This lecture covers Chapter 5 of HMU: Context-free Grammars

Size: px
Start display at page:

Download "This lecture covers Chapter 5 of HMU: Context-free Grammars"

Transcription

1 This lecture covers Chapter 5 of HMU: Context-free rammars (Context-free) rammars (Leftmost and Rightmost) Derivations Parse Trees An quivalence between Derivations and Parse Trees Ambiguity in rammars Additional Reading: Chapter 5 of HMU.

2 rammars Introduction to rammars We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages rammars are a generative means of defining languages. rammars can be used to create a strictly larger class of languages. They are especially useful in compiler and parser design; they can be used to check if: parantheses are balanced in a program, else occurrences have a matching if, etc. 2 / 14

3 rammars rammars: Formal Definition A context-free grammar (CF) = (V, T, P, ), where V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B,.... T is a finite set whose elements are called terminal symbols; T is precisely the alphabet of the language generated by the grammar. Notation: lower case letters, e.g., s 1, s 2,.... P V (V T ) is a finite set of production rules. ach production rule (A, α) is also written as A α. Terminology: A, α are called the head and body of the production rule, resp. T is the unique variable/non-terminal that generates the language. Notation trings consisting of non-terminals and/or terminals will be denoted by greek symbols, e.g., α, β,.... trings of terminals will be denoted by lower case letters, e.g., w, u, v 3 / 14

4 Derivations How do rammars enerate Languages? A string w T is in the language L() generated by = (V, T, P, ) iff we can derive w from, i.e., start from and use production rule(s) repeatedly to replace heads of the rules by their bodies until a string in T is obtained. xample Let = ({}, {0, 1}, P, ) be a CF with P given by { } (, ɛ), (, 0), (, 1) (1) (, 00), (, 11) (2) ɛ (3) ɛ (tart) / 14

5 Derivations Derivation: Formal Definition Definition iven = (V, T, P, ) and α, β (V T ), a derivation of β from α is a finite sequence of strings γ 1 γ 2 γ k for some k N where 1. γ 1 = α and γ k = β; 2. γ 1,..., γ k (V T ) 3. For each i = 1,..., k 1, either γ i = γ i+1 or γ i+1 is obtained from γ i by replacing the head of a production rule of P by its body. The following phrases are used interchangeably. xample β is derived from α there exists a derivation of β from α α For the grammar = ({}, {0, 1}, P, )with P given by ɛ , the following is a derivation of from β / 14

6 Derivations entential Forms and Language enerated by a rammar: Definitions Definition iven = (V, T, P, ), any string in (V T ) derived from is a sentential form. The set of all sentential forms of (denoted by F()) is defined inductively: Basis: F() Induction: if αaγ F() for some α, γ (V T ) and A V, and A β is a production rule, then αβγ F(). Only those strings that are generated by the above induction are sentential forms. Definition iven CF = (V, T, P, ), the language L() generated by are the sentential forms that are in T, i.e., L() = F() T. xample For the CF = ({}, {0, 1}, P, )with P given by ɛ , (1), ɛ, 0, 1 00, 00, 000, 010, 11, 11, 101, 111,... are all sentential forms. (2), ɛ, 0, 1 00, 00, 000, 010, 11, 11, 101, 111,... are in L(). 6 / 14

7 Derivations Other entential Forms At each step of a derivation, one can replace any variable by a suitable production. If at each non-trivial step of the derivation the leftmost (or rightmost) variable is replaced by a production rule, then the derivation is said to be a leftmost (or rightmost) derivation, respectively. We let α β (or α β) to denote the RM existence of a leftmost (or rightmost) derivation of β from α, respectively. entential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively. Balanced Parantheses xample Consider the CF = ({}, {(, )}, P, ) with P given by () (). [Derivation] [Leftmost Derivation] [Rightmost Derivation () ( ) () ( )() (()) ( )() (())() (())() (())() In the above, indicates the variable that is replaced in the following step 7 / 14

8 Parse Trees Parse Trees Parse trees are a graphical method of representing derivations. They are used in compilers to represent the source program. Definition iven a CF = (V, T, P, ), a parse tree for is any directed labelled tree that meets the following three conditions: every interior node is labelled by a non-terminal (i.e., variable); every leaf node is labelled by a non-terminal, or a terminal or ɛ; however if it is labelled by ɛ, it is the sole child of its parent. if an interior node is labelled by A V, and it s children are labelled s 1,..., s k V T {ɛ}, then A s 1 s k is a production rule in P. The yield of a parse tree is the string formed from the labels of the tree leaves read from left to right. Note: The yield is not necessarily a string of terminals. =({}; {(; )}; P;) P :! () ( ) ( ) ( ) yield = (())() 8 / 14

