Non-specific filtering and control of false positives

Size: px
Start display at page:

Download "Non-specific filtering and control of false positives"

Transcription

1 Non-specific filtering and control of false positives Richard Bourgon 16 June 2009 EBI is an outstation of the European Molecular Biology Laboratory

2 Outline Multiple testing I: overview Genome-wide experiments Why adjustment is necessary Experiment-wide type I error rates Uniformity and a mixture of p-values Non-specific filtering The ALL data: B-cell subtypes Non-specific filtering to increase rejections Multiple testing II: impact of filtering Non-specific filtering: are we controlling error rate? Independence Implications for FWER and FDR Slide 2

3 Multiple testing I Slide 3

4 Differential expression testing Acute lymphocytic leukemia (ALL) data Chiaretti et al., Clinical Cancer Research 11:7209, Immunophenotypic analysis of cell surface markers identified T-cell derivation in 33 samples. B-cell derivation in 95 samples. Affymetrix HG-U95Av2 oligonucleotide arrays with ~ 13,000 probe sets. Chiaretti et al. identified 792 differentially expressed genes, with sufficient levels of expression and variation across groups. Clustered expression data for all 128 subjects, and a subset of 475 genes showing evidence of differential expression between groups Slide 4

5 The traditional type I error rate The traditional p-value for a single gene: Define a test statistic T based on the expression data. Compute its value, t, for the observed data. Define p = P(T > t the gene is not differentially expressed). Compare p to an acceptable type I (false positive) error rate. Suppose Chiaretti et al. had compared replicate samples, so that no gene was differentially expressed. Comparing p-values to =.05 gives and average of 13, = 650 false positives. Per-family error rate (PFER): the expected number of false positives. For the real data, PFER 650. Slide 5

6 Experiment-wide type I error rates Not rejected Rejected Total True null hypotheses U V m 0 False null hypotheses T S m 1 Total m R R m 0 Family-wise error rate: P(V > 0), i.e., the probability of one or more false positives. For large m 0, this is very difficult to keep small. False discovery rate (FDR): let Q = V/R, or 0 if R is 0. The FDR is E(Q), i.e., the expected fraction of false positives among all discoveries. Slide 6

7 A nice property of continuous random variables For a continuous random variable X, P(X = x) is 0 for any x. Continuous Gaussian Exponential Discrete Binomial Geometric The distribution function: Standard normal distribution function F(x) = P(X x). The nice property: if we define random U = F(X), then U is uniformly distributed on the unit interval [0,1]. P(X x) x Slide 7

8 A nice property of CDFs for continuous RVs > X = rnorm(100000) > F = pnorm > hist(x, breaks = 50) > hist(f(x), breaks = 50) Histogram of X Histogram of F(X) Frequency Frequency X F(X) Slide 8

9 A nice property? To compute a p-value for testing a null hypothesis H 0, we typically Define a test statistic T, and compute its value t for the observed data. Assume we know the distribution of T when H 0 is true: F 0. Compute p = 1 F 0 (t), i.e., define p = P(T > t H 0 is true). Compare p to some. Now define the random variable P = 1 F 0 (T). If H 0 is true, then F 0 (T) is uniformly distribution on [0,1]. By symmetry, P is uniformly distribution on [0,1] as well. Suppose 20% of genes are differentially expressed, so that 0 = m 0 m = Slide 9

10 Observed p-values: a mixture A. F 0 C. Mixture density 0 F F ( 0 = 0.8) B. F Density II III I IV False negative True positive False positive True negative p Slide 10

11 Observed p-values: a mixture A. F 0 C. Mixture density 0 F F ( 0 = 0.8) B. F Density p Slide 11

12 Non-specific filtering Slide 12

13 Continuing with the Chiaretti et al. ALL data 79 subjects with B-cell ALL: 37 with the BCR/ABL mutation ( Philadelphia chromosome ) 42 with no observed cytogenetic abnormalities We ve seen that Multiple testing correction becomes more extreme for larger m. Removal of true null hypotheses reduces the FDR associated with a particular p- value cutoff. Proposal: non-specific filtering von Heydebreck, Huber and Gentleman, Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. Wiley, McClintick and Edenberg, BMC Bioinformatics 7:49, Slide 13

14 Non-specific filtering For a given gene, write the data as ((c 1,Y 1 ),,(c p,y p )). First group (c = 1): i = 1,, p 1. First group (c = 2): i = p 1 + 1,, p 1 + p 2. Conditions under which we expect little variation in Y: 1. Genes which are absent in both samples. (Probes will still report noise and crosshybridization, typically at the same level in both groups.) 2. Probe sets which do not respond to target. 3. Genes which are not differentially expressed. A non-specific filter: Ignores c 1,, c p, i.e., U (I) (Y). Helps identify any of these three classes, based on our a priori understanding of array behavior. Apply standard testing to genes passing the filter, using some U (II) (c,y). Slide 14

