Computational Network Biology Biostatistics & Medical Informatics 826 Fall 2018

Size: px
Start display at page:

Download "Computational Network Biology Biostatistics & Medical Informatics 826 Fall 2018"

Transcription

1 Computational Network Biology Biostatistics & Medical Informatics 826 Fall 2018 Sushmita Roy Sep 6 th 2018

2 Goals for today Administrivia Course topics Short survey of interests/background

3 BMI826 Computational Network Biology Course home page: Instructor: Prof. Sushmita Roy Office: room 3168, Wisconsin Institute for Discovery Your WISC cards will be enabled for upper floor access. Office hours: Tuesday/Thursday: 2:30pm-3:30 pm By appointment via Class announcements via piazza Enroll at

4 Finding my office WID 3168 Discovery building Engineering hall

5 Course organization Tentative schedule: The material in this course is organized into five major topics At the beginning of each topic I will provide an introduction for the topic Most of the material is from published papers and review articles We will read and discuss papers from each of these topics Please see syllabus at Readings will be made online on the schedule page. Last week or so will be project presentations

6 Recommended background Computer science Introductory course in data structures is good, but not required Statistics Good if you ve had at least one course, but not required Molecular biology Good if you have had some introductory course An interest in learning some basic molecular biology Programming background Familiarity with a Linux environment Be able to run programs on data on the command line Be able to write code to do some data analysis and computations

7 Course grading Written critiques: 20% Five written critiques: one for each major topic Written and implementation assignments: 30% Three or so Project: 45% Proposal 10% Report 20% In class presentation 15% In class participation: 5%

8 Writing a critique Critiques are due at the end of each major topic Critiques will be a 1-2 page analysis of the papers read in each topic Specific papers to be included in the critique will be mentioned The critique should have the following components Overview of the problem area Approaches discussed Strengths and weaknesses Extensions to any of the approaches

9 Project information There are three main components to the project Proposal, In class presentation, Project report Project proposal draft (Oct 4 th ) Project proposal final draft (Oct 18 th ) Project presentations in last week of class Project report due (Dec 12 th ) Last day of lecture

10 Computational resources for this class Linux server mi1.biostat.wisc.edu available through the BMI department Pleaseconnect to mi1.biostat.wisc.edu Accounts for all registered students in the class have been requested

11 Goals for today Administrivia Course topics Short survey of background and interests

12 What is Network biology? A collection of algorithms and tools to build, interpret, and use graph representations of interacting molecular entities in biological and bio-medical problems (Adapted from Winterbach et al, 2013, BMC Systems Biology) ~15 years old The term Network biology was likely coined by Albert-László Barabási & Zoltán N. Oltvai 2004 Intersects with computer science, statistics, physics, molecular biology Related/overlapping areas Bioinformatics, Systems biology, Complex systems, Biological network analysis, Network science

13 Why Network biology? Cells are complex systems A complex system: many components that interact to determine overall function Networks are natural representations of complex systems Provides a framework and important tools for integration, interpretation and discovery Many biological applications e.g. Understanding complex biological processes at the molecular level Disease prognosis Interpretation of genetic variation Predictive models of cellular function Gene function prediction and prioritization

14 Overview of lecture topics Course material is organized by the biological problem and computational approaches to address the problem q q q q q q Biological problem Mapping regulatory network structure Dynamics and context specificity of networks Understanding design principles of biological networks Interpretation of sequence variants Identification of important genes Predicting the function of a gene Computational approaches q Probabilistic graphical models q Graph structure learning q Multiple network learning q Graph clustering q Graph alignment q Diffusion on graphs

