GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

Size: px
Start display at page:

Download "GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I"

Transcription

1 GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three questions. Q. No. Q.1 (a) Question Marks CO Unit-1 Define automata. Explain finite automata with neat and labeled diagram. Also check acceptability of string for the given automata.. (06) CO The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting". An automaton (Automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a Finite Automaton(FA) or Finite State Machine (FSM). Formal definition of a Finite Automaton An automaton can be represented by a 5-tuple (Q,, δ, q 0, F), where Q is a finite set of states. is a finite set of symbols, called the alphabet of the automaton. δ is the transition function. q 0 is the initial state from where any input is processed (q 0 Q). F is a set of final state/states of Q (F Q). An FA has three components: 1. input tape contains single string; 2. head reads input string one symbol at a time; and 3. Memory is in one of a finite number of states. String Acceptability: δ(q 0, ) δ(q 1, 01101) δ(q 3, 1101) δ(q 3, 101) δ(q 3, 01) δ(q 3, 1) q 3 Q.1 (b) As q 3 is the final state of the finite automata hence this string is accepted. Construct an NFA that accepts the set of strings defined over ={0,1} that (10)

2 starts with 1 and accepts the string of w mod 3=0 L={x * : x starts with 1 and x mod 3=0} Convert the NFA into equivalent DFA. Q.1 (a) OR Minimize the following finite automata. Also write procedure for minimization: (08) CO363.1 Step 1: State/Input 0 1 ->q0 q1 q3 q1 q0 q3

3 q2 q1 q4 q3 q5 q5 q4 q3 q3 *q5 q5 q5 Remove all un reachable states. Remove q2, q4 Step2: Separate into two sets Set 1 State/Input 0 1 ->q0 q1 q3 q1 q0 q3 q3 q5 q5 Set 2 State/Input 0 1 *q5 q5 q5 q3, q5 are indistinguishable states so we remove q3. Step 3:Combinning both sets State/Input 0 1 ->q0 q1 q5 q1 q0 q5 *q5 q5 q5 Transition Diagram q 0 q 1 q 5 0,1 0 Q.1 (b) Construct a deterministic finite automata equivalent to the following NDFA. (08) Transition Table State/Input >q0 { q1, q4} q4 q3 q1 - q4 - q2 - - { q2, q3} *q3 - q4 -

4 q Equivalent DFA Transition Table State/Input >q0 { q1, q4} q4 q3 *q3 - q4 - q { q1, q4} - q4 - q0 1 q4 0 2 { q1,q4},q 1 q3 1 Q.2 (a) Unit-2 Define regular expressions and languages associated with regular expressions. Write the regular expression and finite automata (transition diagram) for following languages over alphabets = {a,b}. i) The set of strings that start with ab end with bb. ii) The set of strings that starts with a and ends with b and contain at least one sequence of aaa in that strings. Regular Expression Regular expressions can be thought of as the algebraic description of a regular language. Regular expression can be defined by the following rules: Every letter of the alphabet is a regular expression. Null string є and empty set Φ are regular expressions. If r1 and r2 are regular expressions, then (i) r1, r2 (ii) r1r2 ( concatenation of r1r2 ) (iii) r1 + r2 ( union of r1 and r2 ) (iv) r1*, r2* ( kleen closure of r1 and r2 ) are also regular expressions If a string can be derived from the rules 1, 2 and 3 then it is also a regular expression. Regular Language: Regular languages are languages that can be generated from one-element languages by applying certain standard operations a finite number of times. They are the languages that can be recognized by finite automata. These simple operations include concatenation, union and kleen closure. By the use of these operations regular languages can be represented by an explicit formula. (10) CO363.2

