[4203] Compiler Theory Sheet # 3-Answers

Size: px
Start display at page:

Download "[4203] Compiler Theory Sheet # 3-Answers"

Transcription

1 El-Shourouk cademy cad. Year : 2012 / 2013 Higher Institute for Computer & Term : Second Information Technology Year : Fourth Department of Computer Science [4203] Compiler Theory Sheet # 3-nswers 1- Write down an unambiguous grammar that generates the set of strings { s;, s;s;, s;s;s;,... } and give leftmost and rightmost derivation for the string s;s; using your grammar. stmt-sequence s ; stmt-sequence s; Left most derivation (1) stmt-sequence => s;stmt-sequence (2) => s;s; Right most derivation (1) stmt-sequence => s;stmt-sequence (2) => s;s; leftmost will be the same as rightmost derivation for s;s; 2- Given the grammar ( ) a- describe the language it generates generates the strings of all "balanced parentheses." a- Description : This grammar produces an infinite set of strings of the characters ( and ) in which 0 or more ( ) can be generated and each ( ) can contain 0 or more ( ) inside. b- show that it is ambiguous b- consider the expression ( ) ( ) ( ) It has 2 different parse trees Parse Tree(1) ( ) ( ) ( ) 1

2 Parse Tree(2) ( ) ( ) ( ) So, this grammar is ambiguous 3- Given the grammar exp exp addop term term addop + - term term multop factor factor multop * factor ( exp ) number write down leftmost derivation, rightmost derivation, parse tree, and abstract syntax tree for the following arithmetic expressions: a- 3+4*56 b- 3* ( ) c- 3- ( 4+5*6 ) a-for The expression 3+4*5-6 a. The leftmost derivation exp exp addop term exp addop term addop term term addop term addop term factor addop term addop term number addop term addop term number + term addop term number + term multop factor addop term number + factor multop factor addop term number + number multop factor addop term number + number * factor addop term number + number * number addop term number + number * number term number + number * number factor number + number * number number -For the expression 3*(4-5+6) - leftmost derivation 2

3 exp term term multop factor factor multop factor number multop factor number multop ( exp ) number * ( exp ) number * ( exp addop term ) number * ( exp addop term addop term ) number * ( term addop term addop term) number * ( factor addop term addop term) number * ( number addop term addop term) number * ( number term addop term) number * ( number factor addop term) number * ( number number addop term) number * ( number number + term) number * ( number number + factor ) number * ( number number + number ) c- for the expression 3-(4+5*6) - leftmost derivation exp exp addop term term addop term factor addop term number addop term number term number factor number ( exp ) number ( exp addop term ) number ( term addop term ) number ( factor addop term ) number ( number addop term ) number ( number +term) number ( number + term multop factor ) number ( number + factor multop factor) number ( number + number multop factor) number ( number + number * factor ) number ( number + number * number) 3

4 4- The following grammar generates all regular expressions over the alphabet of letters rexp rexp rexp rexp rexp rexp * ( rexp ) letter a- give a derivation for the regular expressions ( ab b )* using this grammar. (1) rexp => rexp * [exp rexp * ] (2) rexp => ( rexp ) * [exp ( rexp ) ] (3) => (rexp rexp ) * [exp rexp rexp] (4) => (rexp rexp rexp ) * [exp rexp rexp] (5) => (letter rexp rexp ) * [exp letter] (6) =>( a rexp rexp) * [letter a] (7) =>( a letter rexp) * [exp letter] (8) =>( a b rexp) [letter b] (9) =>( a b rexp) [exp letter] (10) =>( a b b) [letter c] b- Show that this grammar is ambiguous b- this grammar is ambiguous because it generates 2 different parse trees for the expression ab c c- Rewrite this grammar to establish the correct precedence of the operators rexp rexp rterm rterm rterm rterm rfactor rfactor rfactor rfactor * (rexp) letter d- What associativity does your answer in part c give to the binary operator? why? d- the associativity is left because a series of operators with same precedence will be evaluated from left to right 4