9 An quivalence between Parse Trees and Derivations Derivations and Parse Trees Parse trees, derivations, leftmost derivations, and rightmost derivations are equivalent means of generating the language L() of a CF. The proof for equivalence of rightmost derivations mirrors that of leftmost derivations. (o we ll not delve into rightmost derivations). Theorem Let CF = (V, T, P, ) be given. Let A V and w T. Then, A Proof Idea w A w there exists a parse tree with root A and yield w A w. RM We ll show the following implications. xistence of a parse tree with root A and yield w (b) (a) A ) By Definition w A ) w 9 / 14

10 An quivalence between Parse Trees and Derivations Part (a) of Proof of Theorem 5.5.1: A w Parse Tree We prove the following generalization of Part (a) by induction on the length of the derivation. Lemma Let CF = (V, T, P, ) be given. Let A V and α F() with α A. Then, A α there exists a parse tree with root A and yield α Proof of Lemma (Induction on the length of derivation) ince α A the minimum length of the derivation is at least 1. Basis: Let A α be a one-step derivation. ince α A, this derivation has to be the production rule A α. Hence, the parse tree is trivially the one on the right. Basis: A s 1 s 2 s = s 1 s (A; ) (A! ) 2 P 10 / 14

11 An quivalence between Parse Trees and Derivations Part (a) of Proof of Theorem 5.5.1: A w Parse Tree Proof of Lemma (Induction on the length of derivation) Induction: uppose that the claim is true for all derivations of length k 1 or lesser for some k 2. uppose a derivation of α from A in k steps exists. A = γ 1 γ 2 γ 3 γ k 1 γ k = α We may assume γ k 1 A. o by the induction hypothesis, there exists a parse tree with root A and yield γ k 1. [If γ k 1 = A, the derivation contains one step, and the basis case applies.] We may assume that γ k 1 γ k or else the derivation of γ k 1 from A, which has a corresponding parse tree is also a parse tree with yield α and root label A. Thus, the last step involves the application of a production rule. Hence, γ k 1 = βbω and α = βλω where (a) β, ω (V T ), (b) B V, and (b) B λ is a production rule. Parse tree for A )! = A Parse tree for A ) k 1 B {z } {z }! B! {z } 11 / 14

12 An quivalence between Parse Trees and Derivations Part (b) of Proof of Theorem 5.5.1: Parse Tree A w Proof of Theorem (Induction on the depth of the tree) ince A w, the parse tree has a depth of at least one. Basis: Let the parse tree with root A and yield α be of depth one. Then, by definition A α is a production rule, since the root is an internal node. Hence, A α. Induction: Let the claim be true for all parse trees of up to depth l 1. Consider the root and its (say k) children. This corresponds to a production rule A X 1 X k. If X i is a leaf, then the yield of the sub-tree rooted at X i is w i = X i itself. Then trivially X i w i. If X i is not a leaf, let w i be the yield of the parse (sub-)tree rooted at X i of depth l 1 or less. Then, by induction hypothesis, X i w i. Then, the following is a leftmost derivation for α from A A X 1X 2 X k w 1X 2 X k w 1w 2X 3 X k Basis: Induction: A s 1 s 2 s = s 1 s (A; ) (A! ) 2 P A X 1 X 2 X k Depth 1 w 1 w k 12 / 14

13 Ambiguous rammars Ambiguity in CFs Definition A given CF is ambiguous if a string w L() is the yield of two different parse trees. quivalently, a CF is ambiguous if a string w L() has two different leftmost (or rightmost) derivations. Ambiguity is a property of a grammar, and not the language it generates. An xample CF = ({}, {0, 1,..., 9, +, }, P, ) with P : Consider the parse trees for ince there are two distinct parse trees, a compiler will not know to reduce this to 13 or to This ambiguity is addressed by precedence rules for operators. 13 / 14