15 Increased rejection rate Stage one non-specific filter statistic: compute the overall variance U (I) (Y) = S 2 = 1 and remove the smallest. Stage two: standard two-sample t-test for genes passing stage 1. p 1 p (Y i Y ) 2 i=1 a b R = 0.5 = 0.4 = 0.3 = 0.2 = 0.1 = 0 R FDR (BH) q value Slide 15

16 Increased power? An increased detection rate implies increased power only if we are still controlling type I errors at the nominal level. a b R = 0.5 = 0.4 = 0.3 = 0.2 = 0.1 = 0 R FDR (BH) q value Slide 16

17 Multiple testing II: impact of filtering Slide 17

18 Slide 18 Notation ahead!

19 Conditional control Random variable definitions: V: number of false positives. FWER = P(V > 0). R: total number of rejections. Q: V / max{r, 1}. FDR = E(Q). Note that R = 0 implies that V = 0. M: the random set (of size M) of hypothesis passing the stage-one filter. U (I) and U (II) : the stage-one and stage-two test statistics. Conditional control is sufficient: E(Q) = E(E(Q M)). Because we only reject at stage two, given M, we can assess conditional control of type I error by considering how a procedure performs when applied to the M conditionally distributed (U (II) I1,,U (II) IM ). M={I1,,I M } Thus, FWER or FDR control is achieved if the conditional distributions of the stage-two statistics meet requirements for the control procedure. Slide 19

20 Requirements for FWER and FDR control Marginal properties of true-null test statistics. Distributions must be properly specified. Joint properties of all test-statistics. Adjustment procedures may work for arbitrary dependence structure (e.g., Bonferroni and Holm). estimate and correct for dependence (e.g., Westfall and Young). require that dependence structure satisfies some assumptions. Assumptions about dependence structure: Independence! Subset pivotality. Positive regression dependence. Convergence of the empirical processes based on V( ) and R( ). Etc. Slide 20

21 Independence of stage one and stage two test statistics For genes for which the null hypotheses is true, U (I) and U (II) are statistically independent in both of the following cases: For normally distributed data: Stage one: overall mean,, or variance, S 2 = 1 p Y = 1 p p 1 (Y i Y ) 2. p Y i=1 i i=1 Stage two: the standard two-sample t-statistic, or any location- and scaleinvariant test statistic. Non-parametrically: Stage one: any function of the data which (i) to filter gene g only uses data from gene g, and (ii) doesn t depend on the order of the arguments. S 2 above, or the IQR, are both candidates. Stage two: the Wilcoxon rank sum test statistic. Both can be extended to the multi-class context: ANOVA and Kruskal Wallis. Slide 21

22 Independence: Bonferroni and Holm FWER adjustments Single-stage Bonferroni correction compares each p i to /m. The Holm step-down procedure is a more powerful variant. For ordered p- values p (1) p (2) p (m), reject as long as Independence of U (I) and U (II) implies that the key step in proving that these procedures control FWER still applies: ( P(V > 0) = P {U (I) > a,u (II) ) i 0 i i > b} p (i ) < i 0 i 0 P(U (I) i > a,u i (II) > b) = P(U (I) i > a)p(p i < ) = E(M). m i + 1. Slide 22

23 FWER: Westfall and Young Westfall and Young (1993) controls FWER with more power, but depends on the joint distribution of all p-values: ( ). p i = P min 1 j m P j p i H 0 C WY93 is valid under subset pivotality. If this holds for the one-stage procedure, it holds for the two-stage non-specific filtering approach as well. H 0 C Distribution of min P j under is typically estimated by permutation. If filtering changes correlation structure, new structure is used by permutation! Slide 23

24 FDR: Benjamini & Hochberg and Storey adjustments What is the FDR associated with use of cutoff? Naive estimator: V is not observable, but E(V) is m 0, which is bounded by m. E(R) cannot be computed, but R can be used as an estimator. FDR ( ) = Evaluating at each p (i) using m or ˆm 0 gives BH95 or Storey adjustments, respectively: FDR (p(i ) ) = m 0 #{i : p i } m #{i : p i } m 0 #{i : p i p (i ) } = m 0. i density II I III IV FDR( ) = E V( ) R( ) 1. False negative True positive False positive True negative p Slide 24

25 FDR: Benjamini & Hochberg and Storey adjustments The foregoing motivation for the BH95 and Storey procedures uses E(V( )) = m 0. FDR( ) = E V( ) R( ) 1. Marginal independence of true null U (I) and U (II) means that this still applies at stage two in expectation. Define M 0 to be the random number of true nulls passing stage 1. Then E(V( )) = P(U (I) i > a, P i i < ) 0 = P(U (I) i > a)p( P i < ) i 0 = E(M 0 ). density II I III IV False negative True positive False positive True negative p Slide 25

