Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Size: px
Start display at page:

Download "Bloch oscillations of ultracold-atoms and Determination of the fine structure constant"

Transcription

1 Bloch oscillations of ultracold-atoms and Determination of the fine structure constant Pierre Cladé P. Cladé Bloch oscillations and atom interferometry Sept., / 28

2 Outlook Bloch oscillations of ultracold atoms : a tool for transferring photon momentum to atoms Experiment using Bloch oscillations : Measurement of the atom recoil velocity, determination of the fine structure constant α, test of QED Measurement of the acceleration of gravity Large momentum transfer beamsplitter See also : International School of Physics Enrico Fermi, Bloch oscillations in atom interferometry, P. Cladé. arxiv: P. Cladé Bloch oscillations and atom interferometry Sept., / 28

3 Atom light interaction 1 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

4 Atom light interaction 1 2 Spontaneous emission P. Cladé Bloch oscillations and atom interferometry Sept., / 28

5 Atom light interaction 1 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

6 Atom light interaction 1 2 Two photon transition to supress spontaneous emission. Same internal state Two different internal states P. Cladé Bloch oscillations and atom interferometry Sept., / 28

7 Succession of stimulated Raman transitions (same hyperfine level) Coherent acceleration of atoms Bloch oscillations δ = ν 1 ν 2 t Adiabatic passage : acceleration of the atoms Energy The atoms are placed in an accelerated standing wave : in its frame, they are submitted to an inertial force Bloch oscillations in a periodic potential Ben Dahan, et al., PRL 76, (1996) (group of C. Salomon, LKB, Paris) P. Cladé Bloch oscillations and atom interferometry Sept., / 28

8 Bloch oscillations in an optical lattice How to cross the transition? Change the detuning (ω 1 ω 2 ) Change the quasi-momentum with a force : q(t) = q(0) + Fd t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

9 Bloch oscillations in an optical lattice How to cross the transition? Change the detuning (ω 1 ω 2 ) Change the quasi-momentum with a force : q(t) q(t) = q(0) = q(0) + Fd + Fd t t is always true Rotation of the quasimomentum If the adiabatic criteria is fulfilled : Bloch oscillations Oscillation of the velocity Oscillation of the position Period : T Bloch = 2 k F P. Cladé Bloch oscillations and atom interferometry Sept., / 28

10 Atom in an accelerated lattice v = (ν 1 ν 2 )/2k Light shifts : periodic potential U(x, t) = U 0 2 cos(2k(x vt)) Position Velocity Position Velocity P. Cladé Bloch oscillations and atom interferometry Sept., / 28

11 Atom in an accelerated lattice v = (ν 1 ν 2 )/2k Light shifts : periodic potential U(x, t) = U 0 2 cos(2k(x vt)) Position Wannier function (center at v=0) Velocity Position Velocity P. Cladé Bloch oscillations and atom interferometry Sept., / 28

12 Atom in an accelerated lattice v = (ν 1 ν 2 )/2k Light shifts : periodic potential U(x, t) = U 0 2 cos(2k(x vt)) Position Wannier function (center at v=0) Velocity Position Velocity P. Cladé Bloch oscillations and atom interferometry Sept., / 28

13 Atom in an accelerated lattice v = (ν 1 ν 2 )/2k Light shifts : periodic potential U(x, t) = U 0 2 cos(2k(x vt)) Position Velocity Position Wannier function Acceleration Velocity P. Cladé Bloch oscillations and atom interferometry Sept., / 28

14 Atom in an accelerated lattice v = (ν 1 ν 2 )/2k Light shifts : periodic potential U(x, t) = U 0 2 cos(2k(x vt)) Position Wannier function Velocity Position Wannier function (center at v~2nvr) Acceleration Velocity P. Cladé Bloch oscillations and atom interferometry Sept., / 28

15 Atom in an accelerated lattice v = (ν 1 ν 2 )/2k Light shifts : periodic potential U(x, t) = U 0 2 cos(2k(x vt)) Position Wannier function Velocity Position Wannier function (center at v~2nvr) Acceleration Velocity P. Cladé Bloch oscillations and atom interferometry Sept., / 28

16 Atom in an accelerated lattice v = (ν 1 ν 2 )/2k Light shifts : periodic potential U(x, t) = U 0 2 cos(2k(x vt)) Position Wannier function Velocity Position Wannier function (center at v~2nvr) Acceleration Velocity P. Cladé Bloch oscillations and atom interferometry Sept., / 28