14 Ambiguous rammars Ambiguity in CFs ome languages are generated by unambiguous as well as ambiguous grammars. Balanced Parantheses xample CF 1 = ({}, {(, )}, P, ) with P : () () CF 2 = ({B, R}, {(, )}, Q, B) with Q : B (RB ɛ and R ) (RR 1 is ambiguous for there are two leftmost derivations for ()()(). () () ()() ()()() () ()() ()()() 2 is not ambiguous, since there is precisely only one rule at any stage of derivation. B (RB ()B ()(RB ()()B ()()()B ()()()ɛ ome languages are intrinsically ambiguous, e.g., {0 i 1 j 2 k : i = j or j = k}. All grammars for such languages are ambiguous. In general, there is no way to tell if a grammar is ambiguous. 14 / 14

Context-free Grammars and Languages

Context-free Grammars and Languages Context-free Grammars and Languages COMP 455 002, Spring 2019 Jim Anderson (modified by Nathan Otterness) 1 Context-free Grammars Context-free grammars provide another way to specify languages. Example:

More information

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis 1 Introduction Parenthesis Matching Problem Describe the set of arithmetic expressions with correctly matched parenthesis. Arithmetic expressions with correctly matched parenthesis cannot be described

More information

This lecture covers Chapter 6 of HMU: Pushdown Automata

This lecture covers Chapter 6 of HMU: Pushdown Automata This lecture covers Chapter 6 of HMU: ushdown Automata ushdown Automata (DA) Language accepted by a DA Equivalence of CFs and the languages accepted by DAs Deterministic DAs Additional Reading: Chapter

More information

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grammars and Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

CSC 4181Compiler Construction. Context-Free Grammars Using grammars in parsers. Parsing Process. Context-Free Grammar

CSC 4181Compiler Construction. Context-Free Grammars Using grammars in parsers. Parsing Process. Context-Free Grammar CSC 4181Compiler Construction Context-ree Grammars Using grammars in parsers CG 1 Parsing Process Call the scanner to get tokens Build a parse tree from the stream of tokens A parse tree shows the syntactic

More information

This lecture covers Chapter 7 of HMU: Properties of CFLs

This lecture covers Chapter 7 of HMU: Properties of CFLs This lecture covers Chapter 7 of HMU: Properties of CFLs Chomsky Normal Form Pumping Lemma for CFs Closure Properties of CFLs Decision Properties of CFLs Additional Reading: Chapter 7 of HMU. Chomsky Normal

More information

Context-Free Grammars and Languages. Reading: Chapter 5

Context-Free Grammars and Languages. Reading: Chapter 5 Context-Free Grammars and Languages Reading: Chapter 5 1 Context-Free Languages The class of context-free languages generalizes the class of regular languages, i.e., every regular language is a context-free

More information

Lecture 11 Context-Free Languages

Lecture 11 Context-Free Languages Lecture 11 Context-Free Languages COT 4420 Theory of Computation Chapter 5 Context-Free Languages n { a b : n n { ww } 0} R Regular Languages a *b* ( a + b) * Example 1 G = ({S}, {a, b}, S, P) Derivations:

More information

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis Context-free grammars Derivations Parse Trees Left-recursive grammars Top-down parsing non-recursive predictive parsers construction of parse tables Bottom-up parsing shift/reduce parsers LR parsers GLR

More information

Lecture VII Part 2: Syntactic Analysis Bottom-up Parsing: LR Parsing. Prof. Bodik CS Berkley University 1

Lecture VII Part 2: Syntactic Analysis Bottom-up Parsing: LR Parsing. Prof. Bodik CS Berkley University 1 Lecture VII Part 2: Syntactic Analysis Bottom-up Parsing: LR Parsing. Prof. Bodik CS 164 -- Berkley University 1 Bottom-Up Parsing Bottom-up parsing is more general than topdown parsing And just as efficient

More information

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write:

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write: Languages A language is a set (usually infinite) of strings, also known as sentences Each string consists of a sequence of symbols taken from some alphabet An alphabet, V, is a finite set of symbols, e.g.

More information

Chapter 5: Context-Free Languages

Chapter 5: Context-Free Languages Chapter 5: Context-Free Languages Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu Please read the corresponding chapter

More information

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26 Parsing Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 26 Table of contents 1 Context-Free Grammars 2 Simplifying CFGs Removing useless symbols Eliminating

More information

Introduction and Motivation. Introduction and Motivation. Introduction to Computability. Introduction and Motivation. Theory. Lecture5: Context Free

Introduction and Motivation. Introduction and Motivation. Introduction to Computability. Introduction and Motivation. Theory. Lecture5: Context Free ntroduction to Computability Theory Lecture5: Context Free Languages Prof. Amos sraeli 1 ntroduction and Motivation n our study of RL-s we Covered: 1. Motivation and definition of regular languages. 2.