26 Counterexamples Slide 26

27 Counterexample #1: normality matters Filter on S 2, test using T. For true null hypotheses, data are i.i.d. normal with probability p, but heavily skewed with probability 1 p. Let latent X indicate mixture component identity. Frequency ^ X = ^ X = 1 Frequency T(Y) X = T(Y) X = 1 The filter statistic is now predictive for X. The conditional distribution of T will be more weighted towards the X = 1 case than the unconditional distribution. Frequency Frequency Slide 27

28 Counterexample #2: the limma t-statistic Filter on S 2, test using the limma moderated t-statistic. The moderated t-statistic is not scale invariant, due to the effect of the global variance estimator. This is more pronounced for small n precisely the context in which limma is most useful. Filtering on overall mean rather than variance solves the problem. t Moderated t and overall variance S Slide 28

29 Counterexample #2: the limma t-statistic Unconditional p values Conditional p values Frequency Frequency fit$p.value[, 2] fit$p.value[s > median(s), 2] Slide 29

30 Conclusions In actual examples, use of an independent filter leads to (biologically) significant increases in the number of genes identified. Some commonly used stage one/stage two test statistic pairs are statistically independent for genes which are not differentially expressed but others are not! The non-specific criterion is not enough. Given this independence, Bonferroni and Holm FWER control is valid in the two-stage procedure. Likewise for FDR-controlling procedures which make no assumptions about independence. Correlation structure may change under filtering. Permutation-based Westfall and Young correction accounts for this. FDR control could theoretically suffer, although the practical impact is likely to be small. Effect of filtering on correlation can also be checked, and impact, assessed. Slide 30

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

Multiple testing: Intro & FWER 1

Multiple testing: Intro & FWER 1 Multiple testing: Intro & FWER 1 Mark van de Wiel mark.vdwiel@vumc.nl Dep of Epidemiology & Biostatistics,VUmc, Amsterdam Dep of Mathematics, VU 1 Some slides courtesy of Jelle Goeman 1 Practical notes

More information

Looking at the Other Side of Bonferroni

Looking at the Other Side of Bonferroni Department of Biostatistics University of Washington 24 May 2012 Multiple Testing: Control the Type I Error Rate When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 6, Issue 1 2007 Article 28 A Comparison of Methods to Control Type I Errors in Microarray Studies Jinsong Chen Mark J. van der Laan Martyn

More information

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors The Multiple Testing Problem Multiple Testing Methods for the Analysis of Microarray Data 3/9/2009 Copyright 2009 Dan Nettleton Suppose one test of interest has been conducted for each of m genes in a

More information

Statistics Applied to Bioinformatics. Tests of homogeneity

Statistics Applied to Bioinformatics. Tests of homogeneity Statistics Applied to Bioinformatics Tests of homogeneity Two-tailed test of homogeneity Two-tailed test H 0 :m = m Principle of the test Estimate the difference between m and m Compare this estimation

More information

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data Ståle Nygård Trial Lecture Dec 19, 2008 1 / 35 Lecture outline Motivation for not using

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2004 Paper 164 Multiple Testing Procedures: R multtest Package and Applications to Genomics Katherine

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 5, Issue 1 2006 Article 28 A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments Hongmei Jiang Rebecca

More information

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018 High-Throughput Sequencing Course Multiple Testing Biostatistics and Bioinformatics Summer 2018 Introduction You have previously considered the significance of a single gene Introduction You have previously

More information

False Discovery Rate

False Discovery Rate False Discovery Rate Peng Zhao Department of Statistics Florida State University December 3, 2018 Peng Zhao False Discovery Rate 1/30 Outline 1 Multiple Comparison and FWER 2 False Discovery Rate 3 FDR

More information

Alpha-Investing. Sequential Control of Expected False Discoveries

Alpha-Investing. Sequential Control of Expected False Discoveries Alpha-Investing Sequential Control of Expected False Discoveries Dean Foster Bob Stine Department of Statistics Wharton School of the University of Pennsylvania www-stat.wharton.upenn.edu/ stine Joint

More information

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University Multiple Testing Hoang Tran Department of Statistics, Florida State University Large-Scale Testing Examples: Microarray data: testing differences in gene expression between two traits/conditions Microbiome

More information

Estimation of a Two-component Mixture Model

Estimation of a Two-component Mixture Model Estimation of a Two-component Mixture Model Bodhisattva Sen 1,2 University of Cambridge, Cambridge, UK Columbia University, New York, USA Indian Statistical Institute, Kolkata, India 6 August, 2012 1 Joint

