The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs

Size: px
Start display at page:

Download "The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs"

Transcription

1 The Role of Network Science in Biology and Medicine Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs Network Analysis Working Group

2 Network-Enabled Wisdom (NEW) empirically derived networks are necessary for describing the molecular mechanisms and biological processes that drive disease under the influences of inherited risk factors (genetic markers) and environmental risk factors. Schadt EE, Björkegren JL. Science translational medicine. 2012

3 Outline Network Science Refresher Network Representation Data Integration Network Analysis

4 Expectations What this talk is not: A review of every aspect and domain of network science A comprehensive overview of network biology or network medicine Designed to make recommendations for network inference methods What this talk is: A general discussion of basic network science as it applies to specific problems in biomedical informatics A good starting place for those who want to implement network methods in biology or biomedical informatics

5 Network Science Refresher

6 What s a Network? G = (V, E) Sets of points connected by lines Points: nodes, vertices, people, biological entities Lines: edges, links, relationships, interactions Points (V) Lines (E) Why are networks useful? Mathematical representation Provide structure to complex data Clauset CSCI 5352, Fall 2017

7 Network Types Single edge between pair of nodes No self-loops Undirected edges No node or edge annotations Simple Network Clauset CSCI 5352, Fall 2017

8 Network Types Multigraph Network Bipartite Network Directed Network Clauset CSCI 5352, Fall 2017

9 Network Types Temporal Network Planar Network Multiplex Network Hypergraph Clauset CSCI 5352, Fall 2017; Karimi et al., Physica A: Statistical Mechanics and its Applications; 2013

10 Network Characteristics Zhang P et al., Journal of molecular biology. 2017

11 Biological Networks

12 Network Representations

13 Network Representations Three main ways: Adjacency matrix Simple, symmetric Adjacency list Similar to a hash table Edge list Annotations and metadata Data integration Clauset CSCI 5352, Fall 2017

14 Biological Networks Nodes: genes, proteins, drugs, chemicals, organisms Edges: regulation, targets, interactions, reactions Marimuthu et al. J Proteomics Bioinform; 2011

15

16 Disease Networks

17 Disease Networks Barabási. N Engl J Med; 2007

18 Data Integration

19 Why Integrate?

20

21 Integrating Heterogeneous Data Goal extract and combine knowledge from multiple datasets Challenges: Differing sizes and formats of data sources Dimensionality Complexity, noisiness Scalability Current Approaches: Projection methods Network propagation methods Kernel-based and Probabilistic methods REVIEW: Gligorijević V, Pržulj N. Journal of the Royal Society Interface. 2015

22 Network Analysis

23 Network Analysis Unsupervised or Exploratory Identify shape and pattern of the underlying network Post-hoc inductive hypothesis evaluation Benchmark à random graphs Examples: Missing edge prediction Supervised or Hypothesis-Driven Explain structure to get at mechanisms Domain specific and mathematically formalized Benchmark à gold standard Examples: Modularity or community detection Clauset CSCI 5352, Fall 2017

24 Human Diseasome Goal exploring whether human genetic disorders and the corresponding disease genes might be related to each other at a higher level of cellular and organismal organization. Approach Bipartite graph of diseases and genes Disease and gene connected by mutations OMIM; 1284 disorders and 1777 disease genes Results Essential human genes are hubs Most non-essential disease-genes are not hubs, instead localized to network periphery Diseases caused by somatic mutations are not peripheral confirmed with cancer genes Goh et al. Proceedings of the National Academy of Sciences. 2007

25 Goal Analyze network properties of disease networks in human interactome Community detection problem Approach Developed a new method that identifies disease modules given a set of proteins Used OMIM and GWAS studies Results Disease-related proteins do not tend to reside in dense local communities Method does as well if not better than Random Walk

26 Inferring new indications for approved drugs via random walk on drug-disease heterogeneous networks Goal Predicted new indications for approved drugs Approach Two-pass random walks with restarts on heterogeneous networks Drug-disease associations Drug-drug networks Disease-disease networks Compare their performance to 6 existing methods using 2 datasets Alzheimer s case study Results Correctly predicts drug-disease associations Performs as good or better than existing methods Predicted 9 out of 10 known Alzeimer s disease Liu et al. BMC bioinformatics. 2016

