New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays

Size: px
Start display at page:

Download "New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays"

Transcription

1 New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays Chun-Lin Liu 1 P. P. Vaidyanathan 2 1,2 Dept. of Electrical Engineering, MC California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu 1, ppvnath@systems.caltech.edu 2 SAM 2016 Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

2 Outline 1 DOA Estimation using Sparse Arrays 2 Cramér-Rao Bounds for Sparse Arrays 3 Numerical Examples 4 Concluding Remarks Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

3 DOA Estimation using Sparse Arrays Outline 1 DOA Estimation using Sparse Arrays 2 Cramér-Rao Bounds for Sparse Arrays 3 Numerical Examples 4 Concluding Remarks Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

4 DOA Estimation using Sparse Arrays Direction-of-arrival (DOA) estimation 1 θ i Monochromatic Uncorrelated Sources Sensor Arrays DOA Estimators Estimated DOA θ i 1 Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

5 DOA Estimation using Sparse Arrays ULA and sparse arrays ULA (not sparse) Identify at most N 1 uncorrelated sources, given N sensors. 1 Can only find fewer sources than sensors. Sparse arrays 1 Minimum redundancy arrays 2 2 Nested arrays 3 3 Coprime arrays 4 4 Super nested arrays 5 Identify O(N 2 ) uncorrelated sources with O(N) physical sensors. More sources than sensors! 1 Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, Moffet, IEEE Trans. Antennas Propag., Pal and Vaidyanathan, IEEE Trans. Signal Proc., Vaidyanathan and Pal, IEEE Trans. Signal Proc., Liu and Vaidyanathan, IEEE Trans. Signal Proc., Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

6 Coprime arrays 1 DOA Estimation using Sparse Arrays The coprime array with (M, N) = 1 is the union of 1 an N-element ULA with spacing Mλ/2 and 2 a 2M-element ULA with spacing Nλ/2. ULA (1) ULA (2) Physical array S (M = 3, N = 4): Difference coarray D = {n 1 n 2 n 1, n 2 S} Holes 1 Vaidyanathan and Pal, IEEE Trans. Signal Proc., Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

7 DOA Estimation using Sparse Arrays DOA estimation using sparse arrays Multiple data vectors in the physical array S S = O(N) Step 1 A single correlation vector in the difference array D D = O(N 2 ) Step 2: DOA estimation using this single correlation vector. Spatial smoothing MUSIC (SS MUSIC), 1 to name a few 2,3. 1 Pal and Vaidyanathan, IEEE Trans. Signal Proc., Empirically, SS MUSIC can identify up to ( U 1)/2 uncorrelated sources with sufficient snapshots. Why? D U 2 Abramovich, Spencer, and Gorokhov, IEEE Trans. Signal Proc., 1998, Zhang, Amin, and Himed, IEEE ICASSP, 2013; Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2015; Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

8 Cramér-Rao Bounds for Sparse Arrays Outline 1 DOA Estimation using Sparse Arrays 2 Cramér-Rao Bounds for Sparse Arrays 3 Numerical Examples 4 Concluding Remarks Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

9 Cramér-Rao Bounds for Sparse Arrays Fisher Information Matrices and Cramér-Rao Bounds x: random vectors with distribution p(x; α). α: Real-valued, unknown, and deterministic parameters. FIM I(α), based on p(x; α) and α. (under some regularity conditions) If I(α) is nonsingular, then CRB(α) I 1 (α). If α(x) is a unbiased estimator of α, then Cov( α(x)) CRB(α). CRB depend only on p(x; α) and α, NOT on the estimators α(x). CRB pose fundamental limits to the estimation performance of all unbiased estimators. Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

10 Related work Cramér-Rao Bounds for Sparse Arrays 1 Deterministic CRB 1 assumes A i (k) are deterministic. 2 Stochastic CRB 2 becomes invalid for D > S since VS HV S is singular. CRB = pn 2K Re [ H Q T ] 1 H = U H S [I V S(VS HV S) 1 VS H]U S. 3 Abramovich et al. 3 plotted the CRB curves numerically. 4 Jansson et al. s CRB expressions 4 are undefined if D = S. x S (k) = D A i (k)v S ( θ i )+n S (k) i=1 V S = [v S ( θ i )] C S D SS MUSIC Sources are stochastic and known to be uncorrelated. (E[A i (k 1 )A j (k 2)] = p i δ i,j δ k1,k 2 ) Resolve more sources than sensors (D S ). 1 Stoca and Nehorai, IEEE Trans. Acoustics, Speech and Signal Proc., Stoca and Nehorai, IEEE Trans. Acoustics, Speech and Signal Proc., Abramovich, Gray, Gorokhov, and Spencer, IEEE Trans. Signal Proc., Jansson, Göransson, and Ottersten, IEEE Trans. Signal Proc., Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