5 i) The set of strings that start with ab end with bb. ab(a+b)*bb a b b b q 0 q 1 q 2 q 3 q 4 a,b ii) The set of strings that starts with a and ends with b and contain at least one sequence of aaa in that strings. a(a+b)*aaa(a+b)*b a,b a a a q 0 q 1 q 2 q 3 a a,b q 3 b q 4 Q.2 (b) Use Arden s theorem to find regular expression for the following DFA. (6) q1= q1.0+ q3.0.(1) q2= q1.1+ q2.1+ q3.1 (2) q3= q2.0 (3) put value of (3) in (2) q2= q1.1+ q2.1+ q2.01 q2= q1.1+ q2.(1+ 01) Using Arden s Theorem q2= q1.1(1+ 01)*..(4)

6 Q.2 (a) put value of (3) in (1) q1= q1.0+ q2.00.(5) put value of (4) in (5) q1= q1.0+ q1.1(1+ 01)*.00+^ q1= q1(0+ 1(1+ 01)*.00)+^ using arden s theorem q1= (0+ 1(1+ 01)*.00)* Regular expression corresponding this DFA is (0+ 1(1+ 01)*.00)* OR Write the closure properties of regular languages. Explain pigeon hole principle. Prove that language L= {a n b n : n 0} is not regular using method of contradiction. Closure Properties of regular languages: Any set that represents the value of the Regular Expression is called a Regular Set. Properties of Regular Sets Property 1. The union of two regular set is regular. Let us take two regular expressions RE1 = a(aa)* and RE2 = (aa)* So, L1 = {a, aaa, aaaaa,...} (Strings of odd length excluding Null) and L2 ={ ε, aa, aaaa, aaaaaa,...} (Strings of even length including Null) L1 L2 = { ε, a, aa, aaa, aaaa, aaaaa, aaaaaa,...} (Strings of all possible lengths including Null) RE (L1 L2) = a* (which is a regular expression itself) Property 2. The intersection of two regular set is regular. Let us take two regular expressions RE1 = a(a*) and RE2 = (aa)* So, L1 = { a,aa, aaa, aaaa,...} (Strings of all possible lengths excluding Null) L2 = { ε, aa, aaaa, aaaaaa,...} (Strings of even length including Null) L1 L2 = { aa, aaaa, aaaaaa,...} (Strings of even length excluding Null) RE (L1 L2) = aa(aa)* which is a regular expression itself. Property 3. The complement of a regular set is regular. Let us take a regular expression RE = (aa)* So, L = {ε, aa, aaaa, aaaaaa,...} (Strings of even length including Null) Complement of L is all the strings that is not in L. So, L = {a, aaa, aaaaa,...} (Strings of odd length excluding Null) RE (L ) = a(aa)* which is a regular expression itself. Property 4. The difference of two regular set is regular. Let us take two regular expressions RE1 = a (a*) and RE2 = (aa)* So, L1 = {a, aa, aaa, aaaa,...} (Strings of all possible lengths excluding Null) L2 = { ε, aa, aaaa, aaaaaa,...} (Strings of even length including Null) L1 L2 = {a, aaa, aaaaa, aaaaaaa,...} (08) CO363.2

7 (Strings of all odd lengths excluding Null) RE (L1 L2) = a (aa)* which is a regular expression. Property 5. The reversal of a regular set is regular. We have to prove L R is also regular if L is a regular set. Let, L = {01, 10, 11, 10} RE (L) = L R = {10, 01, 11, 01} RE (L R ) = which is regular Property 6. The closure of a regular set is regular. If L = {a, aaa, aaaaa,...} (Strings of odd length excluding Null) i.e., RE (L) = a (aa)* L* = {a, aa, aaa, aaaa, aaaaa, } (Strings of all lengths excluding Null) RE (L*) = a (a)* Property 7. The concatenation of two regular sets is regular. Let RE1 = (0+1)*0 and RE2 = 01(0+1)* Here, L1 = {0, 00, 10, 000, 010,...} (Set of strings ending in 0) and L2 = {01, 010,011,...} (Set of strings beginning with 01) Then, L1 L2 = {001,0010,0011,0001,00010,00011,1001,10010,...} Set of strings containing 001 as a substring which can be represented by an RE (0 + 1)*001(0 + 1)* Pigeon Hole Principle: Theorem: If "n" number of pigeons or objects are to be placed in "k" number of pigeonholes or boxes; where k<n, then there must be at least one pigeonhole or box which has more than one object. Proof of Generalized Pigeonhole Principle In order to prove generalized pigeonhole principle, we shall use the method of induction. According to which we will assume the contradiction and prove it wrong. Let us suppose that total "nn" number of pigeons are to be put in "mm" number of pigeonholes and n>m. Let us assume that there is no pigeonhole with at least n/m pigeons. In this case, each and every pigeonhole will have less than n/m pigeons. Therefore, we have Number of pigeons in each pigeonhole < n/m Total number of pigeons < number of pigeonhole x n/m Total number of pigeons < m* n/m Total number of pigeons < n But given that number of pigeons are strictly equal to n. Which is a contradiction to our assumption. Hence there exists at least one pigeonhole having at least n/m pigeons. This proves the generalized form of pigeonhole principle.