27 Conclusion & Acknowledgements Networks are awesome! Big Role in Biology and Medicine Relatively easy to generate Represent complex structures and mechanisms Facilitate heterogeneous data integration Exploratory and hypothesis-driven inference Supported by an active, diverse community Acknowledgements Dr. Aaron Clauset Jenny & Kim

28 Resources Clauset CU Boulder Class materials:

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Functional Characterization and Topological Modularity of Molecular Interaction Networks

Functional Characterization and Topological Modularity of Molecular Interaction Networks Functional Characterization and Topological Modularity of Molecular Interaction Networks Jayesh Pandey 1 Mehmet Koyutürk 2 Ananth Grama 1 1 Department of Computer Science Purdue University 2 Department

More information

Computational Network Biology Biostatistics & Medical Informatics 826 Fall 2018

Computational Network Biology Biostatistics & Medical Informatics 826 Fall 2018 Computational Network Biology Biostatistics & Medical Informatics 826 Fall 2018 Sushmita Roy sroy@biostat.wisc.edu https://compnetbiocourse.discovery.wisc.edu Sep 6 th 2018 Goals for today Administrivia

More information

An introduction to SYSTEMS BIOLOGY

An introduction to SYSTEMS BIOLOGY An introduction to SYSTEMS BIOLOGY Paolo Tieri CNR Consiglio Nazionale delle Ricerche, Rome, Italy 10 February 2015 Universidade Federal de Minas Gerais, Belo Horizonte, Brasil Course outline Day 1: intro

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Interaction Network Analysis

Interaction Network Analysis CSI/BIF 5330 Interaction etwork Analsis Young-Rae Cho Associate Professor Department of Computer Science Balor Universit Biological etworks Definition Maps of biochemical reactions, interactions, regulations

More information

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference CS 229 Project Report (TR# MSB2010) Submitted 12/10/2010 hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference Muhammad Shoaib Sehgal Computer Science

More information

Biological Concepts and Information Technology (Systems Biology)

Biological Concepts and Information Technology (Systems Biology) Biological Concepts and Information Technology (Systems Biology) Janaina de Andréa Dernowsek Postdoctoral at Center for Information Technology Renato Archer Janaina.dernowsek@cti.gov.br Division of 3D

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

Computational Systems Biology

Computational Systems Biology Computational Systems Biology Vasant Honavar Artificial Intelligence Research Laboratory Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

SBI lab Jou-hyun Jeon Jae-seong Yang Solip Park Yonghwan Choi Yoonsup Choi Jinho Kim HyunJun Nam JiHye Hwang Inhae Kim Youngeun Shin Sung gyu Han

SBI lab Jou-hyun Jeon Jae-seong Yang Solip Park Yonghwan Choi Yoonsup Choi Jinho Kim HyunJun Nam JiHye Hwang Inhae Kim Youngeun Shin Sung gyu Han POSTECH 생명과학과김상욱 Structural Bioinformatics Laboratory Pohang University of Science and Technology Acknowledgement SBI lab Jou-hyun Jeon Jae-seong Yang Solip Park Yonghwan Choi Yoonsup Choi Jinho Kim HyunJun

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Modeling. FRANCK DELAPLACE IBISC GENOPOLE EVRY UNIVERSITY

Modeling. FRANCK DELAPLACE IBISC GENOPOLE EVRY UNIVERSITY 1 Modeling FRANCK DELAPLACE Franck.delaplace@ibisc.univ-evry.fr IBISC GENOPOLE EVRY UNIVERSITY 2 R. Thom : «On essaye de dominer des situations à l aide de la modélisation, [..] en construisant un système

More information

Proteomics Systems Biology

Proteomics Systems Biology Dr. Sanjeeva Srivastava IIT Bombay Proteomics Systems Biology IIT Bombay 2 1 DNA Genomics RNA Transcriptomics Global Cellular Protein Proteomics Global Cellular Metabolite Metabolomics Global Cellular

