Module 1 - Signal estimation

Size: px
Start display at page:

Download "Module 1 - Signal estimation"

Transcription

1 , Arraial do Cabo, 2009 Module 1 - Signal estimation Sérgio M. Jesus (sjesus@ualg.pt) Universidade do Algarve, PT Faro, Portugal February 2009

2 Outline of Module 1 Parameter estimation (1) the problem (2) example of estimators The underwater channel as a linear system (1) data model and assumptions (2) the space-time filter: real data example Data model and optimality (1) the discrete data model (2) deterministic signal in noise: the optimal noise enhancer (3) the generalized matched filter (GMF) (4) the correlated noise case (5) the multichannel optimal receiver

3 A parameter estimation problem Assume de discrete time observations x t = [x(0), x(1),..., x(n 1)] (1) that depends on some parameter θ that we want to estimate. set Estimator ˆθ of θ can be written as a deterministic function g of the observed data ˆθ = g(x) (2) Our goal is to determine g that provides the best estimator ˆθ of θ. best in which sense? how to determine g?

4 Example: the mean of a time series Our data model in this case will appopriately be x(n) = A + w(n), where A is a constant to be determined and w(n) is a zero-mean random process.

5 An intituitive estimator of A would be  = 1 N N 1 n=0 x(n) (3) in fact if the model is true, in a mean E[Â] = 1 N N 1 n=0 E[x(n)] = A (4) Estimator  is said to be unbiased. But there are many other estimators of A as for example, à = x(0). Which one of this estimators is the best estimator of A?

6 Example: the mean of a time series (cont.) Let us assume that w(n) : N (0, σ 2 ), then E[Ã] = E[x(0)] = A + E[w(0)] = A (5) which basically says that statistics... Ã is also unbiased. So, we have to resort to second order [ V [Â] = V 1 N = 1 N 2 N 1 n=0 N 1 n=0 x(n) ] V [w(n)] = σ2 N (6)

7 while for à V [Ã] = V [x(0)] = V [w(0)] = σ 2 (7) and therefore the variance of  is smaller than that of à by a factor N. search for the Minimum Variance Unbiased Estimator (MVUE)

8 Minimum Variance Unbiased Estimator (MVUE) Minimum variance and no bias are estimator characteristics but do not tell us how close we are from the true value mean square error (MSE). but MSE(ˆθ) = E MSE(ˆθ) = E[(ˆθ θ) 2 ] (8) = V [ˆθ] + [[(ˆθ E[ˆθ]) + (E[ˆθ] θ)] 2] [ ] 2 E(ˆθ) θ = V [ˆθ] + b 2 (ˆθ) so, for unbiased estimators b(ˆθ) = 0 and therefore minimum variance means minimum MSE. An MVUE does not always exists and if it exists it is not ensured to be able to find it.

9 How to find the MVUE 1. determine the Cramer-Rao Lower Bound (CRLB) and check if some estimator satisfies it - that is the MVUE. 2. if no estimator satisfies the bound, use a sufficient statistic and apply the Rao- Blackwell-Lehmann-Scheffe theorem. 3. restrict the class of estimators not only unbiased and of minimum variance but also linear in the data so that g is a linear function. This is the Best Linear Unbiased Estimator (BLUE), which may coincide with the MVUE if it happens to be linear.

10 CRLB The CRLB states how well a given parameter can be estimated. That ability depends on the sharpness of the Probability Density Function (PDF) against the parameter given the data. PDF of data dependence on a given parameter, assuming Gaussian p(x[0]; A) = 1 [ exp 1 ] 2ıσ 2 2σ2(x[0] A)2 (9) V [ˆθ] E 1 [ 2 ln p(x;θ) θ ] (10) Assume data model, hypothesis on signal(s), noise and interferences.