15 Network inference: How do molecular entities interact within a cell? Amit et al., Nat. Rev. Immunology, 2011

16 Network inference Gene expression levels Samples Phenotypic Variation in Yeast Algorithm Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression patterns of 2,680 genes that varied significantly (FDR = 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953 genes that varied significantly in at least one strain compared to strain YPS163 (FDR=0.01, unpaired t-test). For (A) and (B), a red color indicates higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression patterns of 1,330 genes that varied significantly (FDR = 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains. Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes were organized independently in each plot by hierarchical clustering. doi: /journal.pgen g003 differences from the mean ranged from 30 (in vineyard strain I14) of some of these categories was also observed for a different set of to nearly 600 (in clinical isolate YJM789), with a median of 88 vineyard strains [26,28], and the genetic basis for differential expression differences per strain. The number of expression expression of amino acid biosynthetic genes in one vineyard strain differences did not correlate strongly with the genetic distances of has recently been linked to a polymorphism in an amino acid the strains (R 2 = 0.16). However, this is not surprising since many sensory protein [35]. We also noted that the 1330 genes with of the observed expression differences are likely linked in trans to statistically variable expression in at least one non-laboratory the same genetic loci [27,31,34,35,43]. Consistent with this strain were enriched for genes that contained upstream TATA interpretation, we found that the genes affected in each strain elements [46] (p = ) and genes with paralogs (p = ) but were enriched for specific functional categories (Table S4), under-enriched for essential genes [47] (p = ). The trends revealing that altered expression of pathways of genes was a and statistical significance were similar using 953 genes that varied common occurrence in our study. significantly from YPS163. Thus, genes with specific functional We noticed that some functional categories were repeatedly and regulatory features are more likely to vary in expression under affected in different strains. To further explore this, we identified the conditions examined here, consistent with reports of other individual genes whose expression differed from the mean in at recent studies [30,43,48,49] (see Discussion). least 3 of the 17 non-laboratory strains. This group of 219 genes was strongly enriched for genes involved in amino acid metabolism Influence of Copy Number Variation on Gene Expression Variation Biological knowledge bases (p, ), revealing that genes involved in these functions had Expression from transposable Ty elements was highly variable a higher frequency of expression variation. Differential expression across strains. However, Ty copy number is known to vary widely (p, ), sulfur metabolism (p, ), and transposition PLoS Genetics 5 October 2008 Volume 4 Issue 10 e Computational concepts 1. Different types of graphical models for network representation 2. Learning graphical models from data 3. Integrating prior information into models X 1 X 5 Y 1 Y 2 X 2

17 Network dynamics: How do networks change between different biological contexts? Context C 1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 Context C 2 Contexts can be different time points, cell types, disease states, organisms t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=18 t=19 Computational concepts 1. Multi-task learning 2. Dynamic models for networks t=20 t=21 t=22 t=23 t=24 Gene network rewiring during cell cycle From Curtis et al., BMC Bioinformatics 2012

18 Network topology: How is a network organized? A Random network Aa B Scale-free network Ba C Hierarchical network Ca Ab P(k) P(k) Bb Cb P(k) Computational concepts 1. Degree distribution 2. Network motifs 3. Centrality measures Ac k Bc ,000 k Cc ,000 10,000 k Barabasi & Oltvai, Nature Review Genetics 2004

19 Graph clustering: functional and diseaser E V I E W module identification Recently, network propagation methods such those implemented in the bioinformatics tools Hot and TieDIE (TABLE 1) have been used for network m Mitra et al., Nat Rev Genetics 2013; Hotspot 2 ping of cancer mutations. These methods have pro particularly valuable for discovering R Emutational VIEWS h 67, For example, in o spots in human cancers implementation of the application tool HotNet 67, s Hotspot 1 nificantly mutated pathways in glioblastomas a adenocarcinomas were identified through netw Interaction networks (e.g., physical, genetic or metabolic) propagation of associated cancer mutation profi Here, diffusion flow was run on a human protein p tein network that was seeded from known cancer ge to map their global neighbourhood of interaction. T Experimental data Barabasi et al., Nat Rev operation translates to computing the influence of c Genetics 2011 cer genes on all remaining genes in the network (BOX Simulated data The resulting influence network (representing the Converting molecular set of network connectivities surrounding cancer s Figure 2 Disease modules. Schematic diagram of the three modularity concepts that are discussed in this Review. activity to scores a Topological modules correspond to locally dense neighbourhoods of the interactome, such that the nodes of weigh genes) was subsequently partitioned into Computational concepts the module show a higher tendency to interact with each other than with nodes outside the module. As such, subnetworks. Thresholds weretoapplied to these s topological modules represent a pure network property. b Functional modules correspond network neighbourhoods 1. Graph clustering in which there is a statistically significant segregation of nodes of related function. Thus, a functional module requires us networks according tohypothesis either that thenodes number of patient to define some nodal characteristics (shown as grey nodes) and relies on the that are involved in 2. Modularity measures closely related cellular functions tend to interact with each other and are therefore located in the same network Method validation which they were mutated, or by the average numbe neighbourhood. c A disease module represents a group of nodes whose perturbation (mutations, deletions, copy ork annotation

20 ng of the ecies) or d nodes problem.17 in the gnment; mpanied mapped problem obal nethere one rks, one simplest ntifying proteins ze some as the ions be- Figure 2. The NetworkBLAST local network alignment algorithm. Given two input networks, a network alignment graph is constructed. Nodes in this graph correspond to pairs of sequence-similar proteins, one from each species, and edges correspond to conserved interactions. A search algorithm identifies highly similar subnetworks that follow a prespecified interaction pattern. Adapted from Sharan and Ideker.30 Graph alignment: What parts of networks from two species are similar? -hard as ubgraph However, Computational concepts ILP ap1. Clustering on graphs worked 2. we Scoring subnetworks and subnetwork Figure 3. Performance comparison ofsearch computational approaches. Here, 3. Matrix factorization Kelley et al PNAS 2003 demon-