11 Cramér-Rao Bounds for Sparse Arrays Augmented Coarray Manifold matrices (Proposed) A c = [ diag(d)v D V D e 0 ] D = { 4, 3, 1, 0, 1, 3, 4}. D = 2 sources θ 1 and θ 2. D D 1 ( 4)e j2π θ 1 ( 4) ( 3)e j2π θ 1 ( 3) ( 1)e j2π θ 1 ( 1) (0)e j2π θ 1 (0) (1)e j2π θ 1 (1) (3)e j2π θ 1 (3) (4)e j2π θ 1 (4) ( 4)e j2π θ 2 ( 4) ( 3)e j2π θ 2 ( 3) ( 1)e j2π θ 2 ( 1) (0)e j2π θ 2 (0) (1)e j2π θ 2 (1) (3)e j2π θ 2 (3) (4)e j2π θ 2 (4) e j2π θ 1 ( 4) e j2π θ 1 ( 3) e j2π θ 1 ( 1) e j2π θ 1 (0) e j2π θ 1 (1) e j2π θ 1 (3) e j2π θ 1 (4) e j2π θ 2 ( 4) e j2π θ 2 ( 3) e j2π θ 2 ( 1) e j2π θ 2 (0) e j2π θ 2 (1) e j2π θ 2 (3) e j2π θ 2 (4) D diag(d)v D V D e 0 Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

12 Cramér-Rao Bounds for Sparse Arrays The proposed CRB expression for sparse arrays 1 A c has full column rank. (rank(a c ) = 2D + 1) if and only if FIM is nonsingular. (CRB exists) CRB( θ) = CRB( θ 1,..., θ ( ) D ) = 1 4π 2 K G H 0 Π 1 MW D G 0. { θ i } D i=1 : normalized DOAs. θ i = 0.5 sin θ i [ 0.5, 0.5]. S: The physical array. D: The difference coarray. p i : The ith source power. p n: The noise power. K: Number of snapshots. V D = [v D ( θ 1 ),..., v D ( θ D )]. W D = [V D, e 0 ]. P = diag(p 1,..., p D ). G 0 = Mdiag(D)V D P. M = (J H (R T S R S) 1 J) 1/2 0. R S = D i=1 p i v S ( θ i )vs H ( θ i ) + p ni. J {0, 1} S 2 D, J :,m = vec(i(m)), m D. I(m) n1,n 2 = { 1, if n 1 n 2 = m, 0, otherwise, n 1, n 2 S. 1 Liu and Vaidyanathan, Digital Signal Proc.,Elsevier, 2016; Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

13 Cramér-Rao Bounds for Sparse Arrays Implications drawn from the CRB expressions ACM matrices depend on The difference coarray D, the normalized DOA θ = [ θ 1,..., θ D ] T, and the number of sources D. These factors influence the existence of CRB. A c = [ ] diag(d)v D V D e 0 CRB( θ) = 1 4π 2 K (G H 0 Π MWD G 0 ) 1 CRB depend on The physical array S, the normalized DOA θ = [ θ 1,..., θ D ] T, the number of sources D, the number of snapshots K, and the SNR p 1 /p n,..., p D /p n. These parameters control the values of CRB. If rank(a c ) = 2D + 1, then lim K CRB( θ) = 0. Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

14 Cramér-Rao Bounds for Sparse Arrays Asymptotic CRB expressions for large SNR 1 1 A c has full column rank. 2 D uncorrelated sources have equal SNR p/p n. 3 Large SNR (p/p n ). Theorem (rank(v S ) < S ) CRB( θ) = D < S 1 4π 2 K(p/p n ) S 1 1, where S 1 is positive definite and independent of SNR. lim CRB( θ) = 0. p/p n Theorem (rank(v S ) S ) Typically D S CRB( θ) = 1 4π 2 K S 1 2, where S 2 is positive definite and independent of SNR. lim CRB( θ) 0. p/p n 1 These phenomena were observed by Abramovich et al. in 1998, which can be proved using our CRB expressions. Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