More information

Administrivia. Test I during class on 10 March. Bottom-Up Parsing. Lecture An Introductory Example

Administrivia. Test I during class on 10 March. Bottom-Up Parsing. Lecture An Introductory Example Administrivia Test I during class on 10 March. Bottom-Up Parsing Lecture 11-12 From slides by G. Necula & R. Bodik) 2/20/08 Prof. Hilfinger CS14 Lecture 11 1 2/20/08 Prof. Hilfinger CS14 Lecture 11 2 Bottom-Up

More information

Chapter 4: Context-Free Grammars

Chapter 4: Context-Free Grammars Chapter 4: Context-Free Grammars 4.1 Basics of Context-Free Grammars Definition A context-free grammars, or CFG, G is specified by a quadruple (N, Σ, P, S), where N is the nonterminal or variable alphabet;

More information

Context Free Grammars

Context Free Grammars Automata and Formal Languages Context Free Grammars Sipser pages 101-111 Lecture 11 Tim Sheard 1 Formal Languages 1. Context free languages provide a convenient notation for recursive description of languages.

More information

5/10/16. Grammar. Automata and Languages. Today s Topics. Grammars Definition A grammar G is defined as G = (V, T, P, S) where:

5/10/16. Grammar. Automata and Languages. Today s Topics. Grammars Definition A grammar G is defined as G = (V, T, P, S) where: Grammar Automata and Languages Grammar Prof. Mohamed Hamada oftware Engineering Lab. The University of Aizu Japan Regular Grammar Context-free Grammar Context-sensitive Grammar Left-linear Grammar right-linear

More information

Pushdown Automata: Introduction (2)

Pushdown Automata: Introduction (2) Pushdown Automata: Introduction Pushdown automaton (PDA) M = (K, Σ, Γ,, s, A) where K is a set of states Σ is an input alphabet Γ is a set of stack symbols s K is the start state A K is a set of accepting

More information

Ambiguity, Precedence, Associativity & Top-Down Parsing. Lecture 9-10

Ambiguity, Precedence, Associativity & Top-Down Parsing. Lecture 9-10 Ambiguity, Precedence, Associativity & Top-Down Parsing Lecture 9-10 (From slides by G. Necula & R. Bodik) 2/13/2008 Prof. Hilfinger CS164 Lecture 9 1 Administrivia Team assignments this evening for all

More information

Solutions to Problem Set 3

Solutions to Problem Set 3 V22.0453-001 Theory of Computation October 8, 2003 TA: Nelly Fazio Solutions to Problem Set 3 Problem 1 We have seen that a grammar where all productions are of the form: A ab, A c (where A, B non-terminals,

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) October,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.   ETH Zürich (D-ITET) October, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) October, 5 2017 Part 3 out of 5 Last week, we learned about closure and equivalence of regular

More information

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu Part 3 out of 5 ETH Zürich (D-ITET) October, 5 2017 Last week, we learned about closure and equivalence of regular

More information

Context-Free Grammars. 2IT70 Finite Automata and Process Theory

Context-Free Grammars. 2IT70 Finite Automata and Process Theory Context-Free Grammars 2IT70 Finite Automata and Process Theory Technische Universiteit Eindhoven May 18, 2016 Generating strings language L 1 = {a n b n n > 0} ab L 1 if w L 1 then awb L 1 production rules

More information

Properties of Context-Free Languages

Properties of Context-Free Languages Properties of Context-Free Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Non-context-Free Languages. CS215, Lecture 5 c

Non-context-Free Languages. CS215, Lecture 5 c Non-context-Free Languages CS215, Lecture 5 c 2007 1 The Pumping Lemma Theorem. (Pumping Lemma) Let be context-free. There exists a positive integer divided into five pieces, Proof for for each, and..

More information

What we have done so far

What we have done so far What we have done so far DFAs and regular languages NFAs and their equivalence to DFAs Regular expressions. Regular expressions capture exactly regular languages: Construct a NFA from a regular expression.