More information

Stat 315c: Introduction

Stat 315c: Introduction Stat 315c: Introduction Art B. Owen Stanford Statistics Art B. Owen (Stanford Statistics) Stat 315c: Introduction 1 / 14 Stat 315c Analysis of Transposable Data Usual Statistics Setup there s Y (we ll

More information

Lecture 4: Yeast as a model organism for functional and evolutionary genomics. Part II

Lecture 4: Yeast as a model organism for functional and evolutionary genomics. Part II Lecture 4: Yeast as a model organism for functional and evolutionary genomics Part II A brief review What have we discussed: Yeast genome in a glance Gene expression can tell us about yeast functions Transcriptional

More information

Synthesis of Biological Models from Mutation Experiments

Synthesis of Biological Models from Mutation Experiments Synthesis of Biological Models from Mutation Experiments Ali Sinan Köksal, Saurabh Srivastava, Rastislav Bodík, UC Berkeley Evan Pu, MIT Jasmin Fisher, Microsoft Research Cambridge Nir Piterman, University

More information

Network Analysis and Modeling

Network Analysis and Modeling lecture 0: what are networks and how do we talk about them? 2017 Aaron Clauset 003 052 002 001 Aaron Clauset @aaronclauset Assistant Professor of Computer Science University of Colorado Boulder External

More information

Clustering and Network

Clustering and Network Clustering and Network Jing-Dong Jackie Han jdhan@picb.ac.cn http://www.picb.ac.cn/~jdhan Copy Right: Jing-Dong Jackie Han What is clustering? A way of grouping together data samples that are similar in

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

Gene Ontology and overrepresentation analysis

Gene Ontology and overrepresentation analysis Gene Ontology and overrepresentation analysis Kjell Petersen J Express Microarray analysis course Oslo December 2009 Presentation adapted from Endre Anderssen and Vidar Beisvåg NMC Trondheim Overview How

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Causal Discovery by Computer

Causal Discovery by Computer Causal Discovery by Computer Clark Glymour Carnegie Mellon University 1 Outline 1. A century of mistakes about causation and discovery: 1. Fisher 2. Yule 3. Spearman/Thurstone 2. Search for causes is statistical

More information

Lecture Notes for Fall Network Modeling. Ernest Fraenkel

Lecture Notes for Fall Network Modeling. Ernest Fraenkel Lecture Notes for 20.320 Fall 2012 Network Modeling Ernest Fraenkel In this lecture we will explore ways in which network models can help us to understand better biological data. We will explore how networks

More information

GRAPH-THEORETICAL COMPARISON REVEALS STRUCTURAL DIVERGENCE OF HUMAN PROTEIN INTERACTION NETWORKS

GRAPH-THEORETICAL COMPARISON REVEALS STRUCTURAL DIVERGENCE OF HUMAN PROTEIN INTERACTION NETWORKS 141 GRAPH-THEORETICAL COMPARISON REVEALS STRUCTURAL DIVERGENCE OF HUMAN PROTEIN INTERACTION NETWORKS MATTHIAS E. FUTSCHIK 1 ANNA TSCHAUT 2 m.futschik@staff.hu-berlin.de tschaut@zedat.fu-berlin.de GAUTAM

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

Updated: 10/11/2018 Page 1 of 5

Updated: 10/11/2018 Page 1 of 5 A. Academic Division: Health Sciences B. Discipline: Biology C. Course Number and Title: BIOL1230 Biology I MASTER SYLLABUS 2018-2019 D. Course Coordinator: Justin Tickhill Assistant Dean: Melinda Roepke,

More information

Graph Theory and Networks in Biology arxiv:q-bio/ v1 [q-bio.mn] 6 Apr 2006

Graph Theory and Networks in Biology arxiv:q-bio/ v1 [q-bio.mn] 6 Apr 2006 Graph Theory and Networks in Biology arxiv:q-bio/0604006v1 [q-bio.mn] 6 Apr 2006 Oliver Mason and Mark Verwoerd February 4, 2008 Abstract In this paper, we present a survey of the use of graph theoretical