21 Graph diffusion: Which genes are most important? Computational concepts 1. Random walks on graphs 2. Graph diffusion kernels 3. Random walks on graphs Koehler et al., AJHG 2008

22 Graph diffusion: Characterizing genetic variation and impact on complex phenotypes a a G G a G Computational concepts 1. Graph diffusion methods 2. Subnetwork identification Ye et al, 2014, Science, Leiserson et al., Nature Genetics 2015

23 Graph-based data integration a Original data b Patient similarity matrices c Patient similarity networks d Fusion iterations e Patients mrna expression Fused patient similarity network Patients Patients Patients DNA methylation Patients Patients Patients Patient similarity: mrna-based DNA methylation based Supported by all data Computational concepts 1. Graph clustering 2. Clustering multiple graphs From Wang et al Nature Methods 2013

24 Plan for next few lectures Sep 11 th, 13 th Background into graph theory, probability theory and molecular networks Readings: L. Hunter. Life and Its Molecules: A Brief Introduction. AI Magazine 25(1):9-22, Sep 15 th Winterbach et al., Topology of molecular interaction networks. BMC Systems Biology, 2013 Section on Network Biology Probabilistic graphical models for molecular networks

25 Learning goals of this class Gain a broad overview of the application areas and computational solutions in Network biology Gain a deeper understanding one or two areas introduced Apply the computational concepts to similar problems in biology and complex systems Understand and critique scientific articles Enable self learning and deeper study of related topics

26 Goals for today Administrivia Course topics Short survey of interests/background

Comparative Network Analysis

Comparative Network Analysis Comparative Network Analysis BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

More information

Inferring Transcriptional Regulatory Networks from Gene Expression Data II

Inferring Transcriptional Regulatory Networks from Gene Expression Data II Inferring Transcriptional Regulatory Networks from Gene Expression Data II Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs The Role of Network Science in Biology and Medicine Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs Network Analysis Working Group 09.28.2017 Network-Enabled Wisdom (NEW) empirically

More information

Molecular and Cellular Biology

Molecular and Cellular Biology You Do Not Need to write down the following infos because all the following slides and all lecture notes will be uploaded at the link: http://itbe.hanyang.ac.kr This/today s file will be uploaded next

More information

Interaction Network Analysis

Interaction Network Analysis CSI/BIF 5330 Interaction etwork Analsis Young-Rae Cho Associate Professor Department of Computer Science Balor Universit Biological etworks Definition Maps of biochemical reactions, interactions, regulations

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

CHEM 121: Chemical Biology

CHEM 121: Chemical Biology Instructors Prof. Jane M. Liu (HS-212) jliu3@drew.edu x3303 Office Hours Anytime my office door is open CHEM 121: Chemical Biology Class MF 2:30-3:45 pm PRE-REQUISITES: CHEM 117 COURSE OVERVIEW This upper-level

More information

Evidence for dynamically organized modularity in the yeast protein-protein interaction network

Evidence for dynamically organized modularity in the yeast protein-protein interaction network Evidence for dynamically organized modularity in the yeast protein-protein interaction network Sari Bombino Helsinki 27.3.2007 UNIVERSITY OF HELSINKI Department of Computer Science Seminar on Computational

More information

Identifying Signaling Pathways

Identifying Signaling Pathways These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Anthony Gitter, Mark Craven, Colin Dewey Identifying Signaling Pathways BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2018

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

CHEM 181: Chemical Biology

CHEM 181: Chemical Biology Instructor Prof. Jane M. Liu (SN-216) jane.liu@pomona.edu CHEM 181: Chemical Biology Office Hours Anytime my office door is open or by appointment COURSE OVERVIEW Class TR 8:10-9:25 am Prerequisite: CHEM115

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Network alignment and querying

Network alignment and querying Network biology minicourse (part 4) Algorithmic challenges in genomics Network alignment and querying Roded Sharan School of Computer Science, Tel Aviv University Multiple Species PPI Data Rapid growth

More information

Inferring Transcriptional Regulatory Networks from High-throughput Data

Inferring Transcriptional Regulatory Networks from High-throughput Data Inferring Transcriptional Regulatory Networks from High-throughput Data Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20

More information

Updated: 10/11/2018 Page 1 of 5

Updated: 10/11/2018 Page 1 of 5 A. Academic Division: Health Sciences B. Discipline: Biology C. Course Number and Title: BIOL1230 Biology I MASTER SYLLABUS 2018-2019 D. Course Coordinator: Justin Tickhill Assistant Dean: Melinda Roepke,