More information

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Christopher R. Genovese Department of Statistics Carnegie Mellon University joint work with Larry Wasserman

More information

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Statistics Journal Club, 36-825 Beau Dabbs and Philipp Burckhardt 9-19-2014 1 Paper

More information

Hunting for significance with multiple testing

Hunting for significance with multiple testing Hunting for significance with multiple testing Etienne Roquain 1 1 Laboratory LPMA, Université Pierre et Marie Curie (Paris 6), France Séminaire MODAL X, 19 mai 216 Etienne Roquain Hunting for significance

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1 2004 Article 13 Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates Sandrine Dudoit Mark

More information

Exam: high-dimensional data analysis January 20, 2014

Exam: high-dimensional data analysis January 20, 2014 Exam: high-dimensional data analysis January 20, 204 Instructions: - Write clearly. Scribbles will not be deciphered. - Answer each main question not the subquestions on a separate piece of paper. - Finish

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2004 Paper 147 Multiple Testing Methods For ChIP-Chip High Density Oligonucleotide Array Data Sunduz

More information

Step-down FDR Procedures for Large Numbers of Hypotheses

Step-down FDR Procedures for Large Numbers of Hypotheses Step-down FDR Procedures for Large Numbers of Hypotheses Paul N. Somerville University of Central Florida Abstract. Somerville (2004b) developed FDR step-down procedures which were particularly appropriate

More information

Lecture 7 April 16, 2018

Lecture 7 April 16, 2018 Stats 300C: Theory of Statistics Spring 2018 Lecture 7 April 16, 2018 Prof. Emmanuel Candes Scribe: Feng Ruan; Edited by: Rina Friedberg, Junjie Zhu 1 Outline Agenda: 1. False Discovery Rate (FDR) 2. Properties

More information

Stat 206: Estimation and testing for a mean vector,

Stat 206: Estimation and testing for a mean vector, Stat 206: Estimation and testing for a mean vector, Part II James Johndrow 2016-12-03 Comparing components of the mean vector In the last part, we talked about testing the hypothesis H 0 : µ 1 = µ 2 where

More information

Single gene analysis of differential expression

Single gene analysis of differential expression Single gene analysis of differential expression Giorgio Valentini DSI Dipartimento di Scienze dell Informazione Università degli Studi di Milano valentini@dsi.unimi.it Comparing two conditions Each condition

More information

Sta$s$cs for Genomics ( )

Sta$s$cs for Genomics ( ) Sta$s$cs for Genomics (140.688) Instructor: Jeff Leek Slide Credits: Rafael Irizarry, John Storey No announcements today. Hypothesis testing Once you have a given score for each gene, how do you decide

More information

A NEW APPROACH FOR LARGE SCALE MULTIPLE TESTING WITH APPLICATION TO FDR CONTROL FOR GRAPHICALLY STRUCTURED HYPOTHESES

A NEW APPROACH FOR LARGE SCALE MULTIPLE TESTING WITH APPLICATION TO FDR CONTROL FOR GRAPHICALLY STRUCTURED HYPOTHESES A NEW APPROACH FOR LARGE SCALE MULTIPLE TESTING WITH APPLICATION TO FDR CONTROL FOR GRAPHICALLY STRUCTURED HYPOTHESES By Wenge Guo Gavin Lynch Joseph P. Romano Technical Report No. 2018-06 September 2018

More information

Specific Differences. Lukas Meier, Seminar für Statistik

Specific Differences. Lukas Meier, Seminar für Statistik Specific Differences Lukas Meier, Seminar für Statistik Problem with Global F-test Problem: Global F-test (aka omnibus F-test) is very unspecific. Typically: Want a more precise answer (or have a more

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Hypothesis testing Machine Learning CSE546 Kevin Jamieson University of Washington October 30, 2018 2018 Kevin Jamieson 2 Anomaly detection You are

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1 2004 Article 14 Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate Mark J. van der Laan

More information

Biochip informatics-(i)

Biochip informatics-(i) Biochip informatics-(i) : biochip normalization & differential expression Ju Han Kim, M.D., Ph.D. SNUBI: SNUBiomedical Informatics http://www.snubi snubi.org/ Biochip Informatics - (I) Biochip basics Preprocessing

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Peak Detection for Images

Peak Detection for Images Peak Detection for Images Armin Schwartzman Division of Biostatistics, UC San Diego June 016 Overview How can we improve detection power? Use a less conservative error criterion Take advantage of prior

More information

REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS

REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS Ying Liu Department of Biostatistics, Columbia University Summer Intern at Research and CMC Biostats, Sanofi, Boston August 26, 2015 OUTLINE 1 Introduction