More information

Introduction to Theory of Computing

Introduction to Theory of Computing CSCI 2670, Fall 2012 Introduction to Theory of Computing Department of Computer Science University of Georgia Athens, GA 30602 Instructor: Liming Cai www.cs.uga.edu/ cai 0 Lecture Note 3 Context-Free Languages

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 22 CFG (1) Example: Grammar G telescope : Productions: S NP VP NP

More information

Computational Models - Lecture 4 1

Computational Models - Lecture 4 1 Computational Models - Lecture 4 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 3/8, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Grammars and Context Free Languages

Grammars and Context Free Languages Grammars and Context Free Languages H. Geuvers and J. Rot Institute for Computing and Information Sciences Version: fall 2016 H. Geuvers & J. Rot Version: fall 2016 Talen en Automaten 1 / 24 Outline Grammars

More information

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Salil Vadhan October 4, 2012 Reading: Sipser, 2.2. Another example of a CFG (with proof) L = {x {a, b} : x has the same # of a s and

More information

Grammars and Context Free Languages

Grammars and Context Free Languages Grammars and Context Free Languages H. Geuvers and A. Kissinger Institute for Computing and Information Sciences Version: fall 2015 H. Geuvers & A. Kissinger Version: fall 2015 Talen en Automaten 1 / 23

More information

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor 60-354, Theory of Computation Fall 2013 Asish Mukhopadhyay School of Computer Science University of Windsor Pushdown Automata (PDA) PDA = ε-nfa + stack Acceptance ε-nfa enters a final state or Stack is

More information

FLAC Context-Free Grammars

FLAC Context-Free Grammars FLAC Context-Free Grammars Klaus Sutner Carnegie Mellon Universality Fall 2017 1 Generating Languages Properties of CFLs Generation vs. Recognition 3 Turing machines can be used to check membership in

More information

Computational Models - Lecture 4 1

Computational Models - Lecture 4 1 Computational Models - Lecture 4 1 Handout Mode Iftach Haitner. Tel Aviv University. November 21, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

Introduction to Bottom-Up Parsing

Introduction to Bottom-Up Parsing Introduction to Bottom-Up Parsing Outline Review LL parsing Shift-reduce parsing The LR parsing algorithm Constructing LR parsing tables Compiler Design 1 (2011) 2 Top-Down Parsing: Review Top-down parsing

More information

Introduction to Automata

Introduction to Automata Introduction to Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 /

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF)

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF) CS5371 Theory of Computation Lecture 7: Automata Theory V (CFG, CFL, CNF) Announcement Homework 2 will be given soon (before Tue) Due date: Oct 31 (Tue), before class Midterm: Nov 3, (Fri), first hour

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Computational Models - Lecture 4

Computational Models - Lecture 4 Computational Models - Lecture 4 Regular languages: The Myhill-Nerode Theorem Context-free Grammars Chomsky Normal Form Pumping Lemma for context free languages Non context-free languages: Examples Push

More information

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar TAFL 1 (ECS-403) Unit- III 3.1 Definition of CFG (Context Free Grammar) and problems 3.2 Derivation 3.3 Ambiguity in Grammar 3.3.1 Inherent Ambiguity 3.3.2 Ambiguous to Unambiguous CFG 3.4 Simplification

More information

Compiling Techniques

Compiling Techniques Lecture 6: 9 October 2015 Announcement New tutorial session: Friday 2pm check ct course webpage to find your allocated group Table of contents 1 2 Ambiguity s Bottom-Up Parser A bottom-up parser builds

More information

Introduction to Bottom-Up Parsing

Introduction to Bottom-Up Parsing Outline Introduction to Bottom-Up Parsing Review LL parsing Shift-reduce parsing he LR parsing algorithm Constructing LR parsing tables Compiler Design 1 (2011) 2 op-down Parsing: Review op-down parsing

More information

5 Context-Free Languages

5 Context-Free Languages CA320: COMPUTABILITY AND COMPLEXITY 1 5 Context-Free Languages 5.1 Context-Free Grammars Context-Free Grammars Context-free languages are specified with a context-free grammar (CFG). Formally, a CFG G

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 September 2, 2004 These supplementary notes review the notion of an inductive definition and

More information

[4203] Compiler Theory Sheet # 3-Answers

[4203] Compiler Theory Sheet # 3-Answers El-Shourouk cademy cad. Year : 2012 / 2013 Higher Institute for Computer & Term : Second Information Technology Year : Fourth Department of Computer Science [4203] Compiler Theory Sheet # 3-nswers 1- Write

More information

Parikh s theorem. Håkan Lindqvist

Parikh s theorem. Håkan Lindqvist Parikh s theorem Håkan Lindqvist Abstract This chapter will discuss Parikh s theorem and provide a proof for it. The proof is done by induction over a set of derivation trees, and using the Parikh mappings

More information

Introduction to Bottom-Up Parsing

Introduction to Bottom-Up Parsing Introduction to Bottom-Up Parsing Outline Review LL parsing Shift-reduce parsing The LR parsing algorithm Constructing LR parsing tables 2 Top-Down Parsing: Review Top-down parsing expands a parse tree

More information

Context-Free Grammars and Languages. We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs.