15 Numerical Examples Outline 1 DOA Estimation using Sparse Arrays 2 Cramér-Rao Bounds for Sparse Arrays 3 Numerical Examples 4 Concluding Remarks Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

16 Numerical Examples CRB vs SNR, fewer sources than sensors (D < S = 4) CRB( θ1) D = 1 D = 2 D = 3 D = 1, Asymptotic D = 2, Asymptotic D = 3, Asymptotic SNR (db) S = {1, 2, 3, 6}. D = { 5,..., 5}. θ i = (i 1)/D. The number of snapshots K = 200. Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

17 Numerical Examples CRB vs SNR, more sources than sensors (D S = 4) CRB( θ1) D = 4 D = 5 D = 4, Asymptotic D = 5, Asymptotic SNR (db) S = {1, 2, 3, 6}. D = { 5,..., 5}. θ i = (i 1)/D. The number of snapshots K = 200. Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

18 Numerical Examples CRB vs D, coprime array, 10 sensors 1 S ( U 1)/2 ( D 1)/ D rank(a c ) = 2D + 1 Cannot judge rank(a c ) < 2D + 1 CRB( θ1) Number of sources D M = 3, N = 5, S = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}. D = {0, ±1,..., ±17, ±19, ±20, ±22, ±25}. θ i = (i 1)/D for i = 1,..., D. 20dB SNR, 500 snapshots. 1 Liu and Vaidyanathan, Digital Signal Proc.,Elsevier, 2016; Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

19 Concluding Remarks Outline 1 DOA Estimation using Sparse Arrays 2 Cramér-Rao Bounds for Sparse Arrays 3 Numerical Examples 4 Concluding Remarks Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

20 Concluding remarks Concluding Remarks The proposed CRB expressions for sparse arrays explain why more sources than sensors (D S ) can be identified, and why the CRB stagnates for large SNR and D S. More details can be found in our journal and website. 1 Other recent papers: Koochakzadeh and Pal 2 and by Wang and Nehorai. 3 Future: study the optimal array geoemtry for CRB. Work supported by Office of Naval Research. Thank you! 1 Liu and Vaidyanathan, Digital Signal Proc.,Elsevier, 2016; 2 Koochakzadeh and Pal, IEEE Signal Proc. Letter, Wang and Nehorai, arxiv: [stat.ap], Liu and Vaidyanathan CRB for Sparse Arrays SAM / 20

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Chun-Lin Liu 1 P. P. Vaidyanathan 2 Piya Pal 3 1,2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology,

More information

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Mianzhi Wang, Zhen Zhang, and Arye Nehorai Preston M. Green Department of Electrical & Systems Engineering Washington University in

More information

Tensor MUSIC in Multidimensional Sparse Arrays

Tensor MUSIC in Multidimensional Sparse Arrays Tensor MUSIC in Multidimensional Sparse Arrays Chun-Lin Liu 1 and P. P. Vaidyanathan 2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu

More information

Two-Dimensional Sparse Arrays with Hole-Free Coarray and Reduced Mutual Coupling

Two-Dimensional Sparse Arrays with Hole-Free Coarray and Reduced Mutual Coupling Two-Dimensional Sparse Arrays with Hole-Free Coarray and Reduced Mutual Coupling Chun-Lin Liu and P. P. Vaidyanathan Dept. of Electrical Engineering, 136-93 California Institute of Technology, Pasadena,

More information

Cramér-Rao Bounds for Coprime and Other Sparse Arrays, which Find More Sources than Sensors

Cramér-Rao Bounds for Coprime and Other Sparse Arrays, which Find More Sources than Sensors Cramér-Rao Bounds for Coprime and Other parse Arrays, which Find More ources than ensors Chun-Lin Liu, P. P. Vaidyanathan ept. of Electrical Engineering, MC 136-93, California Institute of Technology,

More information

PERFORMANCE ANALYSIS OF COARRAY-BASED MUSIC AND THE CRAMÉR-RAO BOUND. Mianzhi Wang, Zhen Zhang, and Arye Nehorai

PERFORMANCE ANALYSIS OF COARRAY-BASED MUSIC AND THE CRAMÉR-RAO BOUND. Mianzhi Wang, Zhen Zhang, and Arye Nehorai PERFORANCE ANALYSIS OF COARRAY-BASED USIC AND THE CRAÉR-RAO BOUND ianzhi Wang, Zhen Zhang, and Arye Nehorai Preston. Green Department of Electrical and Systems Engineering, Washington University in St.