More information

Multiple Hypothesis Testing in Microarray Data Analysis

Multiple Hypothesis Testing in Microarray Data Analysis Multiple Hypothesis Testing in Microarray Data Analysis Sandrine Dudoit jointly with Mark van der Laan and Katie Pollard Division of Biostatistics, UC Berkeley www.stat.berkeley.edu/~sandrine Short Course:

More information

Applying the Benjamini Hochberg procedure to a set of generalized p-values

Applying the Benjamini Hochberg procedure to a set of generalized p-values U.U.D.M. Report 20:22 Applying the Benjamini Hochberg procedure to a set of generalized p-values Fredrik Jonsson Department of Mathematics Uppsala University Applying the Benjamini Hochberg procedure

More information

Lesson 11. Functional Genomics I: Microarray Analysis

Lesson 11. Functional Genomics I: Microarray Analysis Lesson 11 Functional Genomics I: Microarray Analysis Transcription of DNA and translation of RNA vary with biological conditions 3 kinds of microarray platforms Spotted Array - 2 color - Pat Brown (Stanford)

More information

Improving the Performance of the FDR Procedure Using an Estimator for the Number of True Null Hypotheses

Improving the Performance of the FDR Procedure Using an Estimator for the Number of True Null Hypotheses Improving the Performance of the FDR Procedure Using an Estimator for the Number of True Null Hypotheses Amit Zeisel, Or Zuk, Eytan Domany W.I.S. June 5, 29 Amit Zeisel, Or Zuk, Eytan Domany (W.I.S.)Improving

More information

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data Faming Liang, Chuanhai Liu, and Naisyin Wang Texas A&M University Multiple Hypothesis Testing Introduction

More information

Lecture 3: Mixture Models for Microbiome data. Lecture 3: Mixture Models for Microbiome data

Lecture 3: Mixture Models for Microbiome data. Lecture 3: Mixture Models for Microbiome data Lecture 3: Mixture Models for Microbiome data 1 Lecture 3: Mixture Models for Microbiome data Outline: - Mixture Models (Negative Binomial) - DESeq2 / Don t Rarefy. Ever. 2 Hypothesis Tests - reminder

More information

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs with Remarks on Family Selection Dissertation Defense April 5, 204 Contents Dissertation Defense Introduction 2 FWER Control within

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Kevin Coombes Section of Bioinformatics Department of Biostatistics and Applied Mathematics UT M. D. Anderson Cancer Center kabagg@mdanderson.org

More information

Modified Simes Critical Values Under Positive Dependence

Modified Simes Critical Values Under Positive Dependence Modified Simes Critical Values Under Positive Dependence Gengqian Cai, Sanat K. Sarkar Clinical Pharmacology Statistics & Programming, BDS, GlaxoSmithKline Statistics Department, Temple University, Philadelphia

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

The miss rate for the analysis of gene expression data

The miss rate for the analysis of gene expression data Biostatistics (2005), 6, 1,pp. 111 117 doi: 10.1093/biostatistics/kxh021 The miss rate for the analysis of gene expression data JONATHAN TAYLOR Department of Statistics, Stanford University, Stanford,

More information

Familywise Error Rate Controlling Procedures for Discrete Data

Familywise Error Rate Controlling Procedures for Discrete Data Familywise Error Rate Controlling Procedures for Discrete Data arxiv:1711.08147v1 [stat.me] 22 Nov 2017 Yalin Zhu Center for Mathematical Sciences, Merck & Co., Inc., West Point, PA, U.S.A. Wenge Guo Department

More information

5 Introduction to the Theory of Order Statistics and Rank Statistics

5 Introduction to the Theory of Order Statistics and Rank Statistics 5 Introduction to the Theory of Order Statistics and Rank Statistics This section will contain a summary of important definitions and theorems that will be useful for understanding the theory of order

More information

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop Inferential Statistical Analysis of Microarray Experiments 007 Arizona Microarray Workshop μ!! Robert J Tempelman Department of Animal Science tempelma@msuedu HYPOTHESIS TESTING (as if there was only one

More information

The Pennsylvania State University The Graduate School Eberly College of Science GENERALIZED STEPWISE PROCEDURES FOR

The Pennsylvania State University The Graduate School Eberly College of Science GENERALIZED STEPWISE PROCEDURES FOR The Pennsylvania State University The Graduate School Eberly College of Science GENERALIZED STEPWISE PROCEDURES FOR CONTROLLING THE FALSE DISCOVERY RATE A Dissertation in Statistics by Scott Roths c 2011

More information

Lecture: Mixture Models for Microbiome data

Lecture: Mixture Models for Microbiome data Lecture: Mixture Models for Microbiome data Lecture 3: Mixture Models for Microbiome data Outline: - - Sequencing thought experiment Mixture Models (tangent) - (esp. Negative Binomial) - Differential abundance