11

12 Problems and applications Direct problem: determine acoustic pressure propagation model(s) Geometric inverse problem: determine source characteristics is there a source present? detection problem where is the source emitting from? estimate source position, what is the source emitting? estimate emitted signal Environmental inverse problem: monitoring / exploring the environment tomography: estimate water column temperature in 3D and time bottom properties: estimation bottom properties in 3D

13 The underwater channel as a linear system s(t) Channel h(t, θ) p(t, θ) y(t, θ) w(t) { p(t, θ) = h(t, θ) s(t) y(t, θ) = p(t, θ) + w(t) h(t, θ) : channel impulse response, θ is a vector with geometric and environmental known, unknown or partially known parameters, assumed deterministic or random s(t) : emitted signal, assumed known, unknown, random or deterministic. w(t) : observation additive noise, non-correlated with signal, zero mean, space-time correlated or uncorrelated (11)

14 The underwater channel as a space-time filter Example from the MREA/BP 07 sea trial ' 10 45' 10 48' 10 51' 10 54' 10 57' ACTIVE ACOUSTIC RUN REP2 m ' ' 30 APRIL 2007 UTC Time : 08:55-14:00 m 50 m B Y 08:55 S S SS SSS S SS SS S S S SS SS S 14:00 08: ' 0 1 AOB21 L E Leonardo O N YS A R 10 45' A D O Meters ' 42 36' SS SS SS SS S S SS SS SS S SS 42 39' 42 39' AOB22 m 14: ' ' Meters 10 54' 10 57'

15 Received signals in the AO Buoy 7km

16 Received signals in the AO Buoy 11km

17 Comparing received signals

18 Data model and optimality (1) Continuous to discrete time data model { p(t, θ) = h(t, θ) s(t) y(t, θ) = p(t, θ) + w(t) { p(θ) = H(θ)s y(θ) = p(θ) + w with p t (θ) = [p(0, θ), p(1, θ),..., p(n 1, θ)] H(θ) = h(0, θ) h(1, θ) h(0, θ) h(n 1, θ) h(n 2, θ)... h(0, θ) = h t (0, θ). h t (n, θ). h t (N 1, θ) s t = [s(0), s(1),..., s(n 1)] w is [0, C w ] if time correlated, C w = σ 2 I if time uncorrelated. y is [p(θ), C w ] if deterministic signal

19 Data model and optimality (2) Objective: find filter g(t) to optimally reduce noise on the received acoustic pressure. y(t, θ) g(t) z(t, θ) y(θ) = p(θ) + w z(θ) = z o (θ) + w o z o (θ) = Gp(θ) w o = Gw

20 Generalized Matched Filter (GMF) Signal-to-noise ratio in: ρ in = p(θ) 2 E[ w 2 ] Signal-to-noise ratio out: ρ out = z o(θ) 2 Instantaneous SNR out: E[ w o 2 ] Find G so as to maximize ρ(n, θ) ρ(n, θ) = gt (n)p(θ) 2 E[ g t (n)w 2 ]

21 GMF: the white noise case Assuming: temporally white noise, C w = σ 2 I ρ(n, θ) = gt (n)p(θ) 2 E[ g t (n)w 2 ] = gt (n)p(θ) 2 g t (n)e[ww t ]g(n) = 1 σ 2 g t (n)p(θ) 2 g t (n)g(n) in virtue of the Schwartz inequality x t y 2 x 2 y 2 with equality iff x = λy, ρ(n, θ) will be maximum for g(n) = λp(θ) = λh(θ)s the filter is said to be matched to the incoming signal matched filter

22 GMF: the correlated noise case (1) Assuming: temporally correlated noise, E[ww t ] = C w, with C w definite positive = D t D, with D non-singular, therefore C 1 w y(θ) ỹ(θ) = Dy(θ) ỹ(θ) is said to be a pre-whitened version of the observation vector y(θ). ρ(n, θ) = gt (n) p(θ) 2 E[ g t (n) w 2 ] = g t (n) p(θ) 2 g t (n)de[ww t ]D t g(n) = g t (n) p(θ) 2 g t (n)dc w D t g(n) = gt (n) p(θ) 2 g t (n) g(n)