5 5- Write an unambiguous grammar for Boolean expressions that includes the constants true and false, and the operator and,or,not and parentheses. Be sure to give or lowest precedence and give the not the highest precedence.lso allow repeated not s. Similar to the arithmetic expression example <b-expression> <b-expression> <orop> <b-term> b-term <b-term> <b-term> ND <not-factor> not-factor <not-factor> NOT<not-factor> b-factor <b-factor> (<b-expression>) <b-literal> <b-variable> bexp bexp or term b term or b term b term and notfactor notfactor and && notfactor not bfactor b factor not! b factor (b exp ) b literal bliteral true false 6- Consider the following grammar represent simplified LISP like expressions Lexp list number identifier list ( -seq ) -seq -seq a- write a leftmost and rightmost derivation for the string ( a 23 (m x y )) Left most derivation (1) Lexp => list [Lexp list] (2) => (-seq ) [list ( -seq )] (3) => (-seq ) [-seq -seq ] (4) => (-seq ) [-seq -seq ] (5) => (-seq ) [-seq -seq ] (6) => ( ) [-seq ] (7) => ( ) [Lexp ] (8) => (identifier ) [ identifier] (9) => (identifier ) [Lexp ] (10) => (identifier number ) [ number] (11) => (identifier number list) [Lexp list] (12) => (identifier number (-seq )) [list ( -seq )] (13) => (identifier number (-seq )) [-seq -seq ] (14) => (identifier number (-seq )) [-seq -seq ] (15) => (identifier number ( )) [-seq ] (16) => (identifier number ( )) [ ] (17) => (identifier number (identifier )) [ identifier] (18) => (identifier number (identifier )) [ ] (19) => (identifier number (identifier identifier )) [ identifier] (20) => (identifier number (identifier identifier )) [ ] (21) => (identifier number (identifier identifier identifier )) [ identifier] b- draw a parse tree for the strings of part (a) 5

6 b- parse tree list ( ) list ( ) letter number lettetr lettetr lettetr 6

7 7- Given the following grammar statement if-stmt other if-stmt if( exp ) statement else-part else-part else statement exp 0 1 a- draw a parse tree for the string if (0) if(1) other else else other a- parse tree statement If-stmt if ( exp ) statement Else-part else statement 0 other if ( exp ) statement Else-part 1 other else statement 7

8 b- what is the purpose of 2 else s b- the purpose of 2 else is to match with 2 if c- is similar code permissible in C and C#? explain c- this code is permissible in C 8- What is dangling else problem and how can we solve it. Refer to lecture notes 8

Context-Free Grammars (and Languages) Lecture 7

Context-Free Grammars (and Languages) Lecture 7 Context-Free Grammars (and Languages) Lecture 7 1 Today Beyond regular expressions: Context-Free Grammars (CFGs) What is a CFG? What is the language associated with a CFG? Creating CFGs. Reasoning about

More information

CSC 4181Compiler Construction. Context-Free Grammars Using grammars in parsers. Parsing Process. Context-Free Grammar

CSC 4181Compiler Construction. Context-Free Grammars Using grammars in parsers. Parsing Process. Context-Free Grammar CSC 4181Compiler Construction Context-ree Grammars Using grammars in parsers CG 1 Parsing Process Call the scanner to get tokens Build a parse tree from the stream of tokens A parse tree shows the syntactic

More information

This lecture covers Chapter 5 of HMU: Context-free Grammars

This lecture covers Chapter 5 of HMU: Context-free Grammars This lecture covers Chapter 5 of HMU: Context-free rammars (Context-free) rammars (Leftmost and Rightmost) Derivations Parse Trees An quivalence between Derivations and Parse Trees Ambiguity in rammars

More information

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write:

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write: Languages A language is a set (usually infinite) of strings, also known as sentences Each string consists of a sequence of symbols taken from some alphabet An alphabet, V, is a finite set of symbols, e.g.