More information

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines)

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines) Dr. Maddah ENMG 617 EM Statistics 10/12/12 Nonparametric Statistics (Chapter 16, Hines) Introduction Most of the hypothesis testing presented so far assumes normally distributed data. These approaches

More information

Estimation of the False Discovery Rate

Estimation of the False Discovery Rate Estimation of the False Discovery Rate Coffee Talk, Bioinformatics Research Center, Sept, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

Week 5 Video 1 Relationship Mining Correlation Mining

Week 5 Video 1 Relationship Mining Correlation Mining Week 5 Video 1 Relationship Mining Correlation Mining Relationship Mining Discover relationships between variables in a data set with many variables Many types of relationship mining Correlation Mining

More information

Bumpbars: Inference for region detection. Yuval Benjamini, Hebrew University

Bumpbars: Inference for region detection. Yuval Benjamini, Hebrew University Bumpbars: Inference for region detection Yuval Benjamini, Hebrew University yuvalbenj@gmail.com WHOA-PSI-2017 Collaborators Jonathan Taylor Stanford Rafael Irizarry Dana Farber, Harvard Amit Meir U of

More information

False discovery control for multiple tests of association under general dependence

False discovery control for multiple tests of association under general dependence False discovery control for multiple tests of association under general dependence Nicolai Meinshausen Seminar für Statistik ETH Zürich December 2, 2004 Abstract We propose a confidence envelope for false

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Introduction to Probability and Statistics

Introduction to Probability and Statistics Introduction to Probability and Statistics Xi Kathy Zhou, PhD Division of Biostatistics and Epidemiology Department of Public Health http://www.med.cornell.edu/public.health/biostat.htm Feb. 2008 Overview

More information

On Procedures Controlling the FDR for Testing Hierarchically Ordered Hypotheses

On Procedures Controlling the FDR for Testing Hierarchically Ordered Hypotheses On Procedures Controlling the FDR for Testing Hierarchically Ordered Hypotheses Gavin Lynch Catchpoint Systems, Inc., 228 Park Ave S 28080 New York, NY 10003, U.S.A. Wenge Guo Department of Mathematical

More information

Aliaksandr Hubin University of Oslo Aliaksandr Hubin (UIO) Bayesian FDR / 25

Aliaksandr Hubin University of Oslo Aliaksandr Hubin (UIO) Bayesian FDR / 25 Presentation of The Paper: The Positive False Discovery Rate: A Bayesian Interpretation and the q-value, J.D. Storey, The Annals of Statistics, Vol. 31 No.6 (Dec. 2003), pp 2013-2035 Aliaksandr Hubin University

More information

Optional Stopping Theorem Let X be a martingale and T be a stopping time such

Optional Stopping Theorem Let X be a martingale and T be a stopping time such Plan Counting, Renewal, and Point Processes 0. Finish FDR Example 1. The Basic Renewal Process 2. The Poisson Process Revisited 3. Variants and Extensions 4. Point Processes Reading: G&S: 7.1 7.3, 7.10

More information

A Large-Sample Approach to Controlling the False Discovery Rate

A Large-Sample Approach to Controlling the False Discovery Rate A Large-Sample Approach to Controlling the False Discovery Rate Christopher R. Genovese Department of Statistics Carnegie Mellon University Larry Wasserman Department of Statistics Carnegie Mellon University

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Lecture 7: Hypothesis Testing and ANOVA

Lecture 7: Hypothesis Testing and ANOVA Lecture 7: Hypothesis Testing and ANOVA Goals Overview of key elements of hypothesis testing Review of common one and two sample tests Introduction to ANOVA Hypothesis Testing The intent of hypothesis

More information

Rank-Based Methods. Lukas Meier

Rank-Based Methods. Lukas Meier Rank-Based Methods Lukas Meier 20.01.2014 Introduction Up to now we basically always used a parametric family, like the normal distribution N (µ, σ 2 ) for modeling random data. Based on observed data

More information

False discovery rate control for non-positively regression dependent test statistics

False discovery rate control for non-positively regression dependent test statistics Journal of Statistical Planning and Inference ( ) www.elsevier.com/locate/jspi False discovery rate control for non-positively regression dependent test statistics Daniel Yekutieli Department of Statistics

More information

Resampling-Based Control of the FDR

Resampling-Based Control of the FDR Resampling-Based Control of the FDR Joseph P. Romano 1 Azeem S. Shaikh 2 and Michael Wolf 3 1 Departments of Economics and Statistics Stanford University 2 Department of Economics University of Chicago

More information

Multiple Change-Point Detection and Analysis of Chromosome Copy Number Variations

