Sample Size Estimation for Studies of High-Dimensional Data

Size: px
Start display at page:

Download "Sample Size Estimation for Studies of High-Dimensional Data"

Transcription

1 Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung, Taiwan 1

2 Outline Background (Single endpoint) Power Analysis and Sample Size Sample Size Problem in Multiple Testing Multiple Testing Framework Type I error and Power Sample Size Estimation Independent Model Correlated Model

3 Statistical Hypothesis Testing Population - Control (m c, s); Treatment (m t, s) Difference d = m c m t Experiment - Control (x c, s c ); Treatment (x t, s t ) with n samples in each group Is the mean difference between Control and Treatment significant? Two-sample t-test: t s 2 c x c x t n s 2 t Statistical S1- Determine the proper test statistic Test S2- Perform statistical test from the observed data S3- Compute p-value (under the null hypothesis) S4- Compare the p-value with the pre-specified n s d 2 n

4 Power of a Test Two-sample t-test: t s 2 c x c x n s The significance (power) of a test depends on the sample size n, and the mean difference d (d), and standard deviation s (s). Power: Probability of declaring a significance (p-value ) Given d m c m t, s, n, and Power (1-b) of a test (t-test) can be computed. t 2 t Given d m c m t, s, (1-b), and Sample size of a test (t-test) can be computed to achieve a significance. n s d 2 n

5 Sample Size Estimation Sample size estimation for a given study is conducted during the design stage before data are collected. The three factors d, s, and together with the power (1-b) deter mine the needed sample size n. Effect size d: the targeted statistical distance between the param eters of two populations designed to detect (the difference in pop ulation means. It represents the smallest effect that is considered to be clinical or biological relevant (significance). Sample size: the number of experimental units (e.g., biological sa mples.

6 Sample Size Estimation One Endpoint Sample size problem: The number of samples needed to ensure the power (1-b) to detect the difference d with a test at the significance level. Sample size calculation requires specifying 1. Effect size d or standardized effect size d/s, 2. The desired power (1-b), 3. Type I error. Sample size for the two-sample t-test: n = 2 (t /2 + t b ) 2 /(d/s) 2.

7 High-Dimensional Data High dimensional data (e.g., gene expression data): Each sample is characterized by hundreds or thousands of correlated measurements. Most measurements are unrelated to the phenotypes. The number of phenotype samples is small. The curse of dimensionality: multiplicity testing; feature selection; over-fitting; poor scalability; etc

8 High-Dimensional Data for Cancer Biology Goal: To identify markers (genes or proteins) that may have a functional role in specific phenotypes Diagnosis: define patterns that can identify specific phenotypes. Prognosis: establish a patient s clinical outcome independent of treatment. Prediction: predict outcome of a specific treatment.

9 Data Matrix Potential Markers x 1 x 2 x 3. x m S 11 y 111 y 211 y 311. y m11 Control (-) Treatment (+) S 21 y 112 y 212 y 312. y m12... S n1 y 11k y 21k y 31k. y m1k S 12 y 121 y 221 y 321. y m21 S 22 y 122 y 222 y 322. y m22... S n2 y 12k y 22k y 32k. y m2k Using an appropriate test statistics to compare two groups for each variable (univariate analysis) at the significance level.

10 Testing Multiple Endpoints Decision True State Significance Non-significance Total Null V S 1- m 0 Alternative U 1-b T b m 1 Total R A m V is the number of the false positives; U is the number of the true positives; R is the total number of the significances; E(V)/m 0 = is the per comparison-wise error (CWE) rate; E(U)/m 1 = (1b) is the per comparison-wise power (sensitivity).

11 Type I Errors in Multiple Testing Three type I errors in multiple testing: CWE = E(V)/m: Expected proportion of positives. FWE = Pr(V > 0): Probability of at least one false positive. FDR = E(V/R): Expected proportion of false positive findings. Type I error based on the CWE at : = v*/m, the expected number of false positives is v*. = f*/m, the FWE will be at f* (Bonferroni approach). When m is large, becomes small. Thus, the Bonferroni approach is not paratical. Most favor the FDR approach in high-dimensional data.