Context-Free Grammars and Languages. We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs. Context-Free Grammars and Languages We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs. Contex-Free Languages (CFL s) played a central role natural languages

More information

Pushdown Automata. We have seen examples of context-free languages that are not regular, and hence can not be recognized by finite automata.

Pushdown Automata. We have seen examples of context-free languages that are not regular, and hence can not be recognized by finite automata. Pushdown Automata We have seen examples of context-free languages that are not regular, and hence can not be recognized by finite automata. Next we consider a more powerful computation model, called a

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 28, 2003 These supplementary notes review the notion of an inductive definition and give

More information

Computational Models: Class 3

Computational Models: Class 3 Computational Models: Class 3 Benny Chor School of Computer Science Tel Aviv University November 2, 2015 Based on slides by Maurice Herlihy, Brown University, and modifications by Iftach Haitner and Yishay

More information

October 6, Equivalence of Pushdown Automata with Context-Free Gramm

October 6, Equivalence of Pushdown Automata with Context-Free Gramm Equivalence of Pushdown Automata with Context-Free Grammar October 6, 2013 Motivation Motivation CFG and PDA are equivalent in power: a CFG generates a context-free language and a PDA recognizes a context-free

More information

Context-Free Languages

Context-Free Languages CS:4330 Theory of Computation Spring 2018 Context-Free Languages Non-Context-Free Languages Haniel Barbosa Readings for this lecture Chapter 2 of [Sipser 1996], 3rd edition. Section 2.3. Proving context-freeness

More information

Computational Models - Lecture 3

Computational Models - Lecture 3 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models - Lecture 3 Equivalence of regular expressions and regular languages (lukewarm leftover

More information

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa CS:4330 Theory of Computation Spring 2018 Regular Languages Finite Automata and Regular Expressions Haniel Barbosa Readings for this lecture Chapter 1 of [Sipser 1996], 3rd edition. Sections 1.1 and 1.3.

More information

(pp ) PDAs and CFGs (Sec. 2.2)

(pp ) PDAs and CFGs (Sec. 2.2) (pp. 117-124) PDAs and CFGs (Sec. 2.2) A language is context free iff all strings in L can be generated by some context free grammar Theorem 2.20: L is Context Free iff a PDA accepts it I.e. if L is context

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

Introduction to Bottom-Up Parsing

Introduction to Bottom-Up Parsing Outline Introduction to Bottom-Up Parsing Review LL parsing Shift-reduce parsing he LR parsing algorithm Constructing LR parsing tables 2 op-down Parsing: Review op-down parsing expands a parse tree from

More information

Chapter 5. Finite Automata

Chapter 5. Finite Automata Chapter 5 Finite Automata 5.1 Finite State Automata Capable of recognizing numerous symbol patterns, the class of regular languages Suitable for pattern-recognition type applications, such as the lexical

More information

Bottom-Up Syntax Analysis

Bottom-Up Syntax Analysis Bottom-Up Syntax Analysis Mooly Sagiv http://www.cs.tau.ac.il/~msagiv/courses/wcc13.html Textbook:Modern Compiler Design Chapter 2.2.5 (modified) 1 Pushdown automata Deterministic fficient Parsers Report

More information

Context-Free Grammars (and Languages) Lecture 7

Context-Free Grammars (and Languages) Lecture 7 Context-Free Grammars (and Languages) Lecture 7 1 Today Beyond regular expressions: Context-Free Grammars (CFGs) What is a CFG? What is the language associated with a CFG? Creating CFGs. Reasoning about

More information

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ.