17 Bloch oscillations in the frame of the lattice H = ˆp2 2 F ˆx + U 0 cos(2kx) (1) 2 Quasi-momentum = phase-shift between two sites φ(t) = E t T Bloch = 2 k F In a deep lattice, atoms are not moving, but the phase evolves. By adiabatically switching off the lattice, all site will interfere and recombine to a single momentum between k and k. P. Cladé Bloch oscillations and atom interferometry Sept., / 28

18 Bloch oscillations Bloch oscillations are very efficient: It is not sensitive to the initial velocity of atoms (provided that it fits within the first Brillouin zone) It is not sensitive to variation of the intensity (provided that the intensity is above a given threshold) It works also in the tight binding limit with a very good efficiency Some applications : Measurement of the recoil velocity Measurement of g Large Momentum Transfer Beamsplitter P. Cladé Bloch oscillations and atom interferometry Sept., / 28

19 Introduction to atom interferometry Doppler effect ( δ = k1 k ) 2 v Selection of a subrecoil velocity distribution t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

20 Introduction to atom interferometry Doppler effect ( δ = k1 k ) 2 v Selection of a subrecoil velocity distribution Measurement of the final velocity distribution Blow away beam??? t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

21 Introduction to atom interferometry Doppler effect ( δ = k1 k ) 2 v Selection of a subrecoil velocity distribution Measurement of the final velocity distribution Blow away beam??? t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

22 Atom interferometry Rabi t. P. Cladé Bloch oscillations and atom interferometry Sept., / 28

23 Atom interferometry Rabi t. Method of Separated Oscillatory Field (Ramsey) Replace a π pulse by two π/2 pulses. t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

24 Atom interferometry Rabi t. Method of Separated Oscillatory Field (Ramsey) Replace a π pulse by two π/2 pulses. t Horizontal and vertical blow away beam Raman Raman 10 ms 10 ms x Ch.J. Bordé ( ) t P. Cladé Bloch oscillations and atom interferometry Sept., / 28 t

25 Measring the recoil velocity Horizontal and vertical blow away beam Raman Raman 10 ms 10 ms t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

26 Measring the recoil velocity Horizontal and vertical blow away beam Raman Raman 10 ms 10 ms t 100 Hz δsel - δ mes P. Cladé Bloch oscillations and atom interferometry Sept., / 28

27 Measring the recoil velocity Horizontal and vertical blow away beam Raman Bloch Raman 10 ms 10 ms Acceleration t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

28 Measring the recoil velocity Horizontal and vertical blow away beam Raman Bloch Raman 10 ms 10 ms Acceleration t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

29 Measring the recoil velocity Horizontal and vertical blow away beam Raman Bloch Raman 10 ms 10 ms Acceleration t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

30 Measring the recoil velocity Horizontal and vertical blow away beam Bloch Raman Bloch Raman 10 ms 10 ms Acceleration Deceleration t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

31 Measring the recoil velocity Horizontal and vertical blow away beam Bloch Raman Bloch Raman 10 ms 10 ms Elevator Acceleration Deceleration t z [m] T [ms] P. Cladé Bloch oscillations and atom interferometry Sept., / 28

32 Measring the recoil velocity Horizontal and vertical blow away beam Bloch Raman Bloch Raman 10 ms 10 ms Elevator Acceleration Deceleration t 100 Hz δsel - δ mes δsel - δ mes P. Cladé Bloch oscillations and atom interferometry Sept., / 28

33 Results (2010) 170 measurements (14 hours) Each measurement : (h/m) and (α) Relative uncertainty on h/m : and on α. P. Cladé Bloch oscillations and atom interferometry Sept., / 28

34 Error Budget Uncertainty Source Correction Laser frequencies 1.3 Beams alignment Wavefront curvature and Gouy phase nd order Zeeman effect Gravity gradient Light shift (one photon transition) 0.1 Light shift (two photon transition) 0.01 Light shift (Bloch oscillations) 0.5 Index of refraction atomic cloud and atom interactions 2.0 Global systematic effects Statistical uncertainty 2.0 Rydberg constant and mass ratio 2.2 Total uncertainty 6.6 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

35 Error Budget Uncertainty Source Correction Laser frequencies 1.3 Beams alignment Wavefront curvature and Gouy phase Wavefront 2nd order curvature Zeeman effect and Gouy phase shift Gravity gradient Light shift (one What photon is the transition) momentum of a photon? 0.1 p Light = φ zshift where (two φ photon is the phase transition) of the laser beam p Light = k shift holds (Bloch only for oscillations) perfect plane-wave. 0.5 For Index a Gaussian of refraction beam atomic : cloud and atom interactions φ 2.0 Global systematic effects z = 1 ( 4 2k w 2 4r 2 w 4 + r 2 k 2 ) R (2) Statistical uncertainty 2.0 where Rydberg w isconstant the waist and of mass the beam, ratio R the wavefromnt curvature 2.2 and r the Total distance uncertainty from the propagation axes of the beam. 6.6 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