8 Prove that language L= {a n b n : n 0} is not regular Q.2 (b) (i) If G=({s},{a},{S SS},S).Find the language generated by G. (ii) Show that L= {a n n is prime number} is not regular. (08) (i) (ii) L=ϕ. Prove that L = {a n : n is a prime number} is not regular. a. We don't know m, but assume there is one. b. Choose a string w = a n where n is a prime number and xyz = n > m+1. (This can always be done because there is no largest prime number.) Any prefix of w consists entirely of a's. c. We don't know the decomposition of w into xyz, but since xy m, it follows that z > 1. As usual, y > 0, d. Since z > 1, xz > 1. Choose i = xz. Then xy i z = xz + y xz = (1 + y ) xz. Since (1 + y ) and xz are each greater than 1, the product must be a composite number. Thus xy i z is a composite number. Unit-3 Q.3 Show that grammar S ab/ab, A aab/a, B ABb/b is ambiguous. Consider a srting w=aaabbb Constructing derivation tree for this string (08) CO363.3

9 As we get two derivation trees for the string w=aaabbb hence this grammar is ambiguous. OR Q.3 The productions of any grammar is given by: S 0B/1A A 0/0S/1AA B 1/ 1S/0BB For the string , Find the leftmost derivation, Rightmost derivation and derivation tree. (08) CO363.3

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine (FSM).

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine (FSM). Automata The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting". An automaton (Automata in plural) is an abstract self-propelled computing device which follows a predetermined

More information

Finite Automata and Regular languages

Finite Automata and Regular languages Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1 Unit 6 Non Regular Languages The Pumping Lemma Reading: Sipser, chapter 1 1 Are all languages regular? No! Most of the languages are not regular! Why? A finite automaton has limited memory. How can we

More information

TAFL 1 (ECS-403) Unit- II. 2.1 Regular Expression: The Operators of Regular Expressions: Building Regular Expressions

TAFL 1 (ECS-403) Unit- II. 2.1 Regular Expression: The Operators of Regular Expressions: Building Regular Expressions TAFL 1 (ECS-403) Unit- II 2.1 Regular Expression: 2.1.1 The Operators of Regular Expressions: 2.1.2 Building Regular Expressions 2.1.3 Precedence of Regular-Expression Operators 2.1.4 Algebraic laws for

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

UNIT-III REGULAR LANGUAGES

UNIT-III REGULAR LANGUAGES Syllabus R9 Regulation REGULAR EXPRESSIONS UNIT-III REGULAR LANGUAGES Regular expressions are useful for representing certain sets of strings in an algebraic fashion. In arithmetic we can use the operations

More information

Computer Sciences Department

Computer Sciences Department 1 Reference Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER 3 objectives Finite automaton Infinite automaton Formal definition State diagram Regular and Non-regular

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Theory of Computation (Classroom Practice Booklet Solutions)