12 FDR - Comments If m 0 = m (all null hypotheses are true), both FDR and FWE are 1 when there is any rejection. In this case, FWE and FDR are equivalent. If m 0 < m, it can be shown that Pr(V > 0) > E(V/R). A MCP procedure which controls FWE will controls FDR. The FDR approach allows the findings to be made, provided that the investigator is willing to accept a small fraction of false positive findings. Most favor the FDR approach in high-dimensional data.

13 Sample Size Estimation HD Since a large number of tests is made and the structu re of data is complex, determination of the needed sa mple size is difficult. Most current methods proposed for the sample size a nalysis do not consider the dependency of expressio n levels and/or assume equal variance among genes.

14 Power and Sample Size Power is defined by (1-b), the proportion that the true alternatives are significant (sensitivity l). Sample size problem: The number of samples needed to ensure detecting at least l fraction out of the m 1 true alternatives for the difference d with a test at the significance level. (Both m and m 1 are pre-specified by the investigator.)

15 A Simple Method For specified l, and (1-b), the needed sample size based on the univariate calculation is n = n* = 2 (t /2 + t b ) 2 /(d/s) 2, where n* is the smallest integer >= n*. Conversely, given d,, and n the outcome of a test is a Bernoulli with p = (1b). The expected proportion of detection (sensitivity) is l. Sample size as calculated will have the sensitivity l, on the average. But, the probability can be low.

16 Confidence Probability Given m, m 1, d, and, the relationship between the sample size n and the power (1-b) is n = n* = 2 (t /2 + t b ) 2 /(d/s) 2. Under the independent model, the probability f l to detect at least l fraction of the m 1 alternatives is the sum of the binomial probabilities:

17 Estimated sample size n, sensitivity l, and power f under the independent model based on m = 2,000, d = 2, and = Univariate Method p 1 (%) l f n* n * l f

18 An Alternative Formulation The number of samples needed to ensure the specified sensitivity l with the confidence probability at least f. The sample size n is calculated using the two equations: n* = 2 (t /2 + t b ) 2 /(d/s) 2. 18

19 Estimated sample size n, sensitivity l, and power f under the independent model based on m = 2,000, d = 2, and = Mean Method Confidence probability p 1 (%) l n * l f n l f

20 Type I Errors: CWE, FWE, FDR Type I errors: FWE, FDR, or CWE (v: number of false positives). Since m 1 and (1 β) are pre-specified, a Type I error can be expressed in terms of CWE. Setting α = v/m, the FWE will be controlled at v (e.g., v = 0.05). Setting α = [m 1 (1 β)q*]/[m 0 (1 q*)], the FDR will be controlled at q*. 20

21 Simulation Experiment: Independent Model Fixed m = 2,000, α = 0.001, d = 2; specify m 1 and n Null model, m 0 = m(1 π 1 ) from N(0,1); Alternative model, m 1 = mπ 1 from N(δ,1). For each sample set, the t-statistics were computed, and v and u are counted at α = The estimates of α, FDR, λ and φ λ were then calculated. The estimate of φ λ was the proportion of times out of the 1,000 simulations 21

22 Estimated and FDR q from the mean and confidence probability methods under the independent model, m = 2,000, d = 2, and = Mean Method Confidence Probability p 1 l q * n a q n b q

23 Estimated sensitivity l and confidence probability f from the mean and confidence probability methods under the independent model, m = 2,000, d = 2, and = Mean Method Confidence Probability p 1 (%) l n a l f n b l f

24 A Re-sampling Method - Tibshirani X i t 01 t 02 t 0N Null genes v 1 v 2 v N Type I error or FDR Pilot data X Null distribution t i s i t 11 t 12 t 1N σ d 1 1 n0 1 n Non-null genes 1 u 1 u 2 u N the (1f) th percentile u*