36 Error Budget Uncertainty Source Correction Wavefront curvature and Gouy phase shift Laser frequencies 1.3 What is the momentum of a photon? Beams alignment A Shack-Hartmann analyzer is used to characterize the wave front. Wavefront curvature and Gouy phase nd order Zeeman effect Gravity gradient Flat Wavefront Light shift (one photon transition) 0.1 Light shift (two photon transition) 0.01 Light shift (Bloch oscillations) 0.5 Index of refraction atomic cloud and atom interactions 2.0 Global systematic effects Statistical uncertainty 2.0 Lenslet array CCD screen Rydberg constant and mass ratio Spot pattern 2.2 Total uncertainty 6.6 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

37 Error Budget Uncertainty Source Correction Wavefront curvature and Gouy phase shift Laser frequencies 1.3 What is the momentum of a photon? Beams alignment A Shack-Hartmann analyzer is used to characterize the wave front. Wavefront curvature and Gouy phase nd order Zeeman effect Gravity gradient Distorted Wavefront Light shift (one photon transition) 0.1 Light shift (two photon transition) 0.01 Light shift (Bloch oscillations) 0.5 Index of refraction atomic cloud and atom interactions 2.0 Global systematic effects Statistical uncertainty 2.0 Lenslet array CCD screen Rydberg constant and mass ratio Spot pattern 2.2 Total uncertainty 6.6 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

38 Error Budget Uncertainty Source Correction Laser frequencies 1.3 Beams alignment Wavefront curvature and Gouy phase Wavefront 2nd order curvature Zeeman effect and Gouy phase shift Gravity gradient w = 3.6 mm Light shift (one photon transition) 0.1 Light R > shift 30(two m photon transition) 0.01 Largest Light shift systematic (Blocheffect oscillations) : Index of refraction atomic cloud and atom interactions 2.0 Global systematic effects Statistical uncertainty 2.0 Rydberg constant and mass ratio 2.2 Total uncertainty 6.6 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

39 Error Budget Uncertainty Source Correction Laser frequencies 1.3 Beams alignment Wavefront curvature and Gouy phase nd order Zeeman effect Gravity gradient Light shift (one photon transition) 0.1 Light shift (two photon transition) 0.01 Light shift (Bloch oscillations) 0.5 Index of refraction atomic cloud and atom interactions 2.0 Global systematic effects Statistical uncertainty 2.0 Rydberg constant and mass ratio 2.2 Total uncertainty 6.6 P. Cladé Bloch oscillations and atom interferometry Sept., / 28

40 Measurements of α First verification of the muonic and hadronic contributions to a e P. Cladé Bloch oscillations and atom interferometry Sept., / 28 hr c = 1 2 m ec 2 α 2 LKB-10 (Paris) : α 1 = (91) [ ] a e = (78) HarvU-08 : a e = (28) 7 ae - UW-87 6 h/m(cs) StanfU-02 5 h/m(rb) LKB-06 4 CODATA h/m(rb) - LKB-08 2 ae - HarvU-08 1 ae - HarvU-08 + Kinoshita 2012 h/m - LKB ( α ) ( α ) 2 ( α ) 3 ( α ) 4 ( α ) 5 ( me ) ( me ) π π π π π m µ m τ a(weak) a(hadron)

41 Mesurement of gravity Cold atom gravimeter : sensitivity scale as T 2 How to build compact gravimeter? F. Impens et al., Applied Physics B 84, 603 (2006) J. H. Hughes et al., Phys. Rev. Lett. 102, (2009) N. Poli et al., Phys. Rev. Lett. 106, (2011) P. Cladé et al., Europhys. Lett. 71, 730 (2005) R. Charrière et al., Phys. Rev. A 85, (2012) B. Pelle et al., Rev. A 87, (2013) Measurement of the Bloch period Measuring the position/velocity with time of flight methods Long interogation time Transverse confinement in the lattice Control of atom-atom interactions Atomic levitation using Bloch oscillations P. Cladé Bloch oscillations and atom interferometry Sept., / 28

42 Bloch oscillations in the frame of the lattice H = ˆp2 2 F ˆx + U 0 cos(2kx) (3) 2 Quasi-momentum = phase-shift between two sites φ(t) = E t T Bloch = 2 k F In a deep lattice, atoms are not moving, but the phase evolves. By adiabatically switching off the lattice, all site will interfere and recombine to a single momentum between k and k. P. Cladé Bloch oscillations and atom interferometry Sept., / 28