More information

Lecture 11 Context-Free Languages

Lecture 11 Context-Free Languages Lecture 11 Context-Free Languages COT 4420 Theory of Computation Chapter 5 Context-Free Languages n { a b : n n { ww } 0} R Regular Languages a *b* ( a + b) * Example 1 G = ({S}, {a, b}, S, P) Derivations:

More information

Eng. Maha Talaat Page 1

Eng. Maha Talaat Page 1 El-Shorouk Academy Acad. Year : 2013 / 2014 Higher Institute for Computer & Term : 2nd Information Technology Year : 4th Computer Science Department Supervisor: Prof. Dr. Ahmed Abbassy Section contents:

More information

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where Recitation 11 Notes Context Free Grammars Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x A V, and x (V T)*. Examples Problem 1. Given the

More information

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF)

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF) CS5371 Theory of Computation Lecture 7: Automata Theory V (CFG, CFL, CNF) Announcement Homework 2 will be given soon (before Tue) Due date: Oct 31 (Tue), before class Midterm: Nov 3, (Fri), first hour

More information

Compiling Techniques

Compiling Techniques Lecture 6: 9 October 2015 Announcement New tutorial session: Friday 2pm check ct course webpage to find your allocated group Table of contents 1 2 Ambiguity s Bottom-Up Parser A bottom-up parser builds

More information

Context-free Grammars and Languages

Context-free Grammars and Languages Context-free Grammars and Languages COMP 455 002, Spring 2019 Jim Anderson (modified by Nathan Otterness) 1 Context-free Grammars Context-free grammars provide another way to specify languages. Example:

More information

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008 CS 301 - Lecture 28 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin Chapter 0 Introduction Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin October 2014 Automata Theory 2 of 22 Automata theory deals

More information

Introduction and Motivation. Introduction and Motivation. Introduction to Computability. Introduction and Motivation. Theory. Lecture5: Context Free

Introduction and Motivation. Introduction and Motivation. Introduction to Computability. Introduction and Motivation. Theory. Lecture5: Context Free ntroduction to Computability Theory Lecture5: Context Free Languages Prof. Amos sraeli 1 ntroduction and Motivation n our study of RL-s we Covered: 1. Motivation and definition of regular languages. 2.

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Salil Vadhan October 4, 2012 Reading: Sipser, 2.2. Another example of a CFG (with proof) L = {x {a, b} : x has the same # of a s and

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis Context-free grammars Derivations Parse Trees Left-recursive grammars Top-down parsing non-recursive predictive parsers construction of parse tables Bottom-up parsing shift/reduce parsers LR parsers GLR

More information

Harvard CS 121 and CSCI E-207 Lecture 9: Regular Languages Wrap-Up, Context-Free Grammars

Harvard CS 121 and CSCI E-207 Lecture 9: Regular Languages Wrap-Up, Context-Free Grammars Harvard CS 121 and CSCI E-207 Lecture 9: Regular Languages Wrap-Up, Context-Free Grammars Salil Vadhan October 2, 2012 Reading: Sipser, 2.1 (except Chomsky Normal Form). Algorithmic questions about regular

More information

CVO103: Programming Languages. Lecture 2 Inductive Definitions (2)

CVO103: Programming Languages. Lecture 2 Inductive Definitions (2) CVO103: Programming Languages Lecture 2 Inductive Definitions (2) Hakjoo Oh 2018 Spring Hakjoo Oh CVO103 2018 Spring, Lecture 2 March 13, 2018 1 / 20 Contents More examples of inductive definitions natural

More information

Grammars and Context Free Languages

Grammars and Context Free Languages Grammars and Context Free Languages H. Geuvers and J. Rot Institute for Computing and Information Sciences Version: fall 2016 H. Geuvers & J. Rot Version: fall 2016 Talen en Automaten 1 / 24 Outline Grammars

More information

Context Free Grammars

Context Free Grammars Automata and Formal Languages Context Free Grammars Sipser pages 101-111 Lecture 11 Tim Sheard 1 Formal Languages 1. Context free languages provide a convenient notation for recursive description of languages.

More information

Ambiguity, Precedence, Associativity & Top-Down Parsing. Lecture 9-10

Ambiguity, Precedence, Associativity & Top-Down Parsing. Lecture 9-10 Ambiguity, Precedence, Associativity & Top-Down Parsing Lecture 9-10 (From slides by G. Necula & R. Bodik) 2/13/2008 Prof. Hilfinger CS164 Lecture 9 1 Administrivia Team assignments this evening for all

More information

(NB. Pages are intended for those who need repeated study in formal languages) Length of a string. Formal languages. Substrings: Prefix, suffix.