25 Lin-Chen Re-sampling 1. Start with the sample Method size n from independent model. 2. Compute the adjustment factors f = f 1 x f Generate permutation samples for (b = 1,2,..,B). Compute the t-statistics from the permutation samples and multiple each t-statistic by the factor f. t b = {ft 0b, ft 1b }. Add d to a set of randomly selected m 1 genes in Group Construct a null distribution by pooling all t 0b s. 5. Calculate v b (Type I error) and u b (power) for each t b. 6. Order u 1, u 2,, u B, and find the (1-f) th percentile, u*. 7. If u* > m 1 l stop and report n as the sample size estimate; otherwise, increase n by 1 and go to 1. 25

26 26 Comments 1. This method is modified from Tibshirani (2007). 2. It accounts for the correlations and variances of the variables. 3. The sample size in the pilot dataset is small, in practice. 4. Adjustment factors f = f 1 x f 2 2 / 2, 2 / 2, p p n n n n p p p p t t n n n n f f f f 1 uses the maximum likelihood estimate of the t-statistic f 2 is to account for differential sample sizes for the df of the t- distribution, i.e., n 0p + n 1p 2 and n 0 + n 1 2.

27 A Re-sampling Method Lin & Chen X i ft 01 ft 02 ft 0N Null genes v 1 v 2 v N Type I error or FDR Pilot data X Null distribution f n n n t 0p 1p n0 n12, / 2 0p n1 p 2 tn n 2, / 2 0 p 1p t i s i ft 11 ft 12 ft 1N σ d 1 1 n0 1 n Non-null genes 1 u 1 u 2 u N the (1f) th percentile u*

28 Simulation Experiment: Correlated Model Colon cancer data set (Alon et al., 1999, PNAS) The colon dataset consists of expression patterns of 2000 human genes with 22 normal and 40 colon tumor tissues. Fixed m = 2,000, α = 0.001, d = 2; specify m1 and n. 1. Random select 4 samples for each group. 2. Compute the sample sizes using the Tibshirani and Lin & Chen methods. 3. Repeat 1000 times by selecting different sets of four samples. 4. Estimate the mean and standard deviation. Repeat the procedure using 6 samples for each group. 28

29 Sample size estimates (sd), 4 or 6 samples samples per group with 1,000 repetitions, m = 2,000, d = 2 and =10-3 p 1 (%) l n a n b (4) n c (4) n b (6) n c (6) (3.16) 26.6(7.98) 14.3(2.35) 18.0(3.88) (3.23) 30.0(8.09) 15.3(2.48) 19.7(4.05) (3.68) 35.5(9.15) 17.3(2.45) 22.8(4.12) (2.76) 25.5(7.04) 14.2(2.33) 17.8(3.88) (3.33) 29.6(8.17) 15.4(2.38) 19.8(3.90) (3.48) 35.4(8.74) 17.3(2.53) 22.8(4.26) a. mean method; b. Lin & Chen; c. Tibshirani

30 Estimated sensitivity l and confidence probability f from the univariate mean and Lin & Chen methods using the colon tumor data, m = 2,000, d = 2, and = Univariate mean method Lin & Chen Method p 1 (%) l n l f n l f

31 Summary - 1 Common Approaches: Sample size estimation methods were derived from the independent or equi-correlated models because of complexity of the correlation among the variables. The sample size is formulated as the number of arrays needed to achieve the specified sensitivity l on the average. This formulation is inadequate due to the presence of the variance in estimating l.

32 Summary - II Alternative: The number of arrays needed to ensure detecting at least the specified sensitivity with a confidence probability at least 95%. A permutation method using a small pilot dataset to estimate sample size is proposed. use a small pilot dataset, 4-6 samples per groups. provide efficient estimates of sample size. perform well for an illustrative dataset.

33 References Tsai, C-A, Wang, S-J, Chen, D-T, and Chen, J.J. Sample size for gene expression microarray experiments. Bioinformatics 21, , Tibshirani R. A simple method for assessing sample sizes in microarray experiments. BMC Bioinformatics 2006; 7:106. Lin, W-J and Chen, J.J. Power and sample size estimation in microarray studies (manuscript).