More information

GTECH 380/722 Analytical and Computer Cartography Hunter College, CUNY Department of Geography

GTECH 380/722 Analytical and Computer Cartography Hunter College, CUNY Department of Geography GTECH 380/722 Analytical and Computer Cartography Hunter College, CUNY Department of Geography Fall 2014 Mondays 5:35PM to 9:15PM Instructor: Doug Williamson, PhD Email: Douglas.Williamson@hunter.cuny.edu

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

Math 410 Linear Algebra Summer Session American River College

Math 410 Linear Algebra Summer Session American River College Course Information Instructor: Kristin Lui Email: luik@arc.losrios.edu Office Hours: By appointment Location: Liberal Arts 163 ARC Main Campus Meet Times: Tuesday/Thursday 6:30 pm 9:40 pm Dates: June 16,

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

Course information. Required Text

Course information. Required Text Course information EHS 101: Fundamentals of Chemistry for Environmental Health UCLA School of Public Health https://ccle.ucla.edu/course/view/16f-envhlt101-1 Syllabus Fall 2016 Thursdays, 1-2:50 pm, in

More information

Cellular Biophysics SS Prof. Manfred Radmacher

Cellular Biophysics SS Prof. Manfred Radmacher SS 20007 Manfred Radmacher Ch. 12 Systems Biology Let's recall chemotaxis in Dictiostelium synthesis of camp excretion of camp external camp gradient detection cell polarity cell migration 2 Single cells

More information

CHEM 102 Fall 2012 GENERAL CHEMISTRY

CHEM 102 Fall 2012 GENERAL CHEMISTRY CHEM 102 Fall 2012 GENERAL CHEMISTRY California State University, Northridge Lecture: Instructor: Dr. Thomas Minehan Office: Science 2314 Office hours: TR, 12:00-1:00 pm Phone: (818) 677-3315 E.mail: thomas.minehan@csun.edu

More information

Pathway Association Analysis Trey Ideker UCSD

Pathway Association Analysis Trey Ideker UCSD Pathway Association Analysis Trey Ideker UCSD A working network map of the cell Network evolutionary comparison / cross-species alignment to identify conserved modules The Working Map Network-based classification

More information

Course Descriptions Biology

Course Descriptions Biology Course Descriptions Biology BIOL 1010 (F/S) Human Anatomy and Physiology I. An introductory study of the structure and function of the human organ systems including the nervous, sensory, muscular, skeletal,

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Grade Level: AP Biology may be taken in grades 11 or 12.

Grade Level: AP Biology may be taken in grades 11 or 12. ADVANCEMENT PLACEMENT BIOLOGY COURSE SYLLABUS MRS. ANGELA FARRONATO Grade Level: AP Biology may be taken in grades 11 or 12. Course Overview: This course is designed to cover all of the material included

More information

Proteomics Systems Biology

Proteomics Systems Biology Dr. Sanjeeva Srivastava IIT Bombay Proteomics Systems Biology IIT Bombay 2 1 DNA Genomics RNA Transcriptomics Global Cellular Protein Proteomics Global Cellular Metabolite Metabolomics Global Cellular

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Cell biology traditionally identifies proteins based on their individual actions as catalysts, signaling

Cell biology traditionally identifies proteins based on their individual actions as catalysts, signaling Lethality and centrality in protein networks Cell biology traditionally identifies proteins based on their individual actions as catalysts, signaling molecules, or building blocks of cells and microorganisms.

More information

Bio 101 General Biology 1

Bio 101 General Biology 1 Revised: Fall 2016 Bio 101 General Biology 1 COURSE OUTLINE Prerequisites: Prerequisite: Successful completion of MTE 1, 2, 3, 4, and 5, and a placement recommendation for ENG 111, co-enrollment in ENF

More information

Computational Molecular Biology (

Computational Molecular Biology ( Computational Molecular Biology (http://cmgm cmgm.stanford.edu/biochem218/) Biochemistry 218/Medical Information Sciences 231 Douglas L. Brutlag, Lee Kozar Jimmy Huang, Josh Silverman Lecture Syllabus

More information

GRAPH-THEORETICAL COMPARISON REVEALS STRUCTURAL DIVERGENCE OF HUMAN PROTEIN INTERACTION NETWORKS

GRAPH-THEORETICAL COMPARISON REVEALS STRUCTURAL DIVERGENCE OF HUMAN PROTEIN INTERACTION NETWORKS 141 GRAPH-THEORETICAL COMPARISON REVEALS STRUCTURAL DIVERGENCE OF HUMAN PROTEIN INTERACTION NETWORKS MATTHIAS E. FUTSCHIK 1 ANNA TSCHAUT 2 m.futschik@staff.hu-berlin.de tschaut@zedat.fu-berlin.de GAUTAM