(NB. Pages are intended for those who need repeated study in formal languages) Length of a string. Formal languages. Substrings: Prefix, suffix. (NB. Pages 22-40 are intended for those who need repeated study in formal languages) Length of a string Number of symbols in the string. Formal languages Basic concepts for symbols, strings and languages:

More information

5 Context-Free Languages

5 Context-Free Languages CA320: COMPUTABILITY AND COMPLEXITY 1 5 Context-Free Languages 5.1 Context-Free Grammars Context-Free Grammars Context-free languages are specified with a context-free grammar (CFG). Formally, a CFG G

More information

CMSC 330: Organization of Programming Languages. Pushdown Automata Parsing

CMSC 330: Organization of Programming Languages. Pushdown Automata Parsing CMSC 330: Organization of Programming Languages Pushdown Automata Parsing Chomsky Hierarchy Categorization of various languages and grammars Each is strictly more restrictive than the previous First described

More information

Introduction to Theory of Computing

Introduction to Theory of Computing CSCI 2670, Fall 2012 Introduction to Theory of Computing Department of Computer Science University of Georgia Athens, GA 30602 Instructor: Liming Cai www.cs.uga.edu/ cai 0 Lecture Note 3 Context-Free Languages

More information

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor 60-354, Theory of Computation Fall 2013 Asish Mukhopadhyay School of Computer Science University of Windsor Pushdown Automata (PDA) PDA = ε-nfa + stack Acceptance ε-nfa enters a final state or Stack is

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 28, 2003 These supplementary notes review the notion of an inductive definition and give

More information

CYK Algorithm for Parsing General Context-Free Grammars

CYK Algorithm for Parsing General Context-Free Grammars CYK Algorithm for Parsing General Context-Free Grammars Why Parse General Grammars Can be difficult or impossible to make grammar unambiguous thus LL(k) and LR(k) methods cannot work, for such ambiguous

More information

CA Compiler Construction

CA Compiler Construction CA4003 - Compiler Construction Bottom Up Parsing David Sinclair Bottom Up Parsing LL(1) parsers have enjoyed a bit of a revival thanks to JavaCC. LL(k) parsers must predict which production rule to use

More information

Grammars and Context Free Languages

Grammars and Context Free Languages Grammars and Context Free Languages H. Geuvers and A. Kissinger Institute for Computing and Information Sciences Version: fall 2015 H. Geuvers & A. Kissinger Version: fall 2015 Talen en Automaten 1 / 23

More information

Parsing Algorithms. CS 4447/CS Stephen Watt University of Western Ontario

Parsing Algorithms. CS 4447/CS Stephen Watt University of Western Ontario Parsing Algorithms CS 4447/CS 9545 -- Stephen Watt University of Western Ontario The Big Picture Develop parsers based on grammars Figure out properties of the grammars Make tables that drive parsing engines

More information

Solutions to Problem Set 3

Solutions to Problem Set 3 V22.0453-001 Theory of Computation October 8, 2003 TA: Nelly Fazio Solutions to Problem Set 3 Problem 1 We have seen that a grammar where all productions are of the form: A ab, A c (where A, B non-terminals,

More information

What Is a Language? Grammars, Languages, and Machines. Strings: the Building Blocks of Languages

What Is a Language? Grammars, Languages, and Machines. Strings: the Building Blocks of Languages Do Homework 2. What Is a Language? Grammars, Languages, and Machines L Language Grammar Accepts Machine Strings: the Building Blocks of Languages An alphabet is a finite set of symbols: English alphabet:

More information

Compiling Techniques

Compiling Techniques Lecture 5: Top-Down Parsing 26 September 2017 The Parser Context-Free Grammar (CFG) Lexer Source code Scanner char Tokeniser token Parser AST Semantic Analyser AST IR Generator IR Errors Checks the stream

More information

INF5110 Compiler Construction

INF5110 Compiler Construction INF5110 Compiler Construction Parsing Spring 2016 1 / 84 Overview First and Follow set: general concepts for grammars textbook looks at one parsing technique (top-down) [Louden, 1997, Chap. 4] before studying

More information

Theory Bridge Exam Example Questions

Theory Bridge Exam Example Questions Theory Bridge Exam Example Questions Annotated version with some (sometimes rather sketchy) answers and notes. This is a collection of sample theory bridge exam questions. This is just to get some idea