More information

Total

Total Student Performance by Question Biology (Multiple-Choice ONLY) Teacher: Core 1 / S-14 Scientific Investigation Life at the Molecular and Cellular Level Analysis of Performance by Question of each student

More information

Evidence for dynamically organized modularity in the yeast protein-protein interaction network

Evidence for dynamically organized modularity in the yeast protein-protein interaction network Evidence for dynamically organized modularity in the yeast protein-protein interaction network Sari Bombino Helsinki 27.3.2007 UNIVERSITY OF HELSINKI Department of Computer Science Seminar on Computational

More information

Science Course Descriptions

Science Course Descriptions BIOLOGY I (L) 3024 (BIO I) Biology I is a course based on the following core topics: cellular chemistry, structure and reproduction; matter cycles and energy transfer; interdependence of organisms; molecular

More information

Inferring Protein-Signaling Networks II

Inferring Protein-Signaling Networks II Inferring Protein-Signaling Networks II Lectures 15 Nov 16, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall (JHN) 022

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Discovering molecular pathways from protein interaction and ge

Discovering molecular pathways from protein interaction and ge Discovering molecular pathways from protein interaction and gene expression data 9-4-2008 Aim To have a mechanism for inferring pathways from gene expression and protein interaction data. Motivation Why

More information

MTopGO: a tool for module identification in PPI Networks

MTopGO: a tool for module identification in PPI Networks MTopGO: a tool for module identification in PPI Networks Danila Vella 1,2, Simone Marini 3,4, Francesca Vitali 5,6,7, Riccardo Bellazzi 1,4 1 Clinical Scientific Institute Maugeri, Pavia, Italy, 2 Department

More information

Graph Theory and Networks in Biology

Graph Theory and Networks in Biology Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland {oliver.mason, mark.verwoerd}@nuim.ie January 17, 2007

More information

Biochemistry-BS Program Study Abroad Pathway

Biochemistry-BS Program Study Abroad Pathway Biochemistry-BS Program Study Abroad Pathway (last revised September 2016) Table 1a: Undergraduate Program Schedule These undergraduate program schedules are subject to change. Please verify information

More information

Identify stages of plant life cycle Botany Oral/written pres, exams

Identify stages of plant life cycle Botany Oral/written pres, exams DPI Standards Biology Education (for students) 1. Characteristics of organisms Know Properties of living organisms, including: Acquire and use energy and materials Sense and respond to stimuli Reproduce

More information

Systems biology and biological networks

Systems biology and biological networks Systems Biology Workshop Systems biology and biological networks Center for Biological Sequence Analysis Networks in electronics Radio kindly provided by Lazebnik, Cancer Cell, 2002 Systems Biology Workshop,

More information

Undergraduate Curriculum in Biology

Undergraduate Curriculum in Biology Fall Courses *114: Principles of Biology *116: Introduction to Anatomy and Physiology I 302: Human Learning and the Brain (o, DS) 336: Aquatic Biology (p/e) 339: Aquatic Biology Lab (L) 351: Principles

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Kyu-Baek Hwang and Byoung-Tak Zhang Biointelligence Lab School of Computer Science and Engineering Seoul National University Seoul 151-742 Korea E-mail: kbhwang@bi.snu.ac.kr

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

BIOLOGY Grades Summer Units: 10 high school credits UC Requirement Category: d. General Description:

BIOLOGY Grades Summer Units: 10 high school credits UC Requirement Category: d. General Description: Summer 2015 Units: 10 high school credits UC Requirement Category: d General Description: BIOLOGY Grades 9-12 Summer session biology will be an intense, fast paced course. Students will gain an understanding

More information

Mixed Membership Stochastic Blockmodels

Mixed Membership Stochastic Blockmodels Mixed Membership Stochastic Blockmodels (2008) Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg and Eric P. Xing Herrissa Lamothe Princeton University Herrissa Lamothe (Princeton University) Mixed

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

Computational Biology From The Perspective Of A Physical Scientist

Computational Biology From The Perspective Of A Physical Scientist Computational Biology From The Perspective Of A Physical Scientist Dr. Arthur Dong PP1@TUM 26 November 2013 Bioinformatics Education Curriculum Math, Physics, Computer Science (Statistics and Programming)