More information

Network Biology-part II

Network Biology-part II Network Biology-part II Jun Zhu, Ph. D. Professor of Genomics and Genetic Sciences Icahn Institute of Genomics and Multi-scale Biology The Tisch Cancer Institute Icahn Medical School at Mount Sinai New

More information

SYLLABUS AND COURSE POLICIES

SYLLABUS AND COURSE POLICIES SYLLABUS AND COURSE POLICIES BIOLOGY 334-MOLECULAR BIOLOGY- FALL 2015 Time and Room: 9:45-11:35 T-Th CLSB 1A001 We will run with one break: 9:45-10:35, break (10 min.), 10:45-11:35. These are approximate

More information

Differential Modeling for Cancer Microarray Data

Differential Modeling for Cancer Microarray Data Differential Modeling for Cancer Microarray Data Omar Odibat Department of Computer Science Feb, 01, 2011 1 Outline Introduction Cancer Microarray data Problem Definition Differential analysis Existing

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

EASTERN ARIZONA COLLEGE General Biology I

EASTERN ARIZONA COLLEGE General Biology I EASTERN ARIZONA COLLEGE General Biology I Course Design 2013-2014 Course Information Division Science Course Number BIO 181 (SUN# BIO 1181) Title General Biology I Credits 4 Developed by David J. Henson

More information

GTECH 380/722 Analytical and Computer Cartography Hunter College, CUNY Department of Geography

GTECH 380/722 Analytical and Computer Cartography Hunter College, CUNY Department of Geography GTECH 380/722 Analytical and Computer Cartography Hunter College, CUNY Department of Geography Spring 2010 Wednesdays 5:35PM to 9:15PM Instructor: Doug Williamson, PhD Email: Douglas.Williamson@hunter.cuny.edu

More information

W/F = 10:00 AM - 1:00 PM Other times available by appointment only

W/F = 10:00 AM - 1:00 PM Other times available by appointment only Course BY 101-05 Principles of Biology Fall 2015 BY 103-01 Honors Biology Course Meeting Time BY 101-05 T/Th 9:30 10:45 PM BG 109 BY 103-01 Lab 01 M 8:00 AM - 9:50 AM Lab 02 M 10:10 12:00 PM Lab 03 M 1:25

More information

ECS 253 / MAE 253 April 26, Intro to Biological Networks, Motifs, and Model selection/validation

ECS 253 / MAE 253 April 26, Intro to Biological Networks, Motifs, and Model selection/validation ECS 253 / MAE 253 April 26, 2016 Intro to Biological Networks, Motifs, and Model selection/validation Announcement HW2, due May 3 (one week) HW2b, due May 5 HW2a, due May 5. Will be posted on Smartsite.

More information

or

or Department: Life Sciences (Biology) Introduction to Biology Fall 2015 Biol 1308 CRN# 77113 Course location and times: Online through HCCS Eagle Online 2.0 Course semester credit hours: 3 Semester Credit

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

Biological Networks. Gavin Conant 163B ASRC

Biological Networks. Gavin Conant 163B ASRC Biological Networks Gavin Conant 163B ASRC conantg@missouri.edu 882-2931 Types of Network Regulatory Protein-interaction Metabolic Signaling Co-expressing General principle Relationship between genes Gene/protein/enzyme

More information

MIP543 RNA Biology Fall 2015

MIP543 RNA Biology Fall 2015 MIP543 RNA Biology Fall 2015 Credits: 3 Term Offered: Day and Time: Fall (odd years) Mondays and Wednesdays, 4:00-5:15 pm Classroom: MRB 123 Course Instructor: Dr. Jeffrey Wilusz, Professor, MIP Office:

More information

Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules

Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules Matteo Bersanelli 1+, Ettore Mosca 2+, Daniel Remondini 1, Gastone Castellani 1 and Luciano

More information

Advanced Cell Biology. Lecture 1

Advanced Cell Biology. Lecture 1 Advanced Cell Biology. Lecture 1 Alexey Shipunov Minot State University January 9, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 1 January 9, 2013 1 / 27 Outline Course in general Description Grading

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

Important Dates. Non-instructional days. No classes. College offices closed.