More information

Syntax Analysis Part III

Syntax Analysis Part III Syntax Analysis Part III Chapter 4: Top-Down Parsing Slides adapted from : Robert van Engelen, Florida State University Eliminating Ambiguity stmt if expr then stmt if expr then stmt else stmt other The

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 September 2, 2004 These supplementary notes review the notion of an inductive definition and

More information

Chapter 4: Context-Free Grammars

Chapter 4: Context-Free Grammars Chapter 4: Context-Free Grammars 4.1 Basics of Context-Free Grammars Definition A context-free grammars, or CFG, G is specified by a quadruple (N, Σ, P, S), where N is the nonterminal or variable alphabet;

More information

Syntax Analysis Part I

Syntax Analysis Part I 1 Syntax Analysis Part I Chapter 4 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2013 2 Position of a Parser in the Compiler Model Source Program Lexical Analyzer

More information

Syntax Analysis Part I

Syntax Analysis Part I 1 Syntax Analysis Part I Chapter 4 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2013 2 Position of a Parser in the Compiler Model Source Program Lexical Analyzer

More information

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata.

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata. Code No: R09220504 R09 Set No. 2 II B.Tech II Semester Examinations,December-January, 2011-2012 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer

More information

CFLs and Regular Languages. CFLs and Regular Languages. CFLs and Regular Languages. Will show that all Regular Languages are CFLs. Union.

CFLs and Regular Languages. CFLs and Regular Languages. CFLs and Regular Languages. Will show that all Regular Languages are CFLs. Union. We can show that every RL is also a CFL Since a regular grammar is certainly context free. We can also show by only using Regular Expressions and Context Free Grammars That is what we will do in this half.

More information

Syntax Analysis Part I. Position of a Parser in the Compiler Model. The Parser. Chapter 4

Syntax Analysis Part I. Position of a Parser in the Compiler Model. The Parser. Chapter 4 1 Syntax Analysis Part I Chapter 4 COP5621 Compiler Construction Copyright Robert van ngelen, Flora State University, 2007 Position of a Parser in the Compiler Model 2 Source Program Lexical Analyzer Lexical

More information

Administrivia. Test I during class on 10 March. Bottom-Up Parsing. Lecture An Introductory Example

Administrivia. Test I during class on 10 March. Bottom-Up Parsing. Lecture An Introductory Example Administrivia Test I during class on 10 March. Bottom-Up Parsing Lecture 11-12 From slides by G. Necula & R. Bodik) 2/20/08 Prof. Hilfinger CS14 Lecture 11 1 2/20/08 Prof. Hilfinger CS14 Lecture 11 2 Bottom-Up

More information

CONTEXT FREE GRAMMAR AND

CONTEXT FREE GRAMMAR AND CONTEXT FREE GRAMMAR AND PARSING STATIC ANALYSIS - PARSING Source language Scanner (lexical analysis) tokens Parser (syntax analysis) Syntatic structure Semantic Analysis (IC generator) Syntatic/sema ntic

More information

Automata Theory CS F-08 Context-Free Grammars

Automata Theory CS F-08 Context-Free Grammars Automata Theory CS411-2015F-08 Context-Free Grammars David Galles Department of Computer Science University of San Francisco 08-0: Context-Free Grammars Set of Terminals (Σ) Set of Non-Terminals Set of

More information

Supplementary Notes on Inductive Definitions

Supplementary Notes on Inductive Definitions Supplementary Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 29, 2002 These supplementary notes review the notion of an inductive definition

More information

FLAC Context-Free Grammars

FLAC Context-Free Grammars FLAC Context-Free Grammars Klaus Sutner Carnegie Mellon Universality Fall 2017 1 Generating Languages Properties of CFLs Generation vs. Recognition 3 Turing machines can be used to check membership in

More information

5/10/16. Grammar. Automata and Languages. Today s Topics. Grammars Definition A grammar G is defined as G = (V, T, P, S) where:

5/10/16. Grammar. Automata and Languages. Today s Topics. Grammars Definition A grammar G is defined as G = (V, T, P, S) where: Grammar Automata and Languages Grammar Prof. Mohamed Hamada oftware Engineering Lab. The University of Aizu Japan Regular Grammar Context-free Grammar Context-sensitive Grammar Left-linear Grammar right-linear