43 Mesurement of gravity z Raman Raman Bloch (N oscillations) Raman Raman b,p+hk eff x x a,p+2nhk a,p pushing beam N.T B T T' T t P. Cladé Bloch oscillations and atom interferometry Sept., / 28

44 Mesurement of gravity T R Impulsion Raman π/2 T B N Oscillations de Bloch T 2Nv r = gt B P. Cladé Bloch oscillations and atom interferometry Sept., / 28

45 Compact gravimeter N=50, M=4 and T =230 ms h < 5mm g = 1 ( T 2NM kb δ ) R m Rb k 1 + k 2 k 1 et k 2 : Raman wavevectors and k B : Bloch wavevector g gal [µgal] Tide effect Determination of g g/g=4, sur 4 min Width of the atomic cloud Vibrations [µgal] Time [h] P. Cladé Bloch oscillations and atom interferometry Sept., / 28

46 Using Bloch oscillation for Large Momentum Transfer Beamsplitter The sensitivity (in velocity) of an interferometer is proportional to the distance between the two arms Increase the duration between the pulses Increase the splitting of the beamsplitter Large momentum beamsplitter based on BOs Conventional separation (Raman transition, Bragg diffraction) Acceleration of one arm of the interferometer using Bloch oscillations P. Cladé Bloch oscillations and atom interferometry Sept., / 28

47 Using Bloch oscillation for Large Momentum Transfer Beamsplitter P. Cladé Bloch oscillations and atom interferometry Sept., / 28

48 Using Bloch oscillation for Large Momentum Transfer Beamsplitter P. Cladé et. al. Theoretical analysis of a large momentum beamsplitter using Bloch oscillations EPJ D, 2010, 59, P. Cladé Bloch oscillations and atom interferometry Sept., / 28

49 Large Momentum Beam Splitter P. Cladé Bloch oscillations and atom interferometry Sept., / 28

50 Preliminary study Distance [µm] P. Cladé et al. Large Momentum Beam Splitter Using Bloch Oscillations, Phys. Rev. Lett., 2009, 102, Key point : contrast of the fringes Large Momentum Beamsplitter T[ms] 2 recoils beamspitter There is an inhomogeneous broadening due to the transverse velocity of atoms We need a colder atomic source (below µk) P. Cladé Bloch oscillations and atom interferometry Sept., / 28

51 New project High precision atom interferometry using large momentum transfer beamsplitter Evaporative cooling (technique used for BEC) Dipole trap Shot noise limited detection Vibration isolation Magnetic shield Optical frequency measurement Wavefront design Design of a setup to reach the accuracy Main systematic effects : Atom-atom interaction Wavefront curvature and Gouy phase shift P. Cladé Bloch oscillations and atom interferometry Sept., / 28

52 Ph.D Students R. Battesti (2003) P. Cladé (2005) M. Cadoret (2008) R. Bouchendira(2012) M. Andia R. Jannin C. Courvoisier Postdoc E. de Mirandes ( ) Permanents C. Schwob L. Julien P. Cladé S. Guellati-Khélifa F. Nez F. Biraben P. Cladé Bloch oscillations and atom interferometry Sept., / 28

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005 A new determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice arxiv:physics/0510101v2 [physics.atom-ph] 12 Dec 2005 Pierre Cladé, 1 Estefania

More information

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics Atom Interferometry Experiments for Precision Measurement of Fundamental Physics Shau-Yu Lan 藍劭宇 University of California, Berkeley Department of Physics Contents Principle of Light-Pulse Atom Interferometer

More information

Large Momentum Beamsplitter using Bloch Oscillations

Large Momentum Beamsplitter using Bloch Oscillations Large Momentum Beamsplitter using Bloch Oscillations Pierre Cladé, Saïda Guellati-Khélifa, François Nez, and François Biraben Laboratoire Kastler Brossel, UPMC, Ecole Normale Supérieure, CNRS, 4 place

More information

Fine structure constant determinations

Fine structure constant determinations Fine structure constant determinations F. Nez Laboratoire Kastler Brossel, UPMC,ENS,CNRS Metrology of simple systems and fundamental tests Quantum metrology and fundamental constants S. Galtier, F. Nez,

More information

New determination of the fine structure constant and test of the quantum electrodynamics

New determination of the fine structure constant and test of the quantum electrodynamics New determination of the fine structure constant and test of the quantum electrodynamics Rym Bouchendira, Pierre Cladé, Saïda Guellati-Khélifa, François Nez, François Biraben To cite this version: Rym