34 Sample Size Estimation for Studies of High-Dimensional Data Before conducting an experiment, one important issue that needs to be decided is the number of samples required in order to have adequate power to detect treatment effects. Sample size estimation for a single endpoint is formulated as the number of samples needed to ensure the specified power of detecting the specified mean difference at a pre-specified significance level a. For high dimensional data, the common sample size estimation is calculated to ensure to detect a specified sensitivity on the average. The needed sample size can be calculated using a univariate method. This formulation is inadequate due to the presence of the variance in estimating the sensitivity. The univariate method does not take the dependence among the variables into consideration. This talk formulates the sample size problem as the number of samples needed to ensure detecting at least the specified sensitivity with the desired confidence probability. A permutation method using a small pilot dataset to estimate sample size will be presented. This method accounts for correlation and variance heterogeneity among variables and is shown to perform well for an example dataset.

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 5, Issue 1 2006 Article 28 A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments Hongmei Jiang Rebecca

More information

Research Article Sample Size Calculation for Controlling False Discovery Proportion

Research Article Sample Size Calculation for Controlling False Discovery Proportion Probability and Statistics Volume 2012, Article ID 817948, 13 pages doi:10.1155/2012/817948 Research Article Sample Size Calculation for Controlling False Discovery Proportion Shulian Shang, 1 Qianhe Zhou,

More information

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018 High-Throughput Sequencing Course Multiple Testing Biostatistics and Bioinformatics Summer 2018 Introduction You have previously considered the significance of a single gene Introduction You have previously

More information

Step-down FDR Procedures for Large Numbers of Hypotheses

Step-down FDR Procedures for Large Numbers of Hypotheses Step-down FDR Procedures for Large Numbers of Hypotheses Paul N. Somerville University of Central Florida Abstract. Somerville (2004b) developed FDR step-down procedures which were particularly appropriate

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

Estimation of the False Discovery Rate

Estimation of the False Discovery Rate Estimation of the False Discovery Rate Coffee Talk, Bioinformatics Research Center, Sept, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 4 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 9. and 9.3 Lecture Chapter 10.1-10.3 Review Exam 6 Problem Solving

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors The Multiple Testing Problem Multiple Testing Methods for the Analysis of Microarray Data 3/9/2009 Copyright 2009 Dan Nettleton Suppose one test of interest has been conducted for each of m genes in a

More information

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University Multiple Testing Hoang Tran Department of Statistics, Florida State University Large-Scale Testing Examples: Microarray data: testing differences in gene expression between two traits/conditions Microbiome

More information

Multiple testing: Intro & FWER 1

Multiple testing: Intro & FWER 1 Multiple testing: Intro & FWER 1 Mark van de Wiel mark.vdwiel@vumc.nl Dep of Epidemiology & Biostatistics,VUmc, Amsterdam Dep of Mathematics, VU 1 Some slides courtesy of Jelle Goeman 1 Practical notes

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Non-specific filtering and control of false positives

Non-specific filtering and control of false positives Non-specific filtering and control of false positives Richard Bourgon 16 June 2009 bourgon@ebi.ac.uk EBI is an outstation of the European Molecular Biology Laboratory Outline Multiple testing I: overview

More information

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs with Remarks on Family Selection Dissertation Defense April 5, 204 Contents Dissertation Defense Introduction 2 FWER Control within

More information

Looking at the Other Side of Bonferroni

Looking at the Other Side of Bonferroni Department of Biostatistics University of Washington 24 May 2012 Multiple Testing: Control the Type I Error Rate When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis

More information

Sample Size and Power Calculation in Microarray Studies Using the sizepower package.

Sample Size and Power Calculation in Microarray Studies Using the sizepower package. Sample Size and Power Calculation in Microarray Studies Using the sizepower package. Weiliang Qiu email: weiliang.qiu@gmail.com Mei-Ling Ting Lee email: meilinglee@sph.osu.edu George Alex Whitmore email:

More information

Bioinformatics. Genotype -> Phenotype DNA. Jason H. Moore, Ph.D. GECCO 2007 Tutorial / Bioinformatics.