23 GMF: the correlated noise case (2) As before ρ(n, θ) will be maximum for g(n) = λ p(θ), since g(n) = D t g(n) we have g(n) g(n) = λ p(θ) = λdp(θ) = λd t Dp(θ) = λc 1 w p(θ) in practice the GMF is a time-reversed replica of the signal g(n 1 n, θ) = λ p(n, θ), n = 0,..., N 1 g(n, θ) = λ p(n 1 n, θ), n = 0,..., N 1 filter by a time-reversed signal = correlate with that signal.

24 GMF: the multichannel (spatial) version (1) Let us assume K sensors, KN sample augmented vector y t a(θ) = [y t (0, θ), y t (1, θ),..., y t (N 1, θ)] with y(n, θ) a K-dimensional vector with the K sensor entries at time n, y t (n, θ) = [y 1 (n, θ), y 2 (n, θ),..., y K (n, θ)] is the temporal-ordering. Similarly the spatial ordering is y t a(θ) = [y t 1(θ), y t 2(θ),..., y t K(θ)] with y t k(θ) = [y k (0, θ), y k (1, θ),..., y k (N 1, θ)].

25 GMF: the multichannel (spatial) version (2) The augmented data model (spatially-ordered) with y a (θ) = H a (θ)s + w a H a (θ) = [H 1 (θ) H 2 (θ)... H K (θ)] t and the appropriate notation for w a, allows for the multichannel GMF, g a (n) = λp a (θ) = λh a (θ)s z(n, θ) = n 1 g t (n )y(n, θ) = K g t k(n)y k (θ) n =0 k=1

26 Bibliography 1. W.B. Davenport Jr. and W.L. Root, An Introduction to the Theory of Random Signals and Noise, IEEE Press, New York, L. Scharf, Statistica Signal Processing: Detection, Estimation and Time Series Analysis, Addison-Wesley, New York, S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Vol.2, Prentice-Hall, New Jersey (USA), S.M. Jesus, C. Martins and F. Zabel, Maritime Rapid Environmental Assessment / Blue Planet 07: Acoustic Oceanographic Buoys Data Report, Rep. 03/07, SiPLAB Report, University of Algarve, August F.B. Jensen, W.A. Kuperman, M.B. Porter and H. Schmidt, Computational Ocean Acoustics, AIP, New York (USA), 1993.

EIE6207: Estimation Theory

EIE6207: Estimation Theory EIE6207: Estimation Theory Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: Steven M.

More information

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE)

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) 1 ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Minimum Variance Unbiased Estimators (MVUE)

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

A Few Notes on Fisher Information (WIP)

A Few Notes on Fisher Information (WIP) A Few Notes on Fisher Information (WIP) David Meyer dmm@{-4-5.net,uoregon.edu} Last update: April 30, 208 Definitions There are so many interesting things about Fisher Information and its theoretical properties

More information

Advanced Signal Processing Introduction to Estimation Theory

Advanced Signal Processing Introduction to Estimation Theory Advanced Signal Processing Introduction to Estimation Theory Danilo Mandic, room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

Classical Estimation Topics

Classical Estimation Topics Classical Estimation Topics Namrata Vaswani, Iowa State University February 25, 2014 This note fills in the gaps in the notes already provided (l0.pdf, l1.pdf, l2.pdf, l3.pdf, LeastSquares.pdf). 1 Min

More information

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur Module Random Processes Version, ECE IIT, Kharagpur Lesson 9 Introduction to Statistical Signal Processing Version, ECE IIT, Kharagpur After reading this lesson, you will learn about Hypotheses testing

More information

Chapter 8: Least squares (beginning of chapter)