More information

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions SYRTE - IACI AtoM Interferometry dual Gravi- GradiOmeter AMIGGO from capability demonstrations in laboratory to space missions A. Trimeche, R. Caldani, M. Langlois, S. Merlet, C. Garrido Alzar and F. Pereira

More information

Absolute gravity measurements with a cold atom gravimeter

Absolute gravity measurements with a cold atom gravimeter Absolute gravity measurements with a cold atom gravimeter Anne Louchet-Chauvet, Sébastien Merlet, Quentin Bodart, Tristan Farah, Arnaud Landragin, Franck Pereira Dos Santos LNE-SYRTE Observatoire de Paris

More information

Towards compact transportable atom-interferometric inertial sensors

Towards compact transportable atom-interferometric inertial sensors Towards compact transportable atom-interferometric inertial sensors G. Stern (SYRTE/LCFIO) Increasing the interrogation time T is often the limiting parameter for the sensitivity. Different solutions:

More information

Forca-G: A trapped atom interferometer for the measurement of short range forces

Forca-G: A trapped atom interferometer for the measurement of short range forces Forca-G: A trapped atom interferometer for the measurement of short range forces Bruno Pelle, Quentin Beaufils, Gunnar Tackmann, Xiaolong Wang, Adèle Hilico and Franck Pereira dos Santos Sophie Pelisson,

More information

Precision atom interferometry in a 10 meter tower

Precision atom interferometry in a 10 meter tower Precision atom interferometry in a 10 meter tower Leibniz Universität Hannover RTG 1729, Lecture 1 Jason Hogan Stanford University January 23, 2014 Cold Atom Inertial Sensors Cold atom sensors: Laser cooling;

More information

Gravitational tests using simultaneous atom interferometers

Gravitational tests using simultaneous atom interferometers Gravitational tests using simultaneous atom interferometers Gabriele Rosi Quantum gases, fundamental interactions and cosmology conference 5-7 October 017, Pisa Outline Introduction to atom interferometry

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Atom interferometry in microgravity: the ICE project

Atom interferometry in microgravity: the ICE project Atom interferometry in microgravity: the ICE project (4) G. Stern 1,2, R. Geiger 1, V. Ménoret 1,B. Battelier 1, R. Charrière 3, N. Zahzam 3, Y. Bidel 3, L. Mondin 4, F. Pereira 2, A. Bresson 3, A. Landragin

More information

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms Patrick Cheinet Julien Le Gouët Kasper Therkildsen Franck Pereira Dos Santos Arnaud Landragin David Holleville André

More information

A preliminary measurement of the fine structure constant based on atom interferometry

A preliminary measurement of the fine structure constant based on atom interferometry A preliminary measurement of the fine structure constant based on atom interferometry Andreas Wicht, Joel M. Hensley, Edina Sarajlic and Steven Chu Physics Department, Stanford University, Stanford, CA

More information

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Coherent manipulation of atomic wavefunctions in an optical lattice V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Tino Group Andrea Alberti Marco Schioppo Guglielmo M. Tino me Gabriele Ferarri

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

cond-mat/ v2 16 Aug 1999

cond-mat/ v2 16 Aug 1999 Mach-Zehnder Bragg interferometer for a Bose-Einstein Condensate Yoshio Torii,* Yoichi Suzuki, Mikio Kozuma and Takahiro Kuga Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902,

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS 1 MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS F. PEREIRA DOS SANTOS, P. WOLF, A. LANDRAGIN, M.-C. ANGONIN, P. LEMONDE, S. BIZE, and A. CLAIRON LNE-SYRTE, CNRS UMR 8630, UPMC, Observatoire de Paris,

More information

Atom Interferometry I. F. Pereira Dos Santos

Atom Interferometry I. F. Pereira Dos Santos Atom Interferometry I F. Pereira Dos Santos SYRTE SYRTE is one of the 4 Departments of Paris Obs. SYRTE research activities : - Time and Frequency Metrology (LNE-SYRTE) - Fundamental Astronomy - History

More information

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University Atom Interferometry for Detection of Gravitational Waves Mark Kasevich Stanford University kasevich@stanford.edu Atom-based Gravitational Wave Detection Why consider atoms? 1) Neutral atoms are excellent

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova Sensitivity limits of atom interferometry gravity gradiometers and strainmeters Fiodor Sorrentino INFN Genova 1 Outline AI sensors, state of the art performance Main noise sources Potential improvements