More information

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grammars and Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Compiling Techniques

Compiling Techniques Lecture 7: Abstract Syntax 13 October 2015 Table of contents Syntax Tree 1 Syntax Tree Semantic Actions Examples Abstract Grammar 2 Internal Representation AST Builder 3 Visitor Processing Semantic Actions

More information

Formal Languages, Grammars and Automata Lecture 5

Formal Languages, Grammars and Automata Lecture 5 Formal Languages, Grammars and Automata Lecture 5 Helle Hvid Hansen helle@cs.ru.nl http://www.cs.ru.nl/~helle/ Foundations Group Intelligent Systems Section Institute for Computing and Information Sciences

More information

Predictive parsing as a specific subclass of recursive descent parsing complexity comparisons with general parsing

Predictive parsing as a specific subclass of recursive descent parsing complexity comparisons with general parsing Plan for Today Recall Predictive Parsing when it works and when it doesn t necessary to remove left-recursion might have to left-factor Error recovery for predictive parsers Predictive parsing as a specific

More information

Compiling Techniques

Compiling Techniques Lecture 5: Top-Down Parsing 6 October 2015 The Parser Context-Free Grammar (CFG) Lexer Source code Scanner char Tokeniser token Parser AST Semantic Analyser AST IR Generator IR Errors Checks the stream

More information

Functions on languages:

Functions on languages: MA/CSSE 474 Final Exam Notation and Formulas page Name (turn this in with your exam) Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet

More information

CS 406: Bottom-Up Parsing

CS 406: Bottom-Up Parsing CS 406: Bottom-Up Parsing Stefan D. Bruda Winter 2016 BOTTOM-UP PUSH-DOWN AUTOMATA A different way to construct a push-down automaton equivalent to a given grammar = shift-reduce parser: Given G = (N,

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation CFL Hierarchy CFL Decision Problems Your Questions? Previous class days' material Reading Assignments HW 12 or 13 problems Anything else I have included some slides online

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa CS:4330 Theory of Computation Spring 2018 Regular Languages Finite Automata and Regular Expressions Haniel Barbosa Readings for this lecture Chapter 1 of [Sipser 1996], 3rd edition. Sections 1.1 and 1.3.

More information

Section 1 (closed-book) Total points 30

Section 1 (closed-book) Total points 30 CS 454 Theory of Computation Fall 2011 Section 1 (closed-book) Total points 30 1. Which of the following are true? (a) a PDA can always be converted to an equivalent PDA that at each step pops or pushes

More information

Notes for Comp 497 (454) Week 10

Notes for Comp 497 (454) Week 10 Notes for Comp 497 (454) Week 10 Today we look at the last two chapters in Part II. Cohen presents some results concerning the two categories of language we have seen so far: Regular languages (RL). Context-free

More information

Context Free Grammars: Introduction

Context Free Grammars: Introduction Context Free Grammars: Introduction Context free grammar (CFG) G = (V, Σ, R, S), where V is a set of grammar symbols Σ V is a set of terminal symbols R is a set of rules, where R (V Σ) V S is a distinguished

More information

Notes for Comp 497 (Comp 454) Week 10 4/5/05

Notes for Comp 497 (Comp 454) Week 10 4/5/05 Notes for Comp 497 (Comp 454) Week 10 4/5/05 Today look at the last two chapters in Part II. Cohen presents some results concerning context-free languages (CFL) and regular languages (RL) also some decidability

More information

CSCE 222 Discrete Structures for Computing. Propositional Logic. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Propositional Logic. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Propositional Logic Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Propositions A proposition is a declarative sentence that is either true or false

More information

Bottom-Up Syntax Analysis

Bottom-Up Syntax Analysis Bottom-Up Syntax Analysis Mooly Sagiv http://www.cs.tau.ac.il/~msagiv/courses/wcc13.html Textbook:Modern Compiler Design Chapter 2.2.5 (modified) 1 Pushdown automata Deterministic fficient Parsers Report

More information

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26 Parsing Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 26 Table of contents 1 Context-Free Grammars 2 Simplifying CFGs Removing useless symbols Eliminating