Theory of Computation (Classroom Practice Booklet Solutions) Theory of Computation (Classroom Practice Booklet Solutions) 1. Finite Automata & Regular Sets 01. Ans: (a) & (c) Sol: (a) The reversal of a regular set is regular as the reversal of a regular expression

More information

Formal Languages, Automata and Models of Computation

Formal Languages, Automata and Models of Computation CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content - More Properties of Regular Languages (RL)

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Computational Theory

Computational Theory Computational Theory Finite Automata and Regular Languages Curtis Larsen Dixie State University Computing and Design Fall 2018 Adapted from notes by Russ Ross Adapted from notes by Harry Lewis Curtis Larsen

More information

Languages. A language is a set of strings. String: A sequence of letters. Examples: cat, dog, house, Defined over an alphabet:

Languages. A language is a set of strings. String: A sequence of letters. Examples: cat, dog, house, Defined over an alphabet: Languages 1 Languages A language is a set of strings String: A sequence of letters Examples: cat, dog, house, Defined over an alphaet: a,, c,, z 2 Alphaets and Strings We will use small alphaets: Strings

More information

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3},

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3}, Code No: 07A50501 R07 Set No. 2 III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013 Q.2 a. Prove by mathematical induction n 4 4n 2 is divisible by 3 for n 0. Basic step: For n = 0, n 3 n = 0 which is divisible by 3. Induction hypothesis: Let p(n) = n 3 n is divisible by 3. Induction

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha. UNIT 2 Structure NON-DETERMINISTIC FINITE AUTOMATA

More information

Theory of Computation (II) Yijia Chen Fudan University

Theory of Computation (II) Yijia Chen Fudan University Theory of Computation (II) Yijia Chen Fudan University Review A language L is a subset of strings over an alphabet Σ. Our goal is to identify those languages that can be recognized by one of the simplest

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Finite Automata. Finite Automata

Finite Automata. Finite Automata Finite Automata Finite Automata Formal Specification of Languages Generators Grammars Context-free Regular Regular Expressions Recognizers Parsers, Push-down Automata Context Free Grammar Finite State

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

The Pumping Lemma and Closure Properties

The Pumping Lemma and Closure Properties The Pumping Lemma and Closure Properties Mridul Aanjaneya Stanford University July 5, 2012 Mridul Aanjaneya Automata Theory 1/ 27 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Author: Vivek Kulkarni ( )

Author: Vivek Kulkarni ( ) Author: Vivek Kulkarni ( vivek_kulkarni@yahoo.com ) Chapter-3: Regular Expressions Solutions for Review Questions @ Oxford University Press 2013. All rights reserved. 1 Q.1 Define the following and give

More information

Theory of Computation

Theory of Computation Fall 2002 (YEN) Theory of Computation Midterm Exam. Name:... I.D.#:... 1. (30 pts) True or false (mark O for true ; X for false ). (Score=Max{0, Right- 1 2 Wrong}.) (1) X... If L 1 is regular and L 2 L

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

More Properties of Regular Languages

More Properties of Regular Languages More Properties of Regular anguages 1 We have proven Regular languages are closed under: Union Concatenation Star operation Reverse 2 Namely, for regular languages 1 and 2 : Union 1 2 Concatenation Star

More information

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA)

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA) Languages Non deterministic finite automata with ε transitions Recall What is a language? What is a class of languages? Finite Automata Consists of A set of states (Q) A start state (q o ) A set of accepting

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission.

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission. CSE 5 Homework Due: Monday October 9, 7 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in this

More information

Theory of Computation (I) Yijia Chen Fudan University

Theory of Computation (I) Yijia Chen Fudan University Theory of Computation (I) Yijia Chen Fudan University Instructor Yijia Chen Homepage: http://basics.sjtu.edu.cn/~chen Email: yijiachen@fudan.edu.cn Textbook Introduction to the Theory of Computation Michael

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r Syllabus R9 Regulation UNIT-II NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: In the automata theory, a nondeterministic finite automaton (NFA) or nondeterministic finite state machine is a finite