Multiple Change-Point Detection and Analysis of Chromosome Copy Number Variations Multiple Change-Point Detection and Analysis of Chromosome Copy Number Variations Yale School of Public Health Joint work with Ning Hao, Yue S. Niu presented @Tsinghua University Outline 1 The Problem

More information

Cross model validation and multiple testing in latent variable models

Cross model validation and multiple testing in latent variable models Cross model validation and multiple testing in latent variable models Frank Westad GE Healthcare Oslo, Norway 2nd European User Meeting on Multivariate Analysis Como, June 22, 2006 Outline Introduction

More information

arxiv: v1 [stat.me] 25 Aug 2016

arxiv: v1 [stat.me] 25 Aug 2016 Empirical Null Estimation using Discrete Mixture Distributions and its Application to Protein Domain Data arxiv:1608.07204v1 [stat.me] 25 Aug 2016 Iris Ivy Gauran 1, Junyong Park 1, Johan Lim 2, DoHwan

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Nonparametric hypothesis tests and permutation tests

Nonparametric hypothesis tests and permutation tests Nonparametric hypothesis tests and permutation tests 1.7 & 2.3. Probability Generating Functions 3.8.3. Wilcoxon Signed Rank Test 3.8.2. Mann-Whitney Test Prof. Tesler Math 283 Fall 2018 Prof. Tesler Wilcoxon

More information

Control of Directional Errors in Fixed Sequence Multiple Testing

Control of Directional Errors in Fixed Sequence Multiple Testing Control of Directional Errors in Fixed Sequence Multiple Testing Anjana Grandhi Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 07102-1982 Wenge Guo Department of Mathematical

More information

Department of Statistics University of Central Florida. Technical Report TR APR2007 Revised 25NOV2007

Department of Statistics University of Central Florida. Technical Report TR APR2007 Revised 25NOV2007 Department of Statistics University of Central Florida Technical Report TR-2007-01 25APR2007 Revised 25NOV2007 Controlling the Number of False Positives Using the Benjamini- Hochberg FDR Procedure Paul

More information

ON STEPWISE CONTROL OF THE GENERALIZED FAMILYWISE ERROR RATE. By Wenge Guo and M. Bhaskara Rao

ON STEPWISE CONTROL OF THE GENERALIZED FAMILYWISE ERROR RATE. By Wenge Guo and M. Bhaskara Rao ON STEPWISE CONTROL OF THE GENERALIZED FAMILYWISE ERROR RATE By Wenge Guo and M. Bhaskara Rao National Institute of Environmental Health Sciences and University of Cincinnati A classical approach for dealing

More information

Empirical Bayes Moderation of Asymptotically Linear Parameters

Empirical Bayes Moderation of Asymptotically Linear Parameters Empirical Bayes Moderation of Asymptotically Linear Parameters Nima Hejazi Division of Biostatistics University of California, Berkeley stat.berkeley.edu/~nhejazi nimahejazi.org twitter/@nshejazi github/nhejazi

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data

A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data Biostatistics (2007), 8, 4, pp. 744 755 doi:10.1093/biostatistics/kxm002 Advance Access publication on January 22, 2007 A moment-based method for estimating the proportion of true null hypotheses and its

More information

Cross-Sectional Regression after Factor Analysis: Two Applications

Cross-Sectional Regression after Factor Analysis: Two Applications al Regression after Factor Analysis: Two Applications Joint work with Jingshu, Trevor, Art; Yang Song (GSB) May 7, 2016 Overview 1 2 3 4 1 / 27 Outline 1 2 3 4 2 / 27 Data matrix Y R n p Panel data. Transposable

More information

Research Article Sample Size Calculation for Controlling False Discovery Proportion

Research Article Sample Size Calculation for Controlling False Discovery Proportion Probability and Statistics Volume 2012, Article ID 817948, 13 pages doi:10.1155/2012/817948 Research Article Sample Size Calculation for Controlling False Discovery Proportion Shulian Shang, 1 Qianhe Zhou,

More information

Lecture 6 April

Lecture 6 April Stats 300C: Theory of Statistics Spring 2017 Lecture 6 April 14 2017 Prof. Emmanuel Candes Scribe: S. Wager, E. Candes 1 Outline Agenda: From global testing to multiple testing 1. Testing the global null

More information

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Sanat K. Sarkar a, Tianhui Zhou b a Temple University, Philadelphia, PA 19122, USA b Wyeth Pharmaceuticals, Collegeville, PA

More information

Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models

Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models David B. Dahl Department of Statistics Texas A&M University Marina Vannucci, Michael Newton, & Qianxing Mo