Important Dates. Non-instructional days. No classes. College offices closed. Instructor: Dr. Alexander Krantsberg Email: akrantsberg@nvcc.edu Phone: 703-845-6548 Office: Bisdorf, Room AA 352 Class Time: Mondays and Wednesdays 12:30 PM - 1:45 PM. Classroom: Bisdorf / AA 354 Office

More information

Instructor: Dr. Darryl Kropf 203 S. Biology ; please put cell biology in subject line

Instructor: Dr. Darryl Kropf 203 S. Biology ; please put cell biology in subject line Biology 2020 PRINCIPLES OF CELL BIOLOGY Spring 2004 In Principles of Cell Biology, we will explore the structure, function, and evolution of living cells, including prokaryotes (archae and eubacteria)

More information

Computational Systems Biology

Computational Systems Biology Computational Systems Biology Vasant Honavar Artificial Intelligence Research Laboratory Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery

More information

A PARSIMONY APPROACH TO ANALYSIS OF HUMAN SEGMENTAL DUPLICATIONS

A PARSIMONY APPROACH TO ANALYSIS OF HUMAN SEGMENTAL DUPLICATIONS A PARSIMONY APPROACH TO ANALYSIS OF HUMAN SEGMENTAL DUPLICATIONS CRYSTAL L. KAHN and BENJAMIN J. RAPHAEL Box 1910, Brown University Department of Computer Science & Center for Computational Molecular Biology

More information

Undergraduate Curriculum in Biology

Undergraduate Curriculum in Biology Fall Courses *114: Principles of Biology *116: Introduction to Anatomy and Physiology I 302: Human Learning and the Brain (o, DS) 336: Aquatic Biology (p/e) 339: Aquatic Biology Lab (L) 351: Principles

More information

An introduction to SYSTEMS BIOLOGY

An introduction to SYSTEMS BIOLOGY An introduction to SYSTEMS BIOLOGY Paolo Tieri CNR Consiglio Nazionale delle Ricerche, Rome, Italy 10 February 2015 Universidade Federal de Minas Gerais, Belo Horizonte, Brasil Course outline Day 1: intro

More information

Introduction to Biology Spring 2011 Biol 1308 CRN# 78977

Introduction to Biology Spring 2011 Biol 1308 CRN# 78977 Department: Life Sciences (Biology) Introduction to Biology Spring 2011 Biol 1308 CRN# 78977 Course location and times: Course semester credit hours: Course contact hours: Course length: Instruction type:

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

Biology Lecture Schedule FALL; Sec # Steven A. Fink; Instructor FALL 2013 MSA 005 Phone: (310)

Biology Lecture Schedule FALL; Sec # Steven A. Fink; Instructor FALL 2013 MSA 005 Phone: (310) Biology Lecture Schedule FALL; Sec #0396 1 Steven A. Fink; Instructor FALL 2013 MSA 005 Phone: (310) 287-4234 MW 1:00-2:25 e-mail: FinkS@wlac.edu sec. #0396 web site: www.professorfink.com OFFICE HOURS:

More information

Lassen Community College Course Outline

Lassen Community College Course Outline Lassen Community College Course Outline BIOL-1 Principles of Molecular and Cellular Biology 4.0 Units I. Catalog Description A course in principles of biology, with special emphasis given to molecular

More information

Multi Omics Clustering. ABDBM Ron Shamir

Multi Omics Clustering. ABDBM Ron Shamir Multi Omics Clustering ABDBM Ron Shamir 1 Outline Introduction Cluster of Clusters (COCA) icluster Nonnegative Matrix Factorization (NMF) Similarity Network Fusion (SNF) Multiple Kernel Learning (MKL)

More information

STRUCTURAL BIOINFORMATICS II. Spring 2018

STRUCTURAL BIOINFORMATICS II. Spring 2018 STRUCTURAL BIOINFORMATICS II Spring 2018 Syllabus Course Number - Classification: Chemistry 5412 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Ronald Levy, SERC 718 (ronlevy@temple.edu)

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

Analysis of Complex Systems

Analysis of Complex Systems Analysis of Complex Systems Lecture 1: Introduction Marcus Kaiser m.kaiser@ncl.ac.uk www.dynamic-connectome.org Preliminaries - 1 Lecturers Dr Marcus Kaiser, m.kaiser@ncl.ac.uk Practicals Frances Hutchings

More information

Biophysical Chemistry CHEM348 and CHEM348L

Biophysical Chemistry CHEM348 and CHEM348L Biophysical Chemistry CHEM348 and CHEM348L Credits: 3 (CHEM 348), 1 (CHEM 348L) South Dakota State University, 015 Lecture: 9:00-9:50 am, MWF, SAV 07. Lab: -4:50 pm, Wed. SAV 378 or as stated in class.