More information

Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of date and party hubs

Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of date and party hubs Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of date and party hubs Xiao Chang 1,#, Tao Xu 2,#, Yun Li 3, Kai Wang 1,4,5,* 1 Zilkha Neurogenetic Institute,

More information

The geneticist s questions

The geneticist s questions The geneticist s questions a) What is consequence of reduced gene function? 1) gene knockout (deletion, RNAi) b) What is the consequence of increased gene function? 2) gene overexpression c) What does

More information

Bioinformatics I. CPBS 7711 October 29, 2015 Protein interaction networks. Debra Goldberg

Bioinformatics I. CPBS 7711 October 29, 2015 Protein interaction networks. Debra Goldberg Bioinformatics I CPBS 7711 October 29, 2015 Protein interaction networks Debra Goldberg debra@colorado.edu Overview Networks, protein interaction networks (PINs) Network models What can we learn from PINs

More information

Overview. Overview. Social networks. What is a network? 10/29/14. Bioinformatics I. Networks are everywhere! Introduction to Networks

Overview. Overview. Social networks. What is a network? 10/29/14. Bioinformatics I. Networks are everywhere! Introduction to Networks Bioinformatics I Overview CPBS 7711 October 29, 2014 Protein interaction networks Debra Goldberg debra@colorado.edu Networks, protein interaction networks (PINs) Network models What can we learn from PINs

More information

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. XX, XX 20XX 1

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. XX, XX 20XX 1 IEEE/ACM TRANSACTIONS ON COMUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. XX, XX 20XX 1 rotein Function rediction using Multi-label Ensemble Classification Guoxian Yu, Huzefa Rangwala, Carlotta Domeniconi,

More information

Robust Community Detection Methods with Resolution Parameter for Complex Detection in Protein Protein Interaction Networks

Robust Community Detection Methods with Resolution Parameter for Complex Detection in Protein Protein Interaction Networks Robust Community Detection Methods with Resolution Parameter for Complex Detection in Protein Protein Interaction Networks Twan van Laarhoven and Elena Marchiori Institute for Computing and Information

More information

Chapter 1 Biology 103

Chapter 1 Biology 103 Chapter 1 Biology 103 Properties of Life Living organisms: are composed of cells are complex and ordered respond to their environment can grow and reproduce obtain and use energy maintain internal balance

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

NETWORK BIOLOGY AND COMPLEX DISEASES. Ahto Salumets

NETWORK BIOLOGY AND COMPLEX DISEASES. Ahto Salumets NETWORK BIOLOGY AND COMPLEX DISEASES Ahto Salumets CENTRAL DOGMA OF BIOLOGY https://en.wikipedia.org/wiki/central_dogma_of_molecular_biology http://www.qaraqalpaq.com/genetics.html CHROMOSOMES SINGLE-NUCLEOTIDE

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Preface. Contributors

Preface. Contributors CONTENTS Foreword Preface Contributors PART I INTRODUCTION 1 1 Networks in Biology 3 Björn H. Junker 1.1 Introduction 3 1.2 Biology 101 4 1.2.1 Biochemistry and Molecular Biology 4 1.2.2 Cell Biology 6

More information

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination.

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination. Module Structure: (15 credits each) Lectures and Assessment: 50% coursework, 50% unseen examination. Module Title Module 1: Bioinformatics and structural biology as applied to drug design MEDC0075 In the

More information

PRESCOTT UNIFIED SCHOOL DISTRICT District Instructional Guide

PRESCOTT UNIFIED SCHOOL DISTRICT District Instructional Guide PRESCOTT UNIFIED SCHOOL DISTRICT District Instructional Guide Grade Level: High School Subject: Biology Quarter/Semester 1/1 Core Text: Biology, Miller & Levine, 2006 Time Block Unit Content Skills Standards

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules

Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules Matteo Bersanelli 1+, Ettore Mosca 2+, Daniel Remondini 1, Gastone Castellani 1 and Luciano

More information

Properties of Life. Levels of Organization. Levels of Organization. Levels of Organization. Levels of Organization. The Science of Biology.