Chapter 8: Least squares (beginning of chapter) Chapter 8: Least squares (beginning of chapter) Least Squares So far, we have been trying to determine an estimator which was unbiased and had minimum variance. Next we ll consider a class of estimators

More information

EIE6207: Maximum-Likelihood and Bayesian Estimation

EIE6207: Maximum-Likelihood and Bayesian Estimation EIE6207: Maximum-Likelihood and Bayesian Estimation Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Estimation and Detection

Estimation and Detection stimation and Detection Lecture 2: Cramér-Rao Lower Bound Dr. ir. Richard C. Hendriks & Dr. Sundeep P. Chepuri 7//207 Remember: Introductory xample Given a process (DC in noise): x[n]=a + w[n], n=0,,n,

More information

Linear models. x = Hθ + w, where w N(0, σ 2 I) and H R n p. The matrix H is called the observation matrix or design matrix 1.

Linear models. x = Hθ + w, where w N(0, σ 2 I) and H R n p. The matrix H is called the observation matrix or design matrix 1. Linear models As the first approach to estimator design, we consider the class of problems that can be represented by a linear model. In general, finding the MVUE is difficult. But if the linear model

More information

Chapters 9. Properties of Point Estimators

Chapters 9. Properties of Point Estimators Chapters 9. Properties of Point Estimators Recap Target parameter, or population parameter θ. Population distribution f(x; θ). { probability function, discrete case f(x; θ) = density, continuous case The

More information

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Matched Filter Generalized Matched Filter Signal

More information

MODEL-BASED CORRELATORS: INTERESTING CASES IN UNDERWATER ACOUSTICS

MODEL-BASED CORRELATORS: INTERESTING CASES IN UNDERWATER ACOUSTICS Selected Topics of the New Acoustics 133 MODEL-BASED CORRELATORS: INTERESTING CASES IN UNDERWATER ACOUSTICS S.M. Jesus SiPLAB - FCT, Universidade do Algarve, Campus de Gambelas, PT-8000 Faro, Portugal.

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee Stochastic Processes Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee 1 Outline Methods of Mean Squared Error Bias and Unbiasedness Best Unbiased Estimators CR-Bound for variance

More information

Proof In the CR proof. and

Proof In the CR proof. and Question Under what conditions will we be able to attain the Cramér-Rao bound and find a MVUE? Lecture 4 - Consequences of the Cramér-Rao Lower Bound. Searching for a MVUE. Rao-Blackwell Theorem, Lehmann-Scheffé

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU)

Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU) Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU) Danilo Mandic room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Properties of Point Estimators and Methods of Estimation 2 3 If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition

More information

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1 Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maximum likelihood Consistency Confidence intervals Properties of the mean estimator Properties of the

More information

Rowan University Department of Electrical and Computer Engineering

Rowan University Department of Electrical and Computer Engineering Rowan University Department of Electrical and Computer Engineering Estimation and Detection Theory Fall 2013 to Practice Exam II This is a closed book exam. There are 8 problems in the exam. The problems

More information

Last Lecture. Biostatistics Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator. Related Theorems. Rao-Blackwell Theorem

Last Lecture. Biostatistics Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator. Related Theorems. Rao-Blackwell Theorem Last Lecture Biostatistics 62 - Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator Hyun Min Kang February 28th, 213 For single-parameter exponential family, is Cramer-Rao bound always attainable?

More information

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1 Adaptive Filtering and Change Detection Bo Wahlberg (KTH and Fredrik Gustafsson (LiTH Course Organization Lectures and compendium: Theory, Algorithms, Applications, Evaluation Toolbox and manual: Algorithms,

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Theory of Statistics.