More information

Chemistry Syllabus Fall Term 2017

Chemistry Syllabus Fall Term 2017 Chemistry 9 - Syllabus Fall Term 17 Date Lecture Number - General Subject Chapter W 8/30 F 9/1 1 - Introduction and orgo I review X - Review, friendly diagnostic exam M 9/4 2 - Orgo I review, exam highlights

More information

Welcome to HST.508/Biophysics 170

Welcome to HST.508/Biophysics 170 Harvard-MIT Division of Health Sciences and Technology HST.58: Quantitative Genomics, Fall 5 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane Welcome to HST.58/Biophysics Our emphasis

More information

Lecture 10: May 19, High-Throughput technologies for measuring proteinprotein

Lecture 10: May 19, High-Throughput technologies for measuring proteinprotein Analysis of Gene Expression Data Spring Semester, 2005 Lecture 10: May 19, 2005 Lecturer: Roded Sharan Scribe: Daniela Raijman and Igor Ulitsky 10.1 Protein Interaction Networks In the past we have discussed

More information

Lecture Notes for Fall Network Modeling. Ernest Fraenkel

Lecture Notes for Fall Network Modeling. Ernest Fraenkel Lecture Notes for 20.320 Fall 2012 Network Modeling Ernest Fraenkel In this lecture we will explore ways in which network models can help us to understand better biological data. We will explore how networks

More information

Chemistry 330 Fall 2015 Organic Chemistry I

Chemistry 330 Fall 2015 Organic Chemistry I Chemistry 330 Fall 2015 Organic Chemistry I Instructor: John G. Kodet Contact Information: Office: Faraday Hall 335 Email: jkodet@niu.edu Office Hours: MW 2:00-3:00 pm, and by appointment Lecture: MWF

More information

BIOINFORMATICS LAB AP BIOLOGY

BIOINFORMATICS LAB AP BIOLOGY BIOINFORMATICS LAB AP BIOLOGY Bioinformatics is the science of collecting and analyzing complex biological data. Bioinformatics combines computer science, statistics and biology to allow scientists to

More information

Graph Theory and Networks in Biology arxiv:q-bio/ v1 [q-bio.mn] 6 Apr 2006

Graph Theory and Networks in Biology arxiv:q-bio/ v1 [q-bio.mn] 6 Apr 2006 Graph Theory and Networks in Biology arxiv:q-bio/0604006v1 [q-bio.mn] 6 Apr 2006 Oliver Mason and Mark Verwoerd February 4, 2008 Abstract In this paper, we present a survey of the use of graph theoretical

More information

The geneticist s questions

The geneticist s questions The geneticist s questions a) What is consequence of reduced gene function? 1) gene knockout (deletion, RNAi) b) What is the consequence of increased gene function? 2) gene overexpression c) What does

More information

CHEMISTRY 100 : CHEMISTRY and MAN

CHEMISTRY 100 : CHEMISTRY and MAN CHEMISTRY 100 : CHEMISTRY and MAN Course Syllabus and Schedule Spring 2011 (CRN 33242) Instructor. Dr. Harry Davis. Office is in Kokio 116, the phone is 734-9186 and messages may be left on the answering

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

Algorithms in Computational Biology (236522) spring 2008 Lecture #1

Algorithms in Computational Biology (236522) spring 2008 Lecture #1 Algorithms in Computational Biology (236522) spring 2008 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: 15:30-16:30/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office hours:??

More information

Central Maine Community College Auburn, Maine Course Syllabus: Introduction to General Biology Instructor Lloyd Crocker

Central Maine Community College Auburn, Maine Course Syllabus: Introduction to General Biology Instructor Lloyd Crocker Central Maine Community College Auburn, Maine 04210-6498 Course Syllabus: Introduction to General Biology Instructor Lloyd Crocker Life Science Bio 101-02 Lecture JAL 203 Spring 2018 Course Description:

More information

Computational approaches for functional genomics

Computational approaches for functional genomics Computational approaches for functional genomics Kalin Vetsigian October 31, 2001 The rapidly increasing number of completely sequenced genomes have stimulated the development of new methods for finding

More information

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim Gene Regulatory Networks II 02-710 Computa.onal Genomics Seyoung Kim Goal: Discover Structure and Func;on of Complex systems in the Cell Identify the different regulators and their target genes that are

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

Biology 559R: Introduction to Phylogenetic Comparative Methods Topics for this week:

Biology 559R: Introduction to Phylogenetic Comparative Methods Topics for this week: Biology 559R: Introduction to Phylogenetic Comparative Methods Topics for this week: Course general information About the course Course objectives Comparative methods: An overview R as language: uses and

More information

Bioinformatics I. CPBS 7711 October 29, 2015 Protein interaction networks. Debra Goldberg