Bioinformatics. Genotype -> Phenotype DNA. Jason H. Moore, Ph.D. GECCO 2007 Tutorial / Bioinformatics. Bioinformatics Jason H. Moore, Ph.D. Frank Lane Research Scholar in Computational Genetics Associate Professor of Genetics Adjunct Associate Professor of Biological Sciences Adjunct Associate Professor

More information

Sta$s$cs for Genomics ( )

Sta$s$cs for Genomics ( ) Sta$s$cs for Genomics (140.688) Instructor: Jeff Leek Slide Credits: Rafael Irizarry, John Storey No announcements today. Hypothesis testing Once you have a given score for each gene, how do you decide

More information

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Single gene analysis of differential expression

Single gene analysis of differential expression Single gene analysis of differential expression Giorgio Valentini DSI Dipartimento di Scienze dell Informazione Università degli Studi di Milano valentini@dsi.unimi.it Comparing two conditions Each condition

More information

Adaptive Designs: Why, How and When?

Adaptive Designs: Why, How and When? Adaptive Designs: Why, How and When? Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj ISBS Conference Shanghai, July 2008 1 Adaptive designs:

More information

Hotelling s One- Sample T2

Hotelling s One- Sample T2 Chapter 405 Hotelling s One- Sample T2 Introduction The one-sample Hotelling s T2 is the multivariate extension of the common one-sample or paired Student s t-test. In a one-sample t-test, the mean response

More information

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Statistics Journal Club, 36-825 Beau Dabbs and Philipp Burckhardt 9-19-2014 1 Paper

More information

AP Statistics Ch 12 Inference for Proportions

AP Statistics Ch 12 Inference for Proportions Ch 12.1 Inference for a Population Proportion Conditions for Inference The statistic that estimates the parameter p (population proportion) is the sample proportion p ˆ. p ˆ = Count of successes in the

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 10 Class Summary Last time... We began our discussion of adaptive clinical trials Specifically,

More information

The miss rate for the analysis of gene expression data

The miss rate for the analysis of gene expression data Biostatistics (2005), 6, 1,pp. 111 117 doi: 10.1093/biostatistics/kxh021 The miss rate for the analysis of gene expression data JONATHAN TAYLOR Department of Statistics, Stanford University, Stanford,

More information

Stat 206: Estimation and testing for a mean vector,

Stat 206: Estimation and testing for a mean vector, Stat 206: Estimation and testing for a mean vector, Part II James Johndrow 2016-12-03 Comparing components of the mean vector In the last part, we talked about testing the hypothesis H 0 : µ 1 = µ 2 where

More information

Single gene analysis of differential expression. Giorgio Valentini

Single gene analysis of differential expression. Giorgio Valentini Single gene analysis of differential expression Giorgio Valentini valenti@disi.unige.it Comparing two conditions Each condition may be represented by one or more RNA samples. Using cdna microarrays, samples

More information

False discovery control for multiple tests of association under general dependence

False discovery control for multiple tests of association under general dependence False discovery control for multiple tests of association under general dependence Nicolai Meinshausen Seminar für Statistik ETH Zürich December 2, 2004 Abstract We propose a confidence envelope for false

More information

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke BIOL 51A - Biostatistics 1 1 Lecture 1: Intro to Biostatistics Smoking: hazardous? FEV (l) 1 2 3 4 5 No Yes Smoke BIOL 51A - Biostatistics 1 2 Box Plot a.k.a box-and-whisker diagram or candlestick chart

More information

Tools and topics for microarray analysis

Tools and topics for microarray analysis Tools and topics for microarray analysis USSES Conference, Blowing Rock, North Carolina, June, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

COMPARING GROUPS PART 1CONTINUOUS DATA

COMPARING GROUPS PART 1CONTINUOUS DATA COMPARING GROUPS PART 1CONTINUOUS DATA Min Chen, Ph.D. Assistant Professor Quantitative Biomedical Research Center Department of Clinical Sciences Bioinformatics Shared Resource Simmons Comprehensive Cancer