More information

ROBUSTNESS OF COARRAYS OF SPARSE ARRAYS TO SENSOR FAILURES

ROBUSTNESS OF COARRAYS OF SPARSE ARRAYS TO SENSOR FAILURES ROBUSTNESS OF COARRAYS OF SPARSE ARRAYS TO SENSOR FAILURES Chun-Lin Liu 1 and P. P. Vaidyanathan 2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA

More information

Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation

Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation Mingyang Chen 1,LuGan and Wenwu Wang 1 1 Department of Electrical and Electronic Engineering, University of Surrey, U.K.

More information

EXTENSION OF NESTED ARRAYS WITH THE FOURTH-ORDER DIFFERENCE CO-ARRAY ENHANCEMENT

EXTENSION OF NESTED ARRAYS WITH THE FOURTH-ORDER DIFFERENCE CO-ARRAY ENHANCEMENT EXTENSION OF NESTED ARRAYS WITH THE FOURTH-ORDER DIFFERENCE CO-ARRAY ENHANCEMENT Qing Shen,2, Wei Liu 2, Wei Cui, Siliang Wu School of Information and Electronics, Beijing Institute of Technology Beijing,

More information

Generalized Design Approach for Fourth-order Difference Co-array

Generalized Design Approach for Fourth-order Difference Co-array Generalized Design Approach for Fourth-order Difference Co-array Shiwei Ren, Tao Zhu, Jianyan Liu School of Information and Electronics,Beijing Institute of Technology, Beijing 8, China renshiwei@bit.edu.cn,zhutao@bit.edu.cn

More information

ONE-BIT SPARSE ARRAY DOA ESTIMATION

ONE-BIT SPARSE ARRAY DOA ESTIMATION ONE-BIT SPARSE ARRAY DOA ESTIMATION Chun-Lin Liu 1 and P. P. Vaidyanathan 2 Dept. of Electrical Engineering, 136-93 California Institute of Technology, Pasadena, CA 91125, USA E-mail: cl.liu@caltech.edu

More information

Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array

Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array Huiping Duan, Tiantian Tuo, Jun Fang and Bing Zeng arxiv:1511.06828v1 [cs.it] 21 Nov 2015 Abstract In underdetermined direction-of-arrival

More information

Generalization Propagator Method for DOA Estimation

Generalization Propagator Method for DOA Estimation Progress In Electromagnetics Research M, Vol. 37, 119 125, 2014 Generalization Propagator Method for DOA Estimation Sheng Liu, Li Sheng Yang, Jian ua uang, and Qing Ping Jiang * Abstract A generalization

More information

The Mean-Squared-Error of Autocorrelation Sampling in Coprime Arrays

The Mean-Squared-Error of Autocorrelation Sampling in Coprime Arrays IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (IEEE CAMSAP 27), Curacao, Dutch Antilles, Dec. 27. The Mean-Squared-Error of Autocorrelation Sampling in Coprime

More information

An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising

An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising sensors Article An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising Muran Guo 1,3, Tao Chen 1, * and Ben Wang 2,3 1 College of Information and Communication Engineering,

More information

On the Robustness of Co-prime Sampling

On the Robustness of Co-prime Sampling 3rd European Signal Processing Conference EUSIPCO On the Robustness of Co-prime Sampling Ali Koochakzadeh Dept. of Electrical and Computer Engineering University of Maryland, College Park Email: alik@umd.edu

More information

Co-Prime Arrays and Difference Set Analysis

Co-Prime Arrays and Difference Set Analysis 7 5th European Signal Processing Conference (EUSIPCO Co-Prime Arrays and Difference Set Analysis Usham V. Dias and Seshan Srirangarajan Department of Electrical Engineering Bharti School of Telecommunication

More information

ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY

ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY 2014 IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY Langford B White School of Electrical and Electronic

More information

On the Deterministic CRB for DOA Estimation in. Unknown Noise fields Using Sparse Sensor Arrays

On the Deterministic CRB for DOA Estimation in. Unknown Noise fields Using Sparse Sensor Arrays On the Deterministic CRB for DOA Estimation in Unknown Noise fields Using Sparse Sensor Arrays Martin Kleinsteuber and Abd-Krim Seghouane National ICT Australia Limited, Canberra Research Laboratory, Locked