Properties of Life. Levels of Organization. Levels of Organization. Levels of Organization. Levels of Organization. The Science of Biology. The Science of Biology Chapter 1 Properties of Life Living organisms: are composed of cells are complex and ordered respond to their environment can grow and reproduce obtain and use energy maintain internal

More information

Big Idea 1: Does the process of evolution drive the diversity and unit of life?

Big Idea 1: Does the process of evolution drive the diversity and unit of life? AP Biology Syllabus 2016-2017 Course Overview: AP Biology is equivalent to an introductory college level biology program in order to develop student led inquiry into science. The class is designed to go

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

Clustering of Pathogenic Genes in Human Co-regulatory Network. Michael Colavita Mentor: Soheil Feizi Fifth Annual MIT PRIMES Conference May 17, 2015

Clustering of Pathogenic Genes in Human Co-regulatory Network. Michael Colavita Mentor: Soheil Feizi Fifth Annual MIT PRIMES Conference May 17, 2015 Clustering of Pathogenic Genes in Human Co-regulatory Network Michael Colavita Mentor: Soheil Feizi Fifth Annual MIT PRIMES Conference May 17, 2015 Topics Background Genetic Background Regulatory Networks

More information

Biological networks CS449 BIOINFORMATICS

Biological networks CS449 BIOINFORMATICS CS449 BIOINFORMATICS Biological networks Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the Universe trying to produce bigger and better

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Scalable Subspace Clustering

Scalable Subspace Clustering Scalable Subspace Clustering René Vidal Center for Imaging Science, Laboratory for Computational Sensing and Robotics, Institute for Computational Medicine, Department of Biomedical Engineering, Johns

More information

Gene Expression as a Stochastic Process: From Gene Number Distributions to Protein Statistics and Back

Gene Expression as a Stochastic Process: From Gene Number Distributions to Protein Statistics and Back Gene Expression as a Stochastic Process: From Gene Number Distributions to Protein Statistics and Back June 19, 2007 Motivation & Basics A Stochastic Approach to Gene Expression Application to Experimental

More information

The Science of Biology. Chapter 1

The Science of Biology. Chapter 1 The Science of Biology Chapter 1 Properties of Life Living organisms: are composed of cells are complex and ordered respond to their environment can grow and reproduce obtain and use energy maintain internal

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Gene expression microarray technology measures the expression levels of thousands of genes. Research Article

Gene expression microarray technology measures the expression levels of thousands of genes. Research Article JOURNAL OF COMPUTATIONAL BIOLOGY Volume 7, Number 2, 2 # Mary Ann Liebert, Inc. Pp. 8 DOI:.89/cmb.29.52 Research Article Reducing the Computational Complexity of Information Theoretic Approaches for Reconstructing

More information

Undergraduate Curriculum in Biology

Undergraduate Curriculum in Biology Fall Courses *114: Principles of Biology *116: Introduction to Anatomy and Physiology I 302: Human Learning and the Brain (o, DS) 336: Aquatic Biology (p/e) 339: Aquatic Biology Lab (L) 351: Principles

More information

TEST SUMMARY AND FRAMEWORK TEST SUMMARY

TEST SUMMARY AND FRAMEWORK TEST SUMMARY Washington Educator Skills Tests Endorsements (WEST E) TEST SUMMARY AND FRAMEWORK TEST SUMMARY BIOLOGY Copyright 2014 by the Washington Professional Educator Standards Board 1 Washington Educator Skills

More information

Computational approaches for functional genomics

Computational approaches for functional genomics Computational approaches for functional genomics Kalin Vetsigian October 31, 2001 The rapidly increasing number of completely sequenced genomes have stimulated the development of new methods for finding

More information

Programme Specification (Undergraduate) For 2017/18 entry Date amended: 25/06/18

Programme Specification (Undergraduate) For 2017/18 entry Date amended: 25/06/18 Programme Specification (Undergraduate) For 2017/18 entry Date amended: 25/06/18 1. Programme title(s) and UCAS code(s): BSc Biological Sciences C100 BSc Biological Sciences (Biochemistry) C700 BSc Biological

