic, clock arithmetic) 9 (mod 7) 4 3 5 (mod 7) congruent (I will also use = instead

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Solid-state physics Review of Semiconductor Physics The daunting task of solid state physics Quantum mechanics gives us the fundamental equation The equation is only analytically solvable for a handful

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

Photon Interactions in Matter

Photon Interactions in Matter Radiation Dosimetry Attix 7 Photon Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry,

More information

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice Nature 462, 74 77 (5 November 2009) Team 6 Hyuneil Kim Zhidong Leong Yulia Maximenko Jason Merritt 1 Outline Background

More information

Radiation. Lecture40: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Radiation. Lecture40: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Radiation Zone Approximation We had seen that the expression for the vector potential for a localized cuent distribution is given by AA (xx, tt) = μμ 4ππ ee iiiiii dd xx eeiiii xx xx xx xx JJ (xx ) In

More information

Chapter 6. Heat capacity, enthalpy, & entropy

Chapter 6. Heat capacity, enthalpy, & entropy Chapter 6 Heat capacity, enthalpy, & entropy 1 6.1 Introduction In this lecture, we examine the heat capacity as a function of temperature, compute the enthalpy, entropy, and Gibbs free energy, as functions

More information

COMSOL Multiphysics Software and Photovoltaics: A Unified Platform for Numerical Simulation of Solar Cells and Modules

COMSOL Multiphysics Software and Photovoltaics: A Unified Platform for Numerical Simulation of Solar Cells and Modules COMSOL Multiphysics Software and Photovoltaics: A Unified Platform for Numerical Simulation of Solar Cells and Modules Marco Nardone, Ph.D. Bowling Green State University Bowling Green, Ohio 1 Photovoltaics

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

Studying strongly correlated few-fermion systems with ultracold atoms

Studying strongly correlated few-fermion systems with ultracold atoms Studying strongly correlated few-fermion systems with ultracold atoms Andrea Bergschneider Group of Selim Jochim Physikalisches Institut Universität Heidelberg Strongly correlated systems Taken from: http://www.chemistryexplained.com

More information

OBE solutions in the rotating frame

OBE solutions in the rotating frame OBE solutions in the rotating frame The light interaction with the 2-level system is VV iiiiii = μμ EE, where μμ is the dipole moment μμ 11 = 0 and μμ 22 = 0 because of parity. Therefore, light does not

More information

EXAMEN GÉNÉRAL DE SYNTHÈSE ÉPREUVE ÉCRITE Programme de doctorat en génie physique. Jeudi 23 novembre Salle B-406.

EXAMEN GÉNÉRAL DE SYNTHÈSE ÉPREUVE ÉCRITE Programme de doctorat en génie physique. Jeudi 23 novembre Salle B-406. EXAMEN GÉNÉRAL DE SYNTHÈSE ÉPREUVE ÉCRITE Programme de doctorat en génie physique Jeudi 3 novembre 07 Salle B-406 de 9h30 à 3h30 NOTES : No documentation allowed. A non-programmable calculator is allowed.

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) May 1, 018 G.Tech:

More information

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And Operation of the Trapped

More information

A semi-device-independent framework based on natural physical assumptions

A semi-device-independent framework based on natural physical assumptions AQIS 2017 4-8 September 2017 A semi-device-independent framework based on natural physical assumptions and its application to random number generation T. Van Himbeeck, E. Woodhead, N. Cerf, R. García-Patrón,

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers 10. Digital 10.1 Basic principle of digital control 10.2 Digital PID controllers 10.2.1 A 2DOF continuous-time PID controller 10.2.2 Discretisation of PID controllers 10.2.3 Implementation and tuning 10.3

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

PHL424: Feynman diagrams

PHL424: Feynman diagrams PHL424: Feynman diagrams In 1940s, R. Feynman developed a diagram technique to describe particle interactions in space-time. Feynman diagram example Richard Feynman time Particles are represented by lines

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 29: Electron-phonon Scattering Outline Bloch Electron Scattering Deformation Potential Scattering LCAO Estimation of Deformation Potential Matrix Element

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam2 11. 13. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Lecture 15: Scattering Rutherford scattering Nuclear elastic scattering Nuclear inelastic scattering Quantum description The optical model

Lecture 15: Scattering Rutherford scattering Nuclear elastic scattering Nuclear inelastic scattering Quantum description The optical model Lecture 15: Scattering Rutherford scattering Nuclear elastic scattering Nuclear inelastic scattering Quantum description The optical model Lecture 15: Ohio University PHYS7501, Fall 017, Z. Meisel (meisel@ohio.edu)

More information

The Role of Unbound Wavefunctions in Energy Quantization and Quantum Bifurcation

The Role of Unbound Wavefunctions in Energy Quantization and Quantum Bifurcation The Role of Unbound Wavefunctions in Energy Quantization and Quantum Bifurcation Ciann-Dong Yang 1 Department of Aeronautics and Astronautics National Cheng Kung University, Tainan, Taiwan cdyang@mail.ncku.edu.tw

More information

EXAMEN GÉNÉRAL DE SYNTHÈSE ÉPREUVE ÉCRITE Programme de doctorat en génie physique. Jeudi 18 juin Salle B-508.

EXAMEN GÉNÉRAL DE SYNTHÈSE ÉPREUVE ÉCRITE Programme de doctorat en génie physique. Jeudi 18 juin Salle B-508. EXAMEN GÉNÉRAL DE SYNTHÈSE ÉPREUVE ÉCRITE Programme de doctorat en génie physique Salle B-58 de 9h3 à 3h3 NOTES : No documentation allowed. A non-programmable calculator is allowed. The candidate can answer

More information

Topological phases of matter give rise to quantized physical quantities

Topological phases of matter give rise to quantized physical quantities Quantized electric multipole insulators Benalcazar, W. A., Bernevig, B. A., & Hughes, T. L. (2017). Quantized electric multipole insulators. Science, 357(6346), 61 66. Presented by Mark Hirsbrunner, Weizhan

More information

Ultracold Atoms in optical lattice potentials

Ultracold Atoms in optical lattice potentials ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Ultracold Atoms in optical lattice potentials Experiments at the interface between atomic physics and condensed

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

Imaging the Mott Insulator Shells using Atomic Clock Shifts

Imaging the Mott Insulator Shells using Atomic Clock Shifts arxiv:cond-mat/0606642v1 [cond-mat.other] 25 Jun 2006 Imaging the Mott Insulator Shells using Atomic Clock Shifts Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Patrick Medley, Aaron E. Leanhardt, 1 Luis

More information

Lecture 11. Kernel Methods

Lecture 11. Kernel Methods Lecture 11. Kernel Methods COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture The kernel trick Efficient computation of a dot product

More information

Quantization of electrical conductance

Quantization of electrical conductance 1 Introduction Quantization of electrical conductance Te resistance of a wire in te classical Drude model of metal conduction is given by RR = ρρρρ AA, were ρρ, AA and ll are te conductivity of te material,

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information