More information

Design of Coprime DFT Arrays and Filter Banks

Design of Coprime DFT Arrays and Filter Banks Design o Coprime DFT Arrays and Filter Banks Chun-Lin Liu clliu@caltechedu P P Vaidyanathan ppvnath@systemscaltechedu Digital Signal Processing Group Electrical Engineering Caliornia Institute o Technology

More information

computation of the algorithms it is useful to introduce some sort of mapping that reduces the dimension of the data set before applying signal process

computation of the algorithms it is useful to introduce some sort of mapping that reduces the dimension of the data set before applying signal process Optimal Dimension Reduction for Array Processing { Generalized Soren Anderson y and Arye Nehorai Department of Electrical Engineering Yale University New Haven, CT 06520 EDICS Category: 3.6, 3.8. Abstract

More information

A New High-Resolution and Stable MV-SVD Algorithm for Coherent Signals Detection

A New High-Resolution and Stable MV-SVD Algorithm for Coherent Signals Detection Progress In Electromagnetics Research M, Vol. 35, 163 171, 2014 A New High-Resolution and Stable MV-SVD Algorithm for Coherent Signals Detection Basma Eldosouky, Amr H. Hussein *, and Salah Khamis Abstract

More information

Correlation Subspaces: Generalizations and Connection to Difference Coarrays

Correlation Subspaces: Generalizations and Connection to Difference Coarrays Correlation Subspaces: Generalizations and Connection to Difference Coarrays Chun-Lin Liu, Student Member, IEEE, and P. P. Vaidyanathan, Fellow, IEEE Abstract Direction-of-arrival (DOA) estimation finds

More information

SIGNALS with sparse representations can be recovered

SIGNALS with sparse representations can be recovered IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1497 Cramér Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters Mahdi Shaghaghi, Student Member, IEEE,

More information

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Progress In Electromagnetics Research M, Vol. 63, 185 193, 218 DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Kai-Chieh Hsu and

More information

hundred samples per signal. To counter these problems, Mathur et al. [11] propose to initialize each stage of the algorithm by aweight vector found by

hundred samples per signal. To counter these problems, Mathur et al. [11] propose to initialize each stage of the algorithm by aweight vector found by Direction-of-Arrival Estimation for Constant Modulus Signals Amir Leshem Λ and Alle-Jan van der Veen Λ Abstract In many cases where direction finding is of interest, the signals impinging on an antenna

More information

DOA Estimation Using Triply Primed Arrays Based on Fourth-Order Statistics

DOA Estimation Using Triply Primed Arrays Based on Fourth-Order Statistics Progress In Electromagnetics Research M, Vol. 67, 55 64, 218 DOA Estimation Using Triply Primed Arrays Based on Fourth-Order Statistics Kai-Chieh Hsu and Jean-Fu Kiang * Abstract A triply primed array

More information

Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna

Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna Kwan Hyeong Lee Dept. Electriacal Electronic & Communicaton, Daejin University, 1007 Ho Guk ro, Pochen,Gyeonggi,

More information

Threshold Effects in Parameter Estimation from Compressed Data

Threshold Effects in Parameter Estimation from Compressed Data PAKROOH et al.: THRESHOLD EFFECTS IN PARAMETER ESTIMATION FROM COMPRESSED DATA 1 Threshold Effects in Parameter Estimation from Compressed Data Pooria Pakrooh, Student Member, IEEE, Louis L. Scharf, Life

More information

2458 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998

2458 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998 2458 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 46, NO 9, SEPTEMBER 1998 Positive-Definite Toeplitz Completion in DOA Estimation for Nonuniform Linear Antenna Arrays Part I: Fully Augmentable Arrays Yuri

More information

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Progress In Electromagnetics Research C, Vol. 6, 13 20, 2009 FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Y. Wu School of Computer Science and Engineering Wuhan Institute of Technology

More information

2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS. Volkan Cevher, James H. McClellan

2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS. Volkan Cevher, James H. McClellan 2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS Volkan Cevher, James H McClellan Georgia Institute of Technology Atlanta, GA 30332-0250 cevher@ieeeorg, jimmcclellan@ecegatechedu