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Closure Properties of Context-Free Languages. Foundations of Computer Science Theory

Closure Properties of Context-Free Languages. Foundations of Computer Science Theory Closure Properties of Context-Free Languages Foundations of Computer Science Theory Closure Properties of CFLs CFLs are closed under: Union Concatenation Kleene closure Reversal CFLs are not closed under

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages Finite Automata and Regular Languages Topics to be covered in Chapters 1-4 include: deterministic vs. nondeterministic FA, regular expressions, one-way vs. two-way FA, minimization, pumping lemma for regular

More information

Automata Theory for Presburger Arithmetic Logic

Automata Theory for Presburger Arithmetic Logic Automata Theory for Presburger Arithmetic Logic References from Introduction to Automata Theory, Languages & Computation and Constraints in Computational Logic Theory & Application Presented by Masood

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

Uses of finite automata

Uses of finite automata Chapter 2 :Finite Automata 2.1 Finite Automata Automata are computational devices to solve language recognition problems. Language recognition problem is to determine whether a word belongs to a language.

More information

Closure under the Regular Operations

Closure under the Regular Operations Closure under the Regular Operations Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have

More information

CS 121, Section 2. Week of September 16, 2013

CS 121, Section 2. Week of September 16, 2013 CS 121, Section 2 Week of September 16, 2013 1 Concept Review 1.1 Overview In the past weeks, we have examined the finite automaton, a simple computational model with limited memory. We proved that DFAs,

More information

Nondeterministic Finite Automata and Regular Expressions

Nondeterministic Finite Automata and Regular Expressions Nondeterministic Finite Automata and Regular Expressions CS 2800: Discrete Structures, Spring 2015 Sid Chaudhuri Recap: Deterministic Finite Automaton A DFA is a 5-tuple M = (Q, Σ, δ, q 0, F) Q is a finite

More information

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages CSci 311, Models of Computation Chapter 4 Properties of Regular Languages H. Conrad Cunningham 29 December 2015 Contents Introduction................................. 1 4.1 Closure Properties of Regular

More information

Question Bank UNIT I

Question Bank UNIT I Siddhivinayak Technical Campus School of Engineering & Research Technology Department of computer science and Engineering Session 2016-2017 Subject Name- Theory of Computation Subject Code-4KS05 Sr No.

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.1 Design an automaton that recognizes a given language. Specify each of

More information

Warshall s algorithm

Warshall s algorithm Regular Expressions [1] Warshall s algorithm See Floyd-Warshall algorithm on Wikipedia The Floyd-Warshall algorithm is a graph analysis algorithm for finding shortest paths in a weigthed, directed graph

More information

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata : Organization of Programming Languages Theory of Regular Expressions Finite Automata Previous Course Review {s s defined} means the set of string s such that s is chosen or defined as given s A means

More information

Chapter 3. Regular grammars

Chapter 3. Regular grammars Chapter 3 Regular grammars 59 3.1 Introduction Other view of the concept of language: not the formalization of the notion of effective procedure, but set of words satisfying a given set of rules Origin

More information

What Is a Language? Grammars, Languages, and Machines. Strings: the Building Blocks of Languages

What Is a Language? Grammars, Languages, and Machines. Strings: the Building Blocks of Languages Do Homework 2. What Is a Language? Grammars, Languages, and Machines L Language Grammar Accepts Machine Strings: the Building Blocks of Languages An alphabet is a finite set of symbols: English alphabet:

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) CS/ECE 374: Algorithms & Models of Computation, Fall 28 Deterministic Finite Automata (DFAs) Lecture 3 September 4, 28 Chandra Chekuri (UIUC) CS/ECE 374 Fall 28 / 33 Part I DFA Introduction Chandra Chekuri

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING DUNDIGAL 500 043, HYDERABAD COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name : FORMAL LANGUAGES AND AUTOMATA THEORY Course Code : A40509 Class :

More information

Lecture 17: Language Recognition

Lecture 17: Language Recognition Lecture 17: Language Recognition Finite State Automata Deterministic and Non-Deterministic Finite Automata Regular Expressions Push-Down Automata Turing Machines Modeling Computation When attempting to

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Part I DFA Introduction Sariel

More information

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata.