More information

arxiv: v1 [physics.ins-det] 25 May 2017

arxiv: v1 [physics.ins-det] 25 May 2017 Prepared for submission to JINST arxiv:1705.09376v1 [physics.ins-det] 25 May 2017 Atom Interferometry for Dark Contents of the Vacuum Searches O. Burrow, a,1 A. Carroll, a S. Chattopadhyay, b,c,2 J. Coleman,

More information

Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams

Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams PHYSICAL REVIEW A VOLUME 55, NUMBER 4 APRIL 1997 Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams Ekkehard Peik, * Maxime Ben Dahan, Isabelle Bouchoule, Yvan Castin, and

More information

K. Campbell, Gretchen, E. Leanhardt, Aaron, Mun, Jongchul, Boyd, Micah, W. Streed, Erik, Ketterle, Wolfgang, Pritchard, David E.

K. Campbell, Gretchen, E. Leanhardt, Aaron, Mun, Jongchul, Boyd, Micah, W. Streed, Erik, Ketterle, Wolfgang, Pritchard, David E. Photon recoil momentum in dispersive media Author K. Campbell, Gretchen, E. Leanhardt, Aaron, Mun, Jongchul, Boyd, Micah, W. Streed, Erik, Ketterle, Wolfgang, Pritchard, David E. Published 2005 Journal

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry) Experimental AMO meets Model Building: Part I (Precision Atom Interferometry) Interference of Rb atoms Chiow, et. al, PRL, 2011 Young s double slit with atoms Young s 2 slit with Helium atoms Interference

More information

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment Experiment : Matthias Lopez, Obs Cyrille Solaro, Obs Franck Pereira, Obs Theory : Astrid Lambrecht, LKB Axel

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Atom Quantum Sensors on ground and in space

Atom Quantum Sensors on ground and in space Atom Quantum Sensors on ground and in space Ernst M. Rasel AG Wolfgang Ertmer Quantum Sensors Division Institut für Quantenoptik Leibniz Universität Hannover IQ - Quantum Sensors Inertial Quantum Probes

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Ultracold quantum gases in optical lattices

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Ultracold quantum gases in optical lattices Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Ultracold quantum gases in optical lattices solid-state physics with atoms in crystals made of light International school on phase transitions,

More information

Experimental tests of QED in bound and isolated systems

Experimental tests of QED in bound and isolated systems QED & Quantum Vaccum, Low Energy Frontier, 03001 (2012) DOI: 10.1051/iesc/2012qed03001 Owned by the authors, published by EDP Sciences, 2012 Experimental tests of QED in bound and isolated systems Lucile

More information

Atom-Based Test of the Equivalence Principle

Atom-Based Test of the Equivalence Principle Space Sci Rev (2009) 148: 225 232 DOI 10.1007/s11214-009-9566-x Atom-Based Test of the Equivalence Principle Sebastian Fray Martin Weitz Received: 3 April 2009 / Accepted: 7 July 2009 / Published online:

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

An Atom Interferometer inside a Hollow-core Photonic Crystal Fiber

An Atom Interferometer inside a Hollow-core Photonic Crystal Fiber An Atom Interferometer inside a Hollow-core Photonic Crystal Fiber Mingjie Xin, Wui Seng Leong, Zilong Chen, Shau-Yu Lan* Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

arxiv: v1 [quant-ph] 13 Sep 2013

arxiv: v1 [quant-ph] 13 Sep 2013 Annalen der Physik, September 16, 2013 State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/m u R. Bouchendira 1, P. Cladé 1, S.

More information

arxiv: v2 [gr-qc] 6 Jan 2009

arxiv: v2 [gr-qc] 6 Jan 2009 An Atomic Gravitational Wave Interferometric Sensor (AGIS) arxiv:0806.15v [gr-qc] 6 Jan 009 Savas Dimopoulos, 1, Peter W. Graham,, Jason M. Hogan, 1, Mark A. Kasevich, 1, and Surjeet Rajendran,1, 1 Department

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Kicked rotor and Anderson localization with cold atoms

Kicked rotor and Anderson localization with cold atoms Kicked rotor and Anderson localization with cold atoms Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union) Cargèse July 2014

More information

Determining the Fine Structure Constant with Bose-Einstein Condensate Interferometry

Determining the Fine Structure Constant with Bose-Einstein Condensate Interferometry Determining the Fine Structure Constant with Bose-Einstein Condensate Interferometry Eric Cooper, Dan Gochnauer, Ben Plotkin-Swing, Katie McAlpine, Subhadeep Gupta August 16, 2017 S Outline S Introduction

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Lecture 2:Matter. Wave Interferometry

Lecture 2:Matter. Wave Interferometry Lecture :Matter Wave Interferometry Matter wave interferometry: as old as Quantum Mechanics Neutron diffraction and electron diffraction are standard investigation tools in solid state physics Cold atoms:

More information

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN Anti-Apple g? g? Pauline Yzombard (1), on behalf of the AEgIS (2) collaboration (1) Laboratoire Aimé Cotton,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord Diffraction Interferometry Conclusion Laboratoire de physique des lasers, CNRS-Université Paris Nord Quantum metrology and fundamental constants Diffraction Interferometry Conclusion Introduction Why using

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998 Atom lasers MIT 1997 Yale 1998 NIST 1999 Munich 1999 FOMO summer school 2016 Florian Schreck, University of Amsterdam Overview What? Why? Pulsed atom lasers Experiments with atom lasers Continuous atom

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Travaux en gravimétrie au SYRTE

Travaux en gravimétrie au SYRTE Travaux en gravimétrie au SYRTE F. Pereira Dos Santos LNE-SYRTE (OP, LNE, UPMC, CNRS) https://syrte.obspm.fr/spip/science/iaci/ CNFGG, 1er Février 2017 1 Outline 1. Principle of Atom Interferometry 2.

More information

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN 1 ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN Collaborators 2 Prof. Shinichi Watanabe G. Gopi Krishna

More information

Dark States. From Quantum Optics to Ultracold Atoms and Molecules

Dark States. From Quantum Optics to Ultracold Atoms and Molecules Dark States. From Quantum Optics to Ultracold Atoms and Molecules Claude Cohen-Tannoudji FRISNO - 2015 Aussois, France, 17 22 March 2015 Collège de France 1 Purpose of this lecture Describe an experiment,

More information

arxiv: v1 [physics.atom-ph] 22 Jun 2016

arxiv: v1 [physics.atom-ph] 22 Jun 2016 Article Prospects for Precise Measurements with Echo Atom Interferometry Brynle Barrett, Adam Carew, Hermina C. Beica, Andrejs Vorozcovs, Alexander Pouliot, and A. Kumarakrishnan arxiv:1606.06831v1 [physics.atom-ph]

More information

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Motivation In general, the wavelength produced by a given laser

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

A Study of Matter-Wave Diffraction in Bose- Einstein Condensates for Atom Interferometry Applications

A Study of Matter-Wave Diffraction in Bose- Einstein Condensates for Atom Interferometry Applications Bates College SCARAB Honors Theses Capstone Projects Spring 5-2014 A Study of Matter-Wave Diffraction in Bose- Einstein Condensates for Atom Interferometry Applications Yang Guo Bates College, yguo@bates.edu

More information

State of the art cold atom gyroscope without dead times

State of the art cold atom gyroscope without dead times State of the art cold atom gyroscope without dead times Remi Geiger SYRTE, Observatoire de Paris GDR IQFA Telecom Paris November 18 th, 2016 I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar,

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Part I. Principles and techniques

Part I. Principles and techniques Part I Principles and techniques 1 General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov, and D. Budker 1.1 Introduction Optical magnetometry encompasses

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Atomic Physics (Phys 551) Final Exam Solutions

Atomic Physics (Phys 551) Final Exam Solutions Atomic Physics (Phys 551) Final Exam Solutions Problem 1. For a Rydberg atom in n = 50, l = 49 state estimate within an order of magnitude the numerical value of a) Decay lifetime A = 1 τ = 4αω3 3c D (1)

More information

THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS. Introduction. Review. M. Cadoret 1, E. De Mirandes 1, P. Cladé 1, F. Nez 1, L.

THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS. Introduction. Review. M. Cadoret 1, E. De Mirandes 1, P. Cladé 1, F. Nez 1, L. Eur. Phys. J. Special Topics 17, 11 136 (009) c EDP Sciences, Springer-Verlag 009 DOI: 10.1140/epjst/e009-01046- THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Review Atom interferometry based on light pulses:

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Instructor Prof. Seth Aubin Office: room 245, Millington Hall, tel: 1-3545

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

arxiv: v1 [cond-mat.quant-gas] 30 Oct 2015

arxiv: v1 [cond-mat.quant-gas] 30 Oct 2015 Phase dependent loading of Bloch bands and Quantum simulation of relativistic wave equation predictions with ultracold atoms in variably shaped optical lattice potentials arxiv:5.95v [cond-mat.quant-gas]

More information

New Searches for Subgravitational Forces

New Searches for Subgravitational Forces New Searches for Subgravitational Forces Jay Wacker SLAC University of California, Davis November 26, 2007 with Peter Graham Mark Kasevich 1 New Era in Fundamental Physics Energy Frontier LHC Nature of