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ. 1. Trees; context free grammars. 1.1. Trees. Definition 1.1. By a tree we mean an ordered triple T = (N, ρ, p) (i) N is a finite set; (ii) ρ N ; (iii) p : N {ρ} N ; (iv) if n N + and ν dmn p n then p n

More information

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd 4.8 Huffman Codes These lecture slides are supplied by Mathijs de Weerd Data Compression Q. Given a text that uses 32 symbols (26 different letters, space, and some punctuation characters), how can we

More information

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination 2017-18 B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three

More information

CMSC 330: Organization of Programming Languages. Pushdown Automata Parsing

CMSC 330: Organization of Programming Languages. Pushdown Automata Parsing CMSC 330: Organization of Programming Languages Pushdown Automata Parsing Chomsky Hierarchy Categorization of various languages and grammars Each is strictly more restrictive than the previous First described

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation Bottom-up parsing Pumping Theorem for CFLs Recap: Going One Way Lemma: Each context-free language is accepted by some PDA. Proof (by construction): The idea: Let the stack

More information

Functions on languages:

Functions on languages: MA/CSSE 474 Final Exam Notation and Formulas page Name (turn this in with your exam) Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet

More information

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES Contents i SYLLABUS UNIT - I CHAPTER - 1 : AUT UTOMA OMATA Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 2 : FINITE AUT UTOMA OMATA An Informal Picture of Finite Automata,

More information

Parsing Algorithms. CS 4447/CS Stephen Watt University of Western Ontario

Parsing Algorithms. CS 4447/CS Stephen Watt University of Western Ontario Parsing Algorithms CS 4447/CS 9545 -- Stephen Watt University of Western Ontario The Big Picture Develop parsers based on grammars Figure out properties of the grammars Make tables that drive parsing engines

More information

Formal Languages, Grammars and Automata Lecture 5

Formal Languages, Grammars and Automata Lecture 5 Formal Languages, Grammars and Automata Lecture 5 Helle Hvid Hansen helle@cs.ru.nl http://www.cs.ru.nl/~helle/ Foundations Group Intelligent Systems Section Institute for Computing and Information Sciences

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) CS/ECE 374: Algorithms & Models of Computation, Fall 28 Deterministic Finite Automata (DFAs) Lecture 3 September 4, 28 Chandra Chekuri (UIUC) CS/ECE 374 Fall 28 / 33 Part I DFA Introduction Chandra Chekuri

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner. Tel Aviv University. November 28, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

Turing machines and linear bounded automata

Turing machines and linear bounded automata and linear bounded automata Informatics 2A: Lecture 30 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 25 November 2016 1 / 17 The Chomsky hierarchy: summary Level Language

More information

Information Theory and Statistics Lecture 2: Source coding

Information Theory and Statistics Lecture 2: Source coding Information Theory and Statistics Lecture 2: Source coding Łukasz Dębowski ldebowsk@ipipan.waw.pl Ph. D. Programme 2013/2014 Injections and codes Definition (injection) Function f is called an injection

More information

Equivalence of Regular Expressions and FSMs

Equivalence of Regular Expressions and FSMs Equivalence of Regular Expressions and FSMs Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Regular Language Recall that a language

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Part I DFA Introduction Sariel

More information

UNIT II REGULAR LANGUAGES

UNIT II REGULAR LANGUAGES 1 UNIT II REGULAR LANGUAGES Introduction: A regular expression is a way of describing a regular language. The various operations are closure, union and concatenation. We can also find the equivalent regular

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: FORMAL LANGUAGES AND AUTOMATA THEORY Class : CSE II PART A (SHORT ANSWER QUESTIONS) UNIT- I 1 Explain transition diagram, transition

More information

CFLs and Regular Languages. CFLs and Regular Languages. CFLs and Regular Languages. Will show that all Regular Languages are CFLs. Union.

CFLs and Regular Languages. CFLs and Regular Languages. CFLs and Regular Languages. Will show that all Regular Languages are CFLs. Union. We can show that every RL is also a CFL Since a regular grammar is certainly context free. We can also show by only using Regular Expressions and Context Free Grammars That is what we will do in this half.