More information

CHL 5225H Advanced Statistical Methods for Clinical Trials: Multiplicity

CHL 5225H Advanced Statistical Methods for Clinical Trials: Multiplicity CHL 5225H Advanced Statistical Methods for Clinical Trials: Multiplicity Prof. Kevin E. Thorpe Dept. of Public Health Sciences University of Toronto Objectives 1. Be able to distinguish among the various

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Preface Power is the probability that a study will reject the null hypothesis. The estimated probability is a function

More information

Relax and good luck! STP 231 Example EXAM #2. Instructor: Ela Jackiewicz

Relax and good luck! STP 231 Example EXAM #2. Instructor: Ela Jackiewicz STP 31 Example EXAM # Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: CHAPTER 9, 10 Hypothesis Testing Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: The person is guilty. The person is innocent. To

More information

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials Testing a secondary endpoint after a group sequential test Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 9th Annual Adaptive Designs in

More information

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT)

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT) . Welcome! Webinar Biostatistics: sample size & power Thursday, April 26, 12:30 1:30 pm (NDT) Get started now: Please check if your speakers are working and mute your audio. Please use the chat box to

More information

Biochip informatics-(i)

Biochip informatics-(i) Biochip informatics-(i) : biochip normalization & differential expression Ju Han Kim, M.D., Ph.D. SNUBI: SNUBiomedical Informatics http://www.snubi snubi.org/ Biochip Informatics - (I) Biochip basics Preprocessing

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Power and Sample Size Bios 662

Power and Sample Size Bios 662 Power and Sample Size Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-31 14:06 BIOS 662 1 Power and Sample Size Outline Introduction One sample: continuous

More information

One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation

One-week Course on Genetic Analysis and Plant Breeding January 2013, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation One-week Course on Genetic Analysis and Plant Breeding 21-2 January 213, CIMMYT, Mexico LOD Threshold and QTL Detection Power Simulation Jiankang Wang, CIMMYT China and CAAS E-mail: jkwang@cgiar.org; wangjiankang@caas.cn

More information

Week 14 Comparing k(> 2) Populations

Week 14 Comparing k(> 2) Populations Week 14 Comparing k(> 2) Populations Week 14 Objectives Methods associated with testing for the equality of k(> 2) means or proportions are presented. Post-testing concepts and analysis are introduced.

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 6, Issue 1 2007 Article 28 A Comparison of Methods to Control Type I Errors in Microarray Studies Jinsong Chen Mark J. van der Laan Martyn

More information

EVALUATING THE REPEATABILITY OF TWO STUDIES OF A LARGE NUMBER OF OBJECTS: MODIFIED KENDALL RANK-ORDER ASSOCIATION TEST

EVALUATING THE REPEATABILITY OF TWO STUDIES OF A LARGE NUMBER OF OBJECTS: MODIFIED KENDALL RANK-ORDER ASSOCIATION TEST EVALUATING THE REPEATABILITY OF TWO STUDIES OF A LARGE NUMBER OF OBJECTS: MODIFIED KENDALL RANK-ORDER ASSOCIATION TEST TIAN ZHENG, SHAW-HWA LO DEPARTMENT OF STATISTICS, COLUMBIA UNIVERSITY Abstract. In

More information

Comparison of Two Population Means

Comparison of Two Population Means Comparison of Two Population Means Esra Akdeniz March 15, 2015 Independent versus Dependent (paired) Samples We have independent samples if we perform an experiment in two unrelated populations. We have

More information

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data Ståle Nygård Trial Lecture Dec 19, 2008 1 / 35 Lecture outline Motivation for not using

More information

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001).

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference:

More information

Lecture 21: October 19

Lecture 21: October 19 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 21: October 19 21.1 Likelihood Ratio Test (LRT) To test composite versus composite hypotheses the general method is to use

More information

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY?