Theory of Statistics. Theory of Statistics. Homework V February 5, 00. MT 8.7.c When σ is known, ˆµ = X is an unbiased estimator for µ. If you can show that its variance attains the Cramer-Rao lower bound, then no other unbiased

More information

MITIGATING UNCORRELATED PERIODIC DISTURBANCE IN NARROWBAND ACTIVE NOISE CONTROL SYSTEMS

MITIGATING UNCORRELATED PERIODIC DISTURBANCE IN NARROWBAND ACTIVE NOISE CONTROL SYSTEMS 17th European Signal Processing Conference (EUSIPCO 29) Glasgow, Scotland, August 24-28, 29 MITIGATING UNCORRELATED PERIODIC DISTURBANCE IN NARROWBAND ACTIVE NOISE CONTROL SYSTEMS Muhammad Tahir AKHTAR

More information

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Progress In Electromagnetics Research C, Vol. 6, 13 20, 2009 FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Y. Wu School of Computer Science and Engineering Wuhan Institute of Technology

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium November 12, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

ECE 275A Homework 6 Solutions

ECE 275A Homework 6 Solutions ECE 275A Homework 6 Solutions. The notation used in the solutions for the concentration (hyper) ellipsoid problems is defined in the lecture supplement on concentration ellipsoids. Note that θ T Σ θ =

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

LINEAR MODELS IN STATISTICAL SIGNAL PROCESSING

LINEAR MODELS IN STATISTICAL SIGNAL PROCESSING TERM PAPER REPORT ON LINEAR MODELS IN STATISTICAL SIGNAL PROCESSING ANIMA MISHRA SHARMA, Y8104001 BISHWAJIT SHARMA, Y8104015 Course Instructor DR. RAJESH HEDGE Electrical Engineering Department IIT Kanpur

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 2: Estimation Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Classical Estimation

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

SIMON FRASER UNIVERSITY School of Engineering Science

SIMON FRASER UNIVERSITY School of Engineering Science SIMON FRASER UNIVERSITY School of Engineering Science Course Outline ENSC 810-3 Digital Signal Processing Calendar Description This course covers advanced digital signal processing techniques. The main

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

From oceanographic to acoustic forecasting: acoustic model calibration using in situ acoustic measures

From oceanographic to acoustic forecasting: acoustic model calibration using in situ acoustic measures From oceanographic to acoustic forecasting: acoustic model calibration using in situ acoustic measures Nélson Martins and Sérgio M. Jesus Abstract Sonar performance prediction relies heavily on acoustic

More information

Estimation, Detection, and Identification

Estimation, Detection, and Identification Estimation, Detection, and Identification Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Chapter 5 Best Linear Unbiased Estimators Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ, April 1, 010 QUESTION BOOKLET Your

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

Bayesian Methods in Positioning Applications

Bayesian Methods in Positioning Applications Bayesian Methods in Positioning Applications Vedran Dizdarević v.dizdarevic@tugraz.at Graz University of Technology, Austria 24. May 2006 Bayesian Methods in Positioning Applications p.1/21 Outline Problem

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Abstract. We will introduce a class of distributions that will contain many of the discrete and continuous we are familiar with. This class will help

More information

Detection and Estimation Theory

Detection and Estimation Theory Detection and Estimation Theory Instructor: Prof. Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University http://www.ece.iastate.edu/ namrata Slide 1 What is Estimation and Detection

More information

Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water

Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water p. 1/23 Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water Hailiang Tao and Jeffrey Krolik Department

More information

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM Tadeu N. Ferreira, Sergio L. Netto, and Paulo S. R. Diniz Electrical Engineering Program COPPE/DEL-Poli/Federal University of Rio de Janeiro P.O.

More information

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Mianzhi Wang, Zhen Zhang, and Arye Nehorai Preston M. Green Department of Electrical & Systems Engineering Washington University in

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model

5 Kalman filters. 5.1 Scalar Kalman filter. Unit delay Signal model. System model 5 Kalman filters 5.1 Scalar Kalman filter 5.1.1 Signal model System model {Y (n)} is an unobservable sequence which is described by the following state or system equation: Y (n) = h(n)y (n 1) + Z(n), n

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING (TO APPEAR) 1

IEEE TRANSACTIONS ON SIGNAL PROCESSING (TO APPEAR) 1 IEEE TRANSACTIONS ON SIGNAL PROCESSING TO APPEAR) Stratification Effect Compensation for Improved Underwater Acoustic Ranging Christian R. Berger, Student Member, IEEE, Shengli Zhou, Member, IEEE, Peter

More information

CAN MAXIMUM LIKELIHOOD ESTIMATORS IMPROVE GENETIC ALGORITHM SEARCH IN GEOACOUSTIC INVERSION?