More information

Bio 101 General Biology 1

Bio 101 General Biology 1 Revised: Fall 2016 Bio 101 General Biology 1 COURSE OUTLINE Prerequisites: Prerequisite: Successful completion of MTE 1, 2, 3, 4, and 5, and a placement recommendation for ENG 111, co-enrollment in ENF

More information

A Multiobjective GO based Approach to Protein Complex Detection

A Multiobjective GO based Approach to Protein Complex Detection Available online at www.sciencedirect.com Procedia Technology 4 (2012 ) 555 560 C3IT-2012 A Multiobjective GO based Approach to Protein Complex Detection Sumanta Ray a, Moumita De b, Anirban Mukhopadhyay

More information

Biology Scope and Sequence Student Outcomes (Objectives Skills/Verbs)

Biology Scope and Sequence Student Outcomes (Objectives Skills/Verbs) C-4 N.12.A 1-6 N.12.B.1-4 Scientific Literacy/ Nature of (embedded throughout course) Scientific Inquiry is the process by which humans systematically examine the natural world. Scientific inquiry is a

More information

TEACHER CERTIFICATION STUDY GUIDE. Table of Contents I. BASIC PRINCIPLES OF SCIENCE (HISTORY AND NATURAL SCIENCE)

TEACHER CERTIFICATION STUDY GUIDE. Table of Contents I. BASIC PRINCIPLES OF SCIENCE (HISTORY AND NATURAL SCIENCE) Table of Contents I. BASIC PRINCIPLES OF SCIENCE (HISTORY AND NATURAL SCIENCE) A. Nature of scientific knowledge, inquiry, and historical perspectives 1. Scientific methods...1 2. Processes involved in

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

Sequence Alignment Techniques and Their Uses

Sequence Alignment Techniques and Their Uses Sequence Alignment Techniques and Their Uses Sarah Fiorentino Since rapid sequencing technology and whole genomes sequencing, the amount of sequence information has grown exponentially. With all of this

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes.

Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes. Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes. Enduring understanding 3.A: Heritable information provides for continuity of life. Essential

More information

Differential Modeling for Cancer Microarray Data

Differential Modeling for Cancer Microarray Data Differential Modeling for Cancer Microarray Data Omar Odibat Department of Computer Science Feb, 01, 2011 1 Outline Introduction Cancer Microarray data Problem Definition Differential analysis Existing

More information

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Authors: Fan Zhang, Runsheng Liu and Jie Zheng Presented by: Fan Wu School of Computer Science and

More information

A taxonomy of visualization tasks for the analysis of biological pathway data

A taxonomy of visualization tasks for the analysis of biological pathway data The Author(s) BMC Bioinformatics 2016, 18(Suppl 2):21 DOI 10.1186/s12859-016-1443-5 RESEARCH A taxonomy of visualization tasks for the analysis of biological pathway data Paul Murray 1*,FintanMcGee 2 and

More information

Graphic sequences, adjacency matrix

Graphic sequences, adjacency matrix Chapter 2 Graphic sequences, adjacency matrix Definition 2.1. A sequence of integers (d 1,..., d n ) is called graphic if it is the degree sequence of a graph. Example 2.2. 1. (1, 2, 2, 3) is graphic:

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

Computational methods for predicting protein-protein interactions

Computational methods for predicting protein-protein interactions Computational methods for predicting protein-protein interactions Tomi Peltola T-61.6070 Special course in bioinformatics I 3.4.2008 Outline Biological background Protein-protein interactions Computational

More information

The Science of Biology. Chapter 1

The Science of Biology. Chapter 1 The Science of Biology Chapter 1 Properties of Life Living organisms: are composed of cells are complex and ordered respond to their environment can grow and reproduce obtain and use energy maintain internal

More information

Comparing linear modularization criteria using the relational notation

Comparing linear modularization criteria using the relational notation Comparing linear modularization criteria using the relational notation Université Pierre et Marie Curie Laboratoire de Statistique Théorique et Appliquée April 30th, 2014 1/35 Table of contents 1 Introduction

More information