More information

CS153: Compilers Lecture 5: LL Parsing

CS153: Compilers Lecture 5: LL Parsing CS153: Compilers Lecture 5: LL Parsing Stephen Chong https://www.seas.harvard.edu/courses/cs153 Announcements Proj 1 out Due Thursday Sept 20 (2 days away) Proj 2 out Due Thursday Oct 4 (16 days away)

More information

Supplementary Notes on Inductive Definitions

Supplementary Notes on Inductive Definitions Supplementary Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 29, 2002 These supplementary notes review the notion of an inductive definition

More information

CONTEXT FREE GRAMMAR AND

CONTEXT FREE GRAMMAR AND CONTEXT FREE GRAMMAR AND PARSING STATIC ANALYSIS - PARSING Source language Scanner (lexical analysis) tokens Parser (syntax analysis) Syntatic structure Semantic Analysis (IC generator) Syntatic/sema ntic

More information

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where Recitation 11 Notes Context Free Grammars Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x A V, and x (V T)*. Examples Problem 1. Given the

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 10/22, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Designing 1-tape Deterministic Turing Machines

Designing 1-tape Deterministic Turing Machines MCS-265: The Theory of Computation Handout #T1 San Skulrattanakulchai Gustavus Adolphus College April 5, 2011 Designing 1-tape Deterministic Turing Machines A TM corresponds to a computer program. We will

More information

(pp ) PDAs and CFGs (Sec. 2.2)

(pp ) PDAs and CFGs (Sec. 2.2) (pp. 117-124) PDAs and CFGs (Sec. 2.2) A language is context free iff all strings in L can be generated by some context free grammar Theorem 2.20: L is Context Free iff a PDA accepts it I.e. if L is context

More information

Section 1 (closed-book) Total points 30

Section 1 (closed-book) Total points 30 CS 454 Theory of Computation Fall 2011 Section 1 (closed-book) Total points 30 1. Which of the following are true? (a) a PDA can always be converted to an equivalent PDA that at each step pops or pushes

More information

Top-Down Parsing and Intro to Bottom-Up Parsing

Top-Down Parsing and Intro to Bottom-Up Parsing Predictive Parsers op-down Parsing and Intro to Bottom-Up Parsing Lecture 7 Like recursive-descent but parser can predict which production to use By looking at the next few tokens No backtracking Predictive

More information

CS20a: summary (Oct 24, 2002)

CS20a: summary (Oct 24, 2002) CS20a: summary (Oct 24, 2002) Context-free languages Grammars G = (V, T, P, S) Pushdown automata N-PDA = CFG D-PDA < CFG Today What languages are context-free? Pumping lemma (similar to pumping lemma for

More information

Formal Languages, Automata and Compilers

Formal Languages, Automata and Compilers Formal Languages, Automata and Compilers Lecure 4 2017-18 LFAC (2017-18) Lecture 4 1 / 31 Curs 4 1 Grammars of type 3 and finite automata 2 Closure properties for type 3 languages 3 Regular Expressions

More information

Theory of Computation (VI) Yijia Chen Fudan University

Theory of Computation (VI) Yijia Chen Fudan University Theory of Computation (VI) Yijia Chen Fudan University Review Forced handles Definition A handle h of a valid string v = xhy is a forced handle if h is the unique handle in every valid string xhŷ where

More information

PUSHDOWN AUTOMATA (PDA)

PUSHDOWN AUTOMATA (PDA) PUSHDOWN AUTOMATA (PDA) FINITE STATE CONTROL INPUT STACK (Last in, first out) input pop push ε,ε $ 0,ε 0 1,0 ε ε,$ ε 1,0 ε PDA that recognizes L = { 0 n 1 n n 0 } Definition: A (non-deterministic) PDA

More information

Epsilon-Free Grammars and Lexicalized Grammars that Generate the Class of the Mildly Context-Sensitive Languages

Epsilon-Free Grammars and Lexicalized Grammars that Generate the Class of the Mildly Context-Sensitive Languages psilon-free rammars and Leicalized rammars that enerate the Class of the Mildly Contet-Sensitive Languages Akio FUJIYOSHI epartment of Computer and Information Sciences, Ibaraki University 4-12-1 Nakanarusawa,

More information

An Efficient Context-Free Parsing Algorithm. Speakers: Morad Ankri Yaniv Elia

An Efficient Context-Free Parsing Algorithm. Speakers: Morad Ankri Yaniv Elia An Efficient Context-Free Parsing Algorithm Speakers: Morad Ankri Yaniv Elia Yaniv: Introduction Terminology Informal Explanation The Recognizer Morad: Example Time and Space Bounds Empirical results Practical

More information

Grammars and Context-free Languages; Chomsky Hierarchy

Grammars and Context-free Languages; Chomsky Hierarchy Regular and Context-free Languages; Chomsky Hierarchy H. Geuvers Institute for Computing and Information Sciences Version: fall 2015 H. Geuvers Version: fall 2015 Huygens College 1 / 23 Outline Regular

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Part I DFA Introduction Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Sariel

More information