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata. Code No: R09220504 R09 Set No. 2 II B.Tech II Semester Examinations,December-January, 2011-2012 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer

More information

Theory of Computation

Theory of Computation Theory of Computation COMP363/COMP6363 Prerequisites: COMP4 and COMP 6 (Foundations of Computing) Textbook: Introduction to Automata Theory, Languages and Computation John E. Hopcroft, Rajeev Motwani,

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 9 Ana Bove April 19th 2018 Recap: Regular Expressions Algebraic representation of (regular) languages; R, S ::= a R + S RS R......

More information

FABER Formal Languages, Automata. Lecture 2. Mälardalen University

FABER Formal Languages, Automata. Lecture 2. Mälardalen University CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 2 Mälardalen University 2010 1 Content Languages, g Alphabets and Strings Strings & String Operations Languages & Language Operations

More information

Regular Languages. Problem Characterize those Languages recognized by Finite Automata.

Regular Languages. Problem Characterize those Languages recognized by Finite Automata. Regular Expressions Regular Languages Fundamental Question -- Cardinality Alphabet = Σ is finite Strings = Σ is countable Languages = P(Σ ) is uncountable # Finite Automata is countable -- Q Σ +1 transition

More information

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata.

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata. CMSC 330: Organization of Programming Languages Last Lecture Languages Sets of strings Operations on languages Finite Automata Regular expressions Constants Operators Precedence CMSC 330 2 Clarifications

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

Computational Models - Lecture 1 1

Computational Models - Lecture 1 1 Computational Models - Lecture 1 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. February 29/ March 02, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames

More information

What we have done so far

What we have done so far What we have done so far DFAs and regular languages NFAs and their equivalence to DFAs Regular expressions. Regular expressions capture exactly regular languages: Construct a NFA from a regular expression.

More information

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10 Regular Languages Andreas Karwath & Malte Helmert 1 Overview Deterministic finite automata Regular languages Nondeterministic finite automata Closure operations Regular expressions Nonregular languages

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation 9/2/28 Stereotypical computer CISC 49 Theory of Computation Finite state machines & Regular languages Professor Daniel Leeds dleeds@fordham.edu JMH 332 Central processing unit (CPU) performs all the instructions

More information

Fooling Sets and. Lecture 5

Fooling Sets and. Lecture 5 Fooling Sets and Introduction to Nondeterministic Finite Automata Lecture 5 Proving that a language is not regular Given a language, we saw how to prove it is regular (union, intersection, concatenation,

More information

CPSC 421: Tutorial #1

CPSC 421: Tutorial #1 CPSC 421: Tutorial #1 October 14, 2016 Set Theory. 1. Let A be an arbitrary set, and let B = {x A : x / x}. That is, B contains all sets in A that do not contain themselves: For all y, ( ) y B if and only

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

3515ICT: Theory of Computation. Regular languages

3515ICT: Theory of Computation. Regular languages 3515ICT: Theory of Computation Regular languages Notation and concepts concerning alphabets, strings and languages, and identification of languages with problems (H, 1.5). Regular expressions (H, 3.1,

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Spring 29 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, January 22, 29 L A TEXed: December 27, 28 8:25 Chan, Har-Peled, Hassanieh (UIUC) CS374 Spring

More information

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES Contents i SYLLABUS UNIT - I CHAPTER - 1 : AUT UTOMA OMATA Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 2 : FINITE AUT UTOMA OMATA An Informal Picture of Finite Automata,

More information

Non-deterministic Finite Automata (NFAs)

Non-deterministic Finite Automata (NFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Non-deterministic Finite Automata (NFAs) Part I NFA Introduction Lecture 4 Thursday, September 7, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel

More information

Proofs, Strings, and Finite Automata. CS154 Chris Pollett Feb 5, 2007.