Bioinformatics I. CPBS 7711 October 29, 2015 Protein interaction networks. Debra Goldberg Bioinformatics I CPBS 7711 October 29, 2015 Protein interaction networks Debra Goldberg debra@colorado.edu Overview Networks, protein interaction networks (PINs) Network models What can we learn from PINs

More information

Erzsébet Ravasz Advisor: Albert-László Barabási

Erzsébet Ravasz Advisor: Albert-László Barabási Hierarchical Networks Erzsébet Ravasz Advisor: Albert-László Barabási Introduction to networks How to model complex networks? Clustering and hierarchy Hierarchical organization of cellular metabolism The

More information

10/4/ :31 PM Approved (Changed Course) BIO 10 Course Outline as of Summer 2017

10/4/ :31 PM Approved (Changed Course) BIO 10 Course Outline as of Summer 2017 10/4/2018 12:31 PM Approved (Changed Course) BIO 10 Course Outline as of Summer 2017 CATALOG INFORMATION Dept and Nbr: BIO 10 Title: INTRO PRIN BIOLOGY Full Title: Introduction to Principles of Biology

More information

Overview. Overview. Social networks. What is a network? 10/29/14. Bioinformatics I. Networks are everywhere! Introduction to Networks

Overview. Overview. Social networks. What is a network? 10/29/14. Bioinformatics I. Networks are everywhere! Introduction to Networks Bioinformatics I Overview CPBS 7711 October 29, 2014 Protein interaction networks Debra Goldberg debra@colorado.edu Networks, protein interaction networks (PINs) Network models What can we learn from PINs

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Staffing formula and enrollment limits X Other REMOVAL of GWAR attribute

Staffing formula and enrollment limits X Other REMOVAL of GWAR attribute CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS COURSE MODIFICATION PROPOSAL Courses must be submitted by October 15, 2013, and finalized by the end of the fall semester to make the next catalog (2014-15)

More information

MISSISSIPPI VALLEY STATE UNIVERSITY Department of Natural Science Chemistry Program Course Number: CH 320 Course Name: Introduction to Biochemistry

MISSISSIPPI VALLEY STATE UNIVERSITY Department of Natural Science Chemistry Program Course Number: CH 320 Course Name: Introduction to Biochemistry MISSISSIPPI VALLEY STATE UNIVERSITY Department of Natural Science Chemistry Program Course Number: CH 320 Course Name: Introduction to Biochemistry Instructor: Matthewos Eshete, PhD Office location: FLW

More information

The architecture of complexity: the structure and dynamics of complex networks.

The architecture of complexity: the structure and dynamics of complex networks. SMR.1656-36 School and Workshop on Structure and Function of Complex Networks 16-28 May 2005 ------------------------------------------------------------------------------------------------------------------------

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Phylogenetic Analysis of Molecular Interaction Networks 1

Phylogenetic Analysis of Molecular Interaction Networks 1 Phylogenetic Analysis of Molecular Interaction Networks 1 Mehmet Koyutürk Case Western Reserve University Electrical Engineering & Computer Science 1 Joint work with Sinan Erten, Xin Li, Gurkan Bebek,

More information

Building a cohesive bioinformatics classroom: implementation of wireless sharing technology in a large scale-up of SEA-PHAGES introductory biology lab

Building a cohesive bioinformatics classroom: implementation of wireless sharing technology in a large scale-up of SEA-PHAGES introductory biology lab Building a cohesive bioinformatics classroom: implementation of wireless sharing technology in a large scale-up of SEA-PHAGES introductory biology lab Welkin Pope Biological Sciences July 1 2015 Seaphages.org

More information

Stochastic simulations

Stochastic simulations Stochastic simulations Application to molecular networks Literature overview Noise in genetic networks Origins How to measure and distinguish between the two types of noise (intrinsic vs extrinsic)? What

More information

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson Grundlagen der Bioinformatik, SS 10, D. Huson, April 12, 2010 1 1 Introduction Grundlagen der Bioinformatik Summer semester 2010 Lecturer: Prof. Daniel Huson Office hours: Thursdays 17-18h (Sand 14, C310a)

More information

Latent Variable models for GWAs

Latent Variable models for GWAs Latent Variable models for GWAs Oliver Stegle Machine Learning and Computational Biology Research Group Max-Planck-Institutes Tübingen, Germany September 2011 O. Stegle Latent variable models for GWAs

More information

26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013

26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013 26.542: COLLOIDAL NANOSCIENCE & NANOSCALE ENGINEERING Fall 2013 Classes: Thurs, 6-9 pm; Ball Hall Room 208 Professor: Dr. B. Budhlall Office: Ball Hall 203B, Phone: 978-934-3414 Email: Bridgette_Budhlall@uml.edu

More information