More information

Hydrogen atom interferometer with short light pulses

Hydrogen atom interferometer with short light pulses EUROPHYSICS LETTERS 15 January 2002 Europhys. Lett., 57 (2), pp. 158 163 (2002) Hydrogen atom interferometer with short light pulses T. Heupel 1,M.Mei 1,M.Niering 1,B.Gross 1,M.Weitz 1, T. W. Hänsch 1

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Exploring long-range interacting quantum many-body systems with Rydberg atoms Exploring long-range interacting quantum many-body systems with Rydberg atoms Christian Groß Max-Planck-Institut für Quantenoptik Hannover, November 2015 Motivation: Quantum simulation Idea: Mimicking

More information

Limits of the separated-path Ramsey atom interferometer

Limits of the separated-path Ramsey atom interferometer J. Phys. B: At. Mol. Opt. Phys. 3 (1999) 5033 5045. Printed in the UK PII: S0953-4075(99)06844-3 Limits of the separated-path Ramsey atom interferometer R M Godun,CLWebb, P D Featonby, M B d Arcy, M K

More information

Les Houches 2009: Metastable Helium Atom Laser

Les Houches 2009: Metastable Helium Atom Laser Les Houches 2009: Metastable Helium Atom Laser Les Houches, Chamonix, February 2005 Australian Research Council Centre of Excellence for Quantum-Atom Optics UQ Brisbane SUT Melbourne ANU Canberra Snowy

More information

Compensation of gravity gradients and rotations in precision atom interferometry

Compensation of gravity gradients and rotations in precision atom interferometry Compensation of gravity gradients and rotations in precision atom interferometry Albert Roura partly based on Phys. Rev. Lett. 118, 160401 (2017) Vienna, 11 April 2018 Motivation Tests of universality

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt An Electron EDM Search in HfF + : Probing P & T-violation Beyond the Standard Model Aaron E. Leanhardt Experiment: Laura Sinclair, Russell Stutz & Eric Cornell Theory: Ed Meyer & John Bohn JILA, NIST,

More information

Quantum correlations and atomic speckle

Quantum correlations and atomic speckle Quantum correlations and atomic speckle S. S. Hodgman R. G. Dall A. G. Manning M. T. Johnsson K. G. H. Baldwin A. G. Truscott ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics

More information

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer Frequency Tunable Atomic Magnetometer based on an Atom Interferometer D.A. Braje 1, J.P. Davis 2, C.L. Adler 2,3, and F.A. Narducci 2 Blaubeuren Quantum Optics Summer School 29 July 2013 1 MIT Lincoln

More information

Trapped atom interferometry for the study of Casimir forces and Gravitation at short range

Trapped atom interferometry for the study of Casimir forces and Gravitation at short range Trapped atom interferometry for the study of Casimir forces and Gravitation at short range F. Pereira Dos Santos LNE-SYRTE (OP, LNE, UPMC, CNRS) Les Rencontres de Moriond, Gravitation, 2017 1 log 10 Searching

More information

arxiv: v1 [physics.atom-ph] 31 Aug 2008

arxiv: v1 [physics.atom-ph] 31 Aug 2008 Off-resonant Raman transitions impact in an atom interferometer A. Gauguet, T. E. Mehlstäubler, T. Lévèque, J. Le Gouët, W. Chaibi, B. Canuel, A. Clairon, F. Pereira os Santos, and A. Landragin LNE-SYRTE,

More information

Tunneling in optical lattice clocks

Tunneling in optical lattice clocks Tunneling in optical lattice clocks - RTG 1729 Workshop Goslar - K. Zipfel, A. Kulosa, S. Rühmann, D. Fim W. Ertmer and E. Rasel Outline Motivation Spectroscopy of atoms Free vs. trapped atoms Horizontal

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Interferometry and precision measurements with Bose-condensed atoms

Interferometry and precision measurements with Bose-condensed atoms Interferometry and precision measurements with Bose-condensed atoms Daniel Döring A thesis submitted for the degree of Doctor of Philosophy of The Australian National University. April 2011 Declaration

More information

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Colloquium of the Research Training Group 1729, Leibniz University Hannover, Germany, November 8, 2012 Arno Rauschenbeutel Vienna Center

More information

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Atom Interferometric Gravity Wave Detectors Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA Outline Basic concepts Current instrumentation AGIS detectors Space-based/LEO

More information

Cold atoms in optical lattices

Cold atoms in optical lattices Cold atoms in optical lattices www.lens.unifi.it Tarruel, Nature Esslinger group Optical lattices the big picture We have a textbook model, which is basically exact, describing how a large collection of

More information