More information

Large-Scale Hypothesis Testing

Large-Scale Hypothesis Testing Chapter 2 Large-Scale Hypothesis Testing Progress in statistics is usually at the mercy of our scientific colleagues, whose data is the nature from which we work. Agricultural experimentation in the early

More information

Normalization and differential analysis of RNA-seq data

Normalization and differential analysis of RNA-seq data Normalization and differential analysis of RNA-seq data Nathalie Villa-Vialaneix INRA, Toulouse, MIAT (Mathématiques et Informatique Appliquées de Toulouse) nathalie.villa@toulouse.inra.fr http://www.nathalievilla.org

More information

arxiv: v2 [stat.me] 14 Mar 2011

arxiv: v2 [stat.me] 14 Mar 2011 Submission Journal de la Société Française de Statistique arxiv: 1012.4078 arxiv:1012.4078v2 [stat.me] 14 Mar 2011 Type I error rate control for testing many hypotheses: a survey with proofs Titre: Une

More information

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests PSY 307 Statistics for the Behavioral Sciences Chapter 20 Tests for Ranked Data, Choosing Statistical Tests What To Do with Non-normal Distributions Tranformations (pg 382): The shape of the distribution

More information

arxiv: v1 [math.st] 31 Mar 2009

arxiv: v1 [math.st] 31 Mar 2009 The Annals of Statistics 2009, Vol. 37, No. 2, 619 629 DOI: 10.1214/07-AOS586 c Institute of Mathematical Statistics, 2009 arxiv:0903.5373v1 [math.st] 31 Mar 2009 AN ADAPTIVE STEP-DOWN PROCEDURE WITH PROVEN

More information

Effects of dependence in high-dimensional multiple testing problems. Kyung In Kim and Mark van de Wiel

Effects of dependence in high-dimensional multiple testing problems. Kyung In Kim and Mark van de Wiel Effects of dependence in high-dimensional multiple testing problems Kyung In Kim and Mark van de Wiel Department of Mathematics, Vrije Universiteit Amsterdam. Contents 1. High-dimensional multiple testing

More information

PROCEDURES CONTROLLING THE k-fdr USING. BIVARIATE DISTRIBUTIONS OF THE NULL p-values. Sanat K. Sarkar and Wenge Guo

PROCEDURES CONTROLLING THE k-fdr USING. BIVARIATE DISTRIBUTIONS OF THE NULL p-values. Sanat K. Sarkar and Wenge Guo PROCEDURES CONTROLLING THE k-fdr USING BIVARIATE DISTRIBUTIONS OF THE NULL p-values Sanat K. Sarkar and Wenge Guo Temple University and National Institute of Environmental Health Sciences Abstract: Procedures

More information

STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis

STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis Rebecca Barter April 6, 2015 Multiple Testing Multiple Testing Recall that when we were doing two sample t-tests, we were testing the equality

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38 BIO5312 Biostatistics Lecture 11: Multisample Hypothesis Testing II Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 11/8/2016 1/38 Outline In this lecture, we will continue to

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00 GroupTest: Multiple Testing Procedure for Grouped Hypotheses Zhigen Zhao Abstract In the modern Big Data

More information

Introduction to Nonparametric Statistics

Introduction to Nonparametric Statistics Introduction to Nonparametric Statistics by James Bernhard Spring 2012 Parameters Parametric method Nonparametric method µ[x 2 X 1 ] paired t-test Wilcoxon signed rank test µ[x 1 ], µ[x 2 ] 2-sample t-test

More information

Tools and topics for microarray analysis

Tools and topics for microarray analysis Tools and topics for microarray analysis USSES Conference, Blowing Rock, North Carolina, June, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

Matching Methods for Observational Microarray Studies

Matching Methods for Observational Microarray Studies Bioinformatics Advance Access published December 19, 2008 Matching Methods for Observational Microarray Studies Ruth Heller 1,, Elisabetta Manduchi 2 and Dylan Small 1 1 Department of Statistics, Wharton

More information

FDR-CONTROLLING STEPWISE PROCEDURES AND THEIR FALSE NEGATIVES RATES

FDR-CONTROLLING STEPWISE PROCEDURES AND THEIR FALSE NEGATIVES RATES FDR-CONTROLLING STEPWISE PROCEDURES AND THEIR FALSE NEGATIVES RATES Sanat K. Sarkar a a Department of Statistics, Temple University, Speakman Hall (006-00), Philadelphia, PA 19122, USA Abstract The concept

More information

Post-selection Inference for Changepoint Detection

Post-selection Inference for Changepoint Detection Post-selection Inference for Changepoint Detection Sangwon Hyun (Justin) Dept. of Statistics Advisors: Max G Sell, Ryan Tibshirani Committee: Will Fithian (UC Berkeley), Alessandro Rinaldo, Kathryn Roeder,

More information