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? TUTORIAL ON SAMPLE SIZE AND POWER CALCULATIONS FOR INEQUALITY TESTS. John Zavrakidis j.zavrakidis@nki.nl May 28, 2018 J.Zavrakidis Sample and

More information

Introduction to Nonparametric Statistics

Introduction to Nonparametric Statistics Introduction to Nonparametric Statistics by James Bernhard Spring 2012 Parameters Parametric method Nonparametric method µ[x 2 X 1 ] paired t-test Wilcoxon signed rank test µ[x 1 ], µ[x 2 ] 2-sample t-test

More information

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption Summary: the confidence interval for the mean (σ known) with gaussian assumption on X Let X be a Gaussian r.v. with mean µ and variance σ. If X 1, X,..., X n is a random sample drawn from X then the confidence

More information

Two Sample Problems. Two sample problems

Two Sample Problems. Two sample problems Two Sample Problems Two sample problems The goal of inference is to compare the responses in two groups. Each group is a sample from a different population. The responses in each group are independent

More information

Dose-response modeling with bivariate binary data under model uncertainty

Dose-response modeling with bivariate binary data under model uncertainty Dose-response modeling with bivariate binary data under model uncertainty Bernhard Klingenberg 1 1 Department of Mathematics and Statistics, Williams College, Williamstown, MA, 01267 and Institute of Statistics,

More information

Tutorial 2: Power and Sample Size for the Paired Sample t-test

Tutorial 2: Power and Sample Size for the Paired Sample t-test Tutorial 2: Power and Sample Size for the Paired Sample t-test Preface Power is the probability that a study will reject the null hypothesis. The estimated probability is a function of sample size, variability,

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Power and sample size calculations

Power and sample size calculations Patrick Breheny October 20 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 26 Planning a study Introduction What is power? Why is it important? Setup One of the most important

More information

CH.9 Tests of Hypotheses for a Single Sample

CH.9 Tests of Hypotheses for a Single Sample CH.9 Tests of Hypotheses for a Single Sample Hypotheses testing Tests on the mean of a normal distributionvariance known Tests on the mean of a normal distributionvariance unknown Tests on the variance

More information

Quick Calculation for Sample Size while Controlling False Discovery Rate with Application to Microarray Analysis

Quick Calculation for Sample Size while Controlling False Discovery Rate with Application to Microarray Analysis Statistics Preprints Statistics 11-2006 Quick Calculation for Sample Size while Controlling False Discovery Rate with Application to Microarray Analysis Peng Liu Iowa State University, pliu@iastate.edu

More information

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Permutation Tests Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods The Two-Sample Problem We observe two independent random samples: F z = z 1, z 2,, z n independently of

More information

Political Science 236 Hypothesis Testing: Review and Bootstrapping

Political Science 236 Hypothesis Testing: Review and Bootstrapping Political Science 236 Hypothesis Testing: Review and Bootstrapping Rocío Titiunik Fall 2007 1 Hypothesis Testing Definition 1.1 Hypothesis. A hypothesis is a statement about a population parameter The

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

The Design of a Survival Study

The Design of a Survival Study The Design of a Survival Study The design of survival studies are usually based on the logrank test, and sometimes assumes the exponential distribution. As in standard designs, the power depends on The

More information

MATH Notebook 3 Spring 2018

MATH Notebook 3 Spring 2018 MATH448001 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2010 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH448001 Notebook 3 3 3.1 One Way Layout........................................

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 12 Review So far... We have discussed the role of phase III clinical trials in drug development

More information

Multistage Tests of Multiple Hypotheses

Multistage Tests of Multiple Hypotheses Communications in Statistics Theory and Methods, 39: 1597 167, 21 Copyright Taylor & Francis Group, LLC ISSN: 361-926 print/1532-415x online DOI: 1.18/3619282592852 Multistage Tests of Multiple Hypotheses

More information

A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data

A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data Biostatistics (2007), 8, 4, pp. 744 755 doi:10.1093/biostatistics/kxm002 Advance Access publication on January 22, 2007 A moment-based method for estimating the proportion of true null hypotheses and its