More information

Binary addition example worked out

Binary addition example worked out Binary addition example worked out Some terms are given here Exercise: what are these numbers equivalent to in decimal? The initial carry in is implicitly 0 1 1 1 0 (Carries) 1 0 1 1 (Augend) + 1 1 1 0

More information

CS153: Compilers Lecture 5: LL Parsing

CS153: Compilers Lecture 5: LL Parsing CS153: Compilers Lecture 5: LL Parsing Stephen Chong https://www.seas.harvard.edu/courses/cs153 Announcements Proj 1 out Due Thursday Sept 20 (2 days away) Proj 2 out Due Thursday Oct 4 (16 days away)

More information

Context-Free Grammars and Languages. We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs.

Context-Free Grammars and Languages. We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs. Context-Free Grammars and Languages We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs. Contex-Free Languages (CFL s) played a central role natural languages

More information

Context Free Languages: Decidability of a CFL

Context Free Languages: Decidability of a CFL Theorem 14.1 Context Free Languages: Decidability of a CFL Statement: Given a CFL L and string w, there is a decision procedure that determines whether w L. Proof: By construction. 1. Proof using a grammar

More information

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar TAFL 1 (ECS-403) Unit- III 3.1 Definition of CFG (Context Free Grammar) and problems 3.2 Derivation 3.3 Ambiguity in Grammar 3.3.1 Inherent Ambiguity 3.3.2 Ambiguous to Unambiguous CFG 3.4 Simplification

More information

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES Contents i SYLLABUS UNIT - I CHAPTER - 1 : AUT UTOMA OMATA Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 2 : FINITE AUT UTOMA OMATA An Informal Picture of Finite Automata,

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Spring 27 Alexis Maciel Department of Computer Science Clarkson University Copyright c 27 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

Foundations of

Foundations of 91.304 Foundations of (Theoretical) Computer Science Chapter 1 Lecture Notes (Section 1.3: Regular Expressions) David Martin dm@cs.uml.edu d with some modifications by Prof. Karen Daniels, Spring 2012

More information

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u,

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, 1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, v, x, y, z as per the pumping theorem. 3. Prove that

More information

Grammars and Context-free Languages; Chomsky Hierarchy

Grammars and Context-free Languages; Chomsky Hierarchy Regular and Context-free Languages; Chomsky Hierarchy H. Geuvers Institute for Computing and Information Sciences Version: fall 2015 H. Geuvers Version: fall 2015 Huygens College 1 / 23 Outline Regular

More information

Discrete Event Systems Exam

Discrete Event Systems Exam Computer Engineering and Networks Laboratory TEC, NSG, DISCO HS 2016 Prof. L. Thiele, Prof. L. Vanbever, Prof. R. Wattenhofer Discrete Event Systems Exam Friday, 3 rd February 2017, 14:00 16:00. Do not

More information

Easy Shortcut Definitions

Easy Shortcut Definitions This version Mon Dec 12 2016 Easy Shortcut Definitions If you read and understand only this section, you ll understand P and NP. A language L is in the class P if there is some constant k and some machine

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 28 Alexis Maciel Department of Computer Science Clarkson University Copyright c 28 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

Theory of Computation (VI) Yijia Chen Fudan University

Theory of Computation (VI) Yijia Chen Fudan University Theory of Computation (VI) Yijia Chen Fudan University Review Forced handles Definition A handle h of a valid string v = xhy is a forced handle if h is the unique handle in every valid string xhŷ where

More information

Equational Logic and Term Rewriting: Lecture I

Equational Logic and Term Rewriting: Lecture I Why so many logics? You all know classical propositional logic. Why would we want anything more? Equational Logic and Term Rewriting: Lecture I One reason is that we might want to change some basic logical

More information

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ.