CAN MAXIMUM LIKELIHOOD ESTIMATORS IMPROVE GENETIC ALGORITHM SEARCH IN GEOACOUSTIC INVERSION? Journal of Computational Acoustics, c IMACS CAN MAXIMUM LIKELIHOOD ESTIMATORS IMPROVE GENETIC ALGORITHM SEARCH IN GEOACOUSTIC INVERSION? SÉRGIO M. JESUS UCEH - Universidade do Algarve Campus de Gambelas,

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

Cramer-Rao Lower Bound Computation Via the Characteristic Function

Cramer-Rao Lower Bound Computation Via the Characteristic Function Cramer-Rao ower Bound Computation Via the Characteristic Function Steven Kay, Fellow, IEEE, and Cuichun Xu Abstract The Cramer-Rao ower Bound is widely used in statistical signal processing as a benchmark

More information

LTI Systems, Additive Noise, and Order Estimation

LTI Systems, Additive Noise, and Order Estimation LTI Systems, Additive oise, and Order Estimation Soosan Beheshti, Munther A. Dahleh Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts

More information

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION M. Schwab, P. Noll, and T. Sikora Technical University Berlin, Germany Communication System Group Einsteinufer 17, 1557 Berlin (Germany) {schwab noll

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Connexions module: m11446 1 Maximum Likelihood Estimation Clayton Scott Robert Nowak This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

ISyE 6644 Fall 2014 Test 3 Solutions

ISyE 6644 Fall 2014 Test 3 Solutions 1 NAME ISyE 6644 Fall 14 Test 3 Solutions revised 8/4/18 You have 1 minutes for this test. You are allowed three cheat sheets. Circle all final answers. Good luck! 1. [4 points] Suppose that the joint

More information

Lecture 19: Bayesian Linear Estimators

Lecture 19: Bayesian Linear Estimators ECE 830 Fall 2010 Statistical Signal Processing instructor: R Nowa, scribe: I Rosado-Mendez Lecture 19: Bayesian Linear Estimators 1 Linear Minimum Mean-Square Estimator Suppose our data is set X R n,

More information

New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays

New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays Chun-Lin Liu 1 P. P. Vaidyanathan 2 1,2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Bayesian estimation of chaotic signals generated by piecewise-linear maps

Bayesian estimation of chaotic signals generated by piecewise-linear maps Signal Processing 83 2003 659 664 www.elsevier.com/locate/sigpro Short communication Bayesian estimation of chaotic signals generated by piecewise-linear maps Carlos Pantaleon, Luis Vielva, David Luengo,

More information

Technique for Numerical Computation of Cramér-Rao Bound using MATLAB

Technique for Numerical Computation of Cramér-Rao Bound using MATLAB Technique for Numerical Computation of Cramér-Rao Bound using MATLAB Hing Cheung So http://www.ee.cityu.edu.hk/~hcso Department of Electronic Engineering City University of Hong Kong H. C. So Page 1 The

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL T F T I G E O R G A I N S T I T U T E O H E O F E A L P R O G R ESS S A N D 1 8 8 5 S E R V L O G Y I C E E C H N O Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL Aravind R. Nayak

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks. Ji an Luo

Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks. Ji an Luo Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks Ji an Luo 2008.6.6 Outline Background Problem Statement Main Results Simulation Study Conclusion Background Wireless