More information

Statistics Applied to Bioinformatics. Tests of homogeneity

Statistics Applied to Bioinformatics. Tests of homogeneity Statistics Applied to Bioinformatics Tests of homogeneity Two-tailed test of homogeneity Two-tailed test H 0 :m = m Principle of the test Estimate the difference between m and m Compare this estimation

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Repeated-Measures ANOVA 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region

More information

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong

Statistics Primer. ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong Statistics Primer ORC Staff: Jayme Palka Peter Boedeker Marcus Fagan Trey Dejong 1 Quick Overview of Statistics 2 Descriptive vs. Inferential Statistics Descriptive Statistics: summarize and describe data

More information

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design Comparing Adaptive Designs and the Classical Group Sequential Approach to Clinical Trial Design Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

Gene Expression an Overview of Problems & Solutions: 3&4. Utah State University Bioinformatics: Problems and Solutions Summer 2006

Gene Expression an Overview of Problems & Solutions: 3&4. Utah State University Bioinformatics: Problems and Solutions Summer 2006 Gene Expression an Overview of Problems & Solutions: 3&4 Utah State University Bioinformatics: Problems and Solutions Summer 006 Review Considering several problems & solutions with gene expression data

More information

6 Single Sample Methods for a Location Parameter

6 Single Sample Methods for a Location Parameter 6 Single Sample Methods for a Location Parameter If there are serious departures from parametric test assumptions (e.g., normality or symmetry), nonparametric tests on a measure of central tendency (usually

More information

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 28 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University December 3, 2015 1 2 3 4 5 1 Familywise error rates 2 procedure 3 Performance of with multiple

More information

Lecture on Null Hypothesis Testing & Temporal Correlation

Lecture on Null Hypothesis Testing & Temporal Correlation Lecture on Null Hypothesis Testing & Temporal Correlation CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Acknowledgement Resources used in the slides

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Exam 2 Review 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region 3. Compute

More information

Design of Microarray Experiments. Xiangqin Cui

Design of Microarray Experiments. Xiangqin Cui Design of Microarray Experiments Xiangqin Cui Experimental design Experimental design: is a term used about efficient methods for planning the collection of data, in order to obtain the maximum amount

More information

Sleep data, two drugs Ch13.xls

Sleep data, two drugs Ch13.xls Model Based Statistics in Biology. Part IV. The General Linear Mixed Model.. Chapter 13.3 Fixed*Random Effects (Paired t-test) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch

More information

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018 Sample Size Re-estimation in Clinical Trials: Dealing with those unknowns Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj University of Kyoto,

More information

Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design

Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design Chapter 170 Tests for the Odds Ratio of Two Proportions in a 2x2 Cross-Over Design Introduction Senn (2002) defines a cross-over design as one in which each subject receives all treatments and the objective

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

Chapter Six: Two Independent Samples Methods 1/51

Chapter Six: Two Independent Samples Methods 1/51 Chapter Six: Two Independent Samples Methods 1/51 6.3 Methods Related To Differences Between Proportions 2/51 Test For A Difference Between Proportions:Introduction Suppose a sampling distribution were

More information

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests PSY 307 Statistics for the Behavioral Sciences Chapter 20 Tests for Ranked Data, Choosing Statistical Tests What To Do with Non-normal Distributions Tranformations (pg 382): The shape of the distribution

More information

Generalized Linear Models (1/29/13)

Generalized Linear Models (1/29/13) STA613/CBB540: Statistical methods in computational biology Generalized Linear Models (1/29/13) Lecturer: Barbara Engelhardt Scribe: Yangxiaolu Cao When processing discrete data, two commonly used probability

More information

BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings

BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings Yujin Chung October 4th, 2016 Fall 2016 Yujin Chung Lec6: Statistical hypothesis testings Fall 2016 1/30 Previous Two types of statistical

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

ANOVA: Comparing More Than Two Means

ANOVA: Comparing More Than Two Means ANOVA: Comparing More Than Two Means Chapter 11 Cathy Poliak, Ph.D. cathy@math.uh.edu Office Fleming 11c Department of Mathematics University of Houston Lecture 25-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information