Proofs, Strings, and Finite Automata. CS154 Chris Pollett Feb 5, 2007. Proofs, Strings, and Finite Automata CS154 Chris Pollett Feb 5, 2007. Outline Proofs and Proof Strategies Strings Finding proofs Example: For every graph G, the sum of the degrees of all the nodes in G

More information

CS Automata, Computability and Formal Languages

CS Automata, Computability and Formal Languages Automata, Computability and Formal Languages Luc Longpré faculty.utep.edu/longpre 1 - Pg 1 Slides : version 3.1 version 1 A. Tapp version 2 P. McKenzie, L. Longpré version 2.1 D. Gehl version 2.2 M. Csűrös,

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1)

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols. Definition 2 (String)

More information

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2 5-25 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 26th, 27 Formal definition: DFA A deterministic finite automaton (DFA) M =(Q,,,q,F) M is

More information

Automata Theory and Formal Grammars: Lecture 1

Automata Theory and Formal Grammars: Lecture 1 Automata Theory and Formal Grammars: Lecture 1 Sets, Languages, Logic Automata Theory and Formal Grammars: Lecture 1 p.1/72 Sets, Languages, Logic Today Course Overview Administrivia Sets Theory (Review?)

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) September,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.  ETH Zürich (D-ITET) September, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 28 2017 Part 2 out of 5 Last week was all about Deterministic Finite Automaton

More information

Before we show how languages can be proven not regular, first, how would we show a language is regular?

Before we show how languages can be proven not regular, first, how would we show a language is regular? CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful

More information

DM17. Beregnelighed. Jacob Aae Mikkelsen

DM17. Beregnelighed. Jacob Aae Mikkelsen DM17 Beregnelighed Jacob Aae Mikkelsen January 12, 2007 CONTENTS Contents 1 Introduction 2 1.1 Operations with languages...................... 2 2 Finite Automata 3 2.1 Regular expressions/languages....................

More information

Computational Models - Lecture 3 1

Computational Models - Lecture 3 1 Computational Models - Lecture 3 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. March 13/18, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

UNIT-I. Strings, Alphabets, Language and Operations

UNIT-I. Strings, Alphabets, Language and Operations UNIT-I Strings, Alphabets, Language and Operations Strings of characters are fundamental building blocks in computer science. Alphabet is defined as a non empty finite set or nonempty set of symbols. The

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

Languages, regular languages, finite automata

Languages, regular languages, finite automata Notes on Computer Theory Last updated: January, 2018 Languages, regular languages, finite automata Content largely taken from Richards [1] and Sipser [2] 1 Languages An alphabet is a finite set of characters,

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is Abstraction of Problems Data: abstracted as a word in a given alphabet. Σ: alphabet, a finite, non-empty set of symbols. Σ : all the words of finite length built up using Σ: Conditions: abstracted as a

More information

Regular expressions and Kleene s theorem

Regular expressions and Kleene s theorem and Informatics 2A: Lecture 5 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 25 September, 2014 1 / 26 1 More closure properties of regular languages Operations on languages

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION IDENTIFYING NONREGULAR LANGUAGES PUMPING LEMMA Carnegie Mellon University in Qatar (CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 5 SPRING 2011

More information

Theory of Languages and Automata

Theory of Languages and Automata Theory of Languages and Automata Chapter 1- Regular Languages & Finite State Automaton Sharif University of Technology Finite State Automaton We begin with the simplest model of Computation, called finite

More information

How do regular expressions work? CMSC 330: Organization of Programming Languages

How do regular expressions work? CMSC 330: Organization of Programming Languages How do regular expressions work? CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata What we ve learned What regular expressions are What they can express, and cannot

More information

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F)

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Outline Nondeterminism Regular expressions Elementary reductions http://www.cs.caltech.edu/~cs20/a October 8, 2002 1 Determistic Finite Automata A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Q is a finite

More information