More information

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Abstract. The Rao-Blacwell theorem told us how to improve an estimator. We will discuss conditions on when the Rao-Blacwellization of an estimator

More information

UNIFORMLY MOST POWERFUL CYCLIC PERMUTATION INVARIANT DETECTION FOR DISCRETE-TIME SIGNALS

UNIFORMLY MOST POWERFUL CYCLIC PERMUTATION INVARIANT DETECTION FOR DISCRETE-TIME SIGNALS UNIFORMLY MOST POWERFUL CYCLIC PERMUTATION INVARIANT DETECTION FOR DISCRETE-TIME SIGNALS F. C. Nicolls and G. de Jager Department of Electrical Engineering, University of Cape Town Rondebosch 77, South

More information

ECE 275A Homework 7 Solutions

ECE 275A Homework 7 Solutions ECE 275A Homework 7 Solutions Solutions 1. For the same specification as in Homework Problem 6.11 we want to determine an estimator for θ using the Method of Moments (MOM). In general, the MOM estimator

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 Minimize this by maximizing

More information

13. Parameter Estimation. ECE 830, Spring 2014

13. Parameter Estimation. ECE 830, Spring 2014 13. Parameter Estimation ECE 830, Spring 2014 1 / 18 Primary Goal General problem statement: We observe X p(x θ), θ Θ and the goal is to determine the θ that produced X. Given a collection of observations

More information

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11 Econometrics A Keio University, Faculty of Economics Simple linear model (2) Simon Clinet (Keio University) Econometrics A October 16, 2018 1 / 11 Estimation of the noise variance σ 2 In practice σ 2 too

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

III.B Linear Transformations: Matched filter

III.B Linear Transformations: Matched filter III.B Linear Transformations: Matched filter [p. ] Definition [p. 3] Deterministic signal case [p. 5] White noise [p. 19] Colored noise [p. 4] Random signal case [p. 4] White noise [p. 4] Colored noise

More information

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH XVIII. DETECTION AND ESTIMATION THEORY Academic Research Staff Prof. H. L. Van Trees Prof. A. B. Baggeroer Graduate Students J. P. Albuquerque J. M. F. Moura L. C. Pusey L. S. Metzger S. Orphanoudakis

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

Estimation Theory Fredrik Rusek. Chapters

Estimation Theory Fredrik Rusek. Chapters Estimation Theory Fredrik Rusek Chapters 3.5-3.10 Recap We deal with unbiased estimators of deterministic parameters Performance of an estimator is measured by the variance of the estimate (due to the

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

COMP2610/COMP Information Theory

COMP2610/COMP Information Theory COMP2610/COMP6261 - Information Theory Lecture 9: Probabilistic Inequalities Mark Reid and Aditya Menon Research School of Computer Science The Australian National University August 19th, 2014 Mark Reid

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Research Article Doppler Velocity Estimation of Overlapping Linear-Period-Modulated Ultrasonic Waves Based on an Expectation-Maximization Algorithm

Research Article Doppler Velocity Estimation of Overlapping Linear-Period-Modulated Ultrasonic Waves Based on an Expectation-Maximization Algorithm Advances in Acoustics and Vibration, Article ID 9876, 7 pages http://dx.doi.org/.55//9876 Research Article Doppler Velocity Estimation of Overlapping Linear-Period-Modulated Ultrasonic Waves Based on an

More information

Example: An experiment can either result in success or failure with probability θ and (1 θ) respectively. The experiment is performed independently

Example: An experiment can either result in success or failure with probability θ and (1 θ) respectively. The experiment is performed independently Chapter 3 Sufficient statistics and variance reduction Let X 1,X 2,...,X n be a random sample from a certain distribution with p.m/d.f fx θ. A function T X 1,X 2,...,X n = T X of these observations is

More information

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D.

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D. COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION Aditya K Jagannatham and Bhaskar D Rao University of California, SanDiego 9500 Gilman Drive, La Jolla, CA 92093-0407

More information