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ. 1. Trees; context free grammars. 1.1. Trees. Definition 1.1. By a tree we mean an ordered triple T = (N, ρ, p) (i) N is a finite set; (ii) ρ N ; (iii) p : N {ρ} N ; (iv) if n N + and ν dmn p n then p n

More information

Compiler Principles, PS4

Compiler Principles, PS4 Top-Down Parsing Compiler Principles, PS4 Parsing problem definition: The general parsing problem is - given set of rules and input stream (in our case scheme token input stream), how to find the parse

More information

CPS 220 Theory of Computation

CPS 220 Theory of Computation CPS 22 Theory of Computation Review - Regular Languages RL - a simple class of languages that can be represented in two ways: 1 Machine description: Finite Automata are machines with a finite number of

More information

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach EDA045F: Program Analysis LECTURE 10: TYPES 1 Christoph Reichenbach In the last lecture... Performance Counters Challenges in Dynamic Performance Analysis Taint Analysis Binary Instrumentation 2 / 44 Types

More information

Introduction to ANTLR (ANother Tool for Language Recognition)

Introduction to ANTLR (ANother Tool for Language Recognition) Introduction to ANTLR (ANother Tool for Language Recognition) Jon Eyolfson University of Waterloo September 27 - October 1, 2010 Outline Introduction Usage Example Demonstration Conclusion Jon Eyolfson

More information

Compiler construction

Compiler construction Compiler construction Martin Steffen February 20, 2017 Contents 1 Abstract 1 1.1 Parsing.................................................. 1 1.1.1 First and follow sets.....................................

More information

Context-Free Grammars. 2IT70 Finite Automata and Process Theory

Context-Free Grammars. 2IT70 Finite Automata and Process Theory Context-Free Grammars 2IT70 Finite Automata and Process Theory Technische Universiteit Eindhoven May 18, 2016 Generating strings language L 1 = {a n b n n > 0} ab L 1 if w L 1 then awb L 1 production rules

More information

DISCRETE STRUCTURES FINAL EXAM FALL 2005, SECTION 0201 (PICKETT)

DISCRETE STRUCTURES FINAL EXAM FALL 2005, SECTION 0201 (PICKETT) DISCRETE STRUCTURES FINAL EXAM FALL 2005, SECTION 0201 (PICKETT) NAME: This exam is worth 20% of your final grade (500/2500 points) There are 7 problems (and 1 BONUS problem) You have until 12:30 to finish

More information

COMP 3161/9161 Week 2

COMP 3161/9161 Week 2 Concepts of Programming Languages Judgements, Inference Rules & Proofs Lecturer: Gabriele Keller Tutor: Liam O Connor University of New South Wales School of Computer Sciences & Engineering Sydney, Australia

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 22 CFG (1) Example: Grammar G telescope : Productions: S NP VP NP

More information

Discrete Structures, Final Exam

Discrete Structures, Final Exam Discrete Structures, Final Exam Monday, May 11, 2009 SOLUTIONS 1. (40 pts) Short answer. Put your answer in the box. No partial credit. [ ] 0 1 (a) If A = and B = 1 0 [ ] 0 0 1. 0 1 1 [ 0 1 1 0 0 1 ],

More information

Follow sets. LL(1) Parsing Table

Follow sets. LL(1) Parsing Table Follow sets. LL(1) Parsing Table Exercise Introducing Follow Sets Compute nullable, first for this grammar: stmtlist ::= ε stmt stmtlist stmt ::= assign block assign ::= ID = ID ; block ::= beginof ID

More information

CS481F01 Prelim 2 Solutions

CS481F01 Prelim 2 Solutions CS481F01 Prelim 2 Solutions A. Demers 7 Nov 2001 1 (30 pts = 4 pts each part + 2 free points). For this question we use the following notation: x y means x is a prefix of y m k n means m n k For each of

More information

Compiling Techniques

Compiling Techniques Lecture 3: Introduction to 22 September 2017 Reminder Action Create an account and subscribe to the course on piazza. Coursework Starts this afternoon (14.10-16.00) Coursework description is updated regularly;

More information

Introduction to Theoretical Computer Science. Motivation. Automata = abstract computing devices

Introduction to Theoretical Computer Science. Motivation. Automata = abstract computing devices Introduction to Theoretical Computer Science Motivation Automata = abstract computing devices Turing studied Turing Machines (= computers) before there were any real computers We will also look at simpler

More information

Lecture 4: Proposition, Connectives and Truth Tables

Lecture 4: Proposition, Connectives and Truth Tables Discrete Mathematics (II) Spring 2017 Lecture 4: Proposition, Connectives and Truth Tables Lecturer: Yi Li 1 Overview In last lecture, we give a brief introduction to mathematical logic and then redefine

More information