More information

DOA AND POLARIZATION ACCURACY STUDY FOR AN IMPERFECT DUAL-POLARIZED ANTENNA ARRAY. Miriam Häge, Marc Oispuu

DOA AND POLARIZATION ACCURACY STUDY FOR AN IMPERFECT DUAL-POLARIZED ANTENNA ARRAY. Miriam Häge, Marc Oispuu 19th European Signal Processing Conference (EUSIPCO 211) Barcelona, Spain, August 29 - September 2, 211 DOA AND POLARIZATION ACCURACY STUDY FOR AN IMPERFECT DUAL-POLARIZED ANTENNA ARRAY Miriam Häge, Marc

More information

Optimal Time Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar

Optimal Time Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar Optimal Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar Kilian Rambach, Markus Vogel and Bin Yang Institute of Signal Processing and System Theory University

More information

A Novel DOA Estimation Error Reduction Preprocessing Scheme of Correlated Waves for Khatri-Rao Product Extended-Array

A Novel DOA Estimation Error Reduction Preprocessing Scheme of Correlated Waves for Khatri-Rao Product Extended-Array IEICE TRANS. COMMUN., VOL.E96 B, NO.0 OCTOBER 203 2475 PAPER Special Section on Recent Progress in Antennas and Propagation in Conjunction with Main Topics of ISAP202 A Novel DOA Estimation Error Reduction

More information

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Athina P. Petropulu Department of Electrical and Computer Engineering Rutgers, the State University of New Jersey Acknowledgments Shunqiao

More information

DOA Estimation of Uncorrelated and Coherent Signals in Multipath Environment Using ULA Antennas

DOA Estimation of Uncorrelated and Coherent Signals in Multipath Environment Using ULA Antennas DOA Estimation of Uncorrelated and Coherent Signals in Multipath Environment Using ULA Antennas U.Somalatha 1 T.V.S.Gowtham Prasad 2 T. Ravi Kumar Naidu PG Student, Dept. of ECE, SVEC, Tirupati, Andhra

More information

SPARSITY-BASED ROBUST ADAPTIVE BEAMFORMING EXPLOITING COPRIME ARRAY

SPARSITY-BASED ROBUST ADAPTIVE BEAMFORMING EXPLOITING COPRIME ARRAY SPARSITY-BASED ROBUST ADAPTIVE BEAMFORMING EXPLOITING COPRIME ARRAY K. Liu 1,2 and Y. D. Zhang 2 1 College of Automation, Harbin Engineering University, Harbin 151, China 2 Department of Electrical and

More information

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Progress In Electromagnetics Research Letters, Vol. 16, 53 60, 2010 A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Y. P. Liu and Q. Wan School of Electronic Engineering University of Electronic

More information

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O.

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O. SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM Neal Patwari and Alfred O. Hero III Department of Electrical Engineering & Computer Science University of

More information

Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water

Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water p. 1/23 Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water Hailiang Tao and Jeffrey Krolik Department

More information

SENSOR ERROR MODEL FOR A UNIFORM LINEAR ARRAY. Aditya Gadre, Michael Roan, Daniel Stilwell. acas

SENSOR ERROR MODEL FOR A UNIFORM LINEAR ARRAY. Aditya Gadre, Michael Roan, Daniel Stilwell. acas SNSOR RROR MODL FOR A UNIFORM LINAR ARRAY Aditya Gadre, Michael Roan, Daniel Stilwell acas Virginia Center for Autonomous Systems Virginia Polytechnic Institute & State University Blacksburg, VA 24060

More information

ASYMPTOTIC PERFORMANCE ANALYSIS OF DOA ESTIMATION METHOD FOR AN INCOHERENTLY DISTRIBUTED SOURCE. 2πd λ. E[ϱ(θ, t)ϱ (θ,τ)] = γ(θ; µ)δ(θ θ )δ t,τ, (2)

ASYMPTOTIC PERFORMANCE ANALYSIS OF DOA ESTIMATION METHOD FOR AN INCOHERENTLY DISTRIBUTED SOURCE. 2πd λ. E[ϱ(θ, t)ϱ (θ,τ)] = γ(θ; µ)δ(θ θ )δ t,τ, (2) ASYMPTOTIC PERFORMANCE ANALYSIS OF DOA ESTIMATION METHOD FOR AN INCOHERENTLY DISTRIBUTED SOURCE Jooshik Lee and Doo Whan Sang LG Electronics, Inc. Seoul, Korea Jingon Joung School of EECS, KAIST Daejeon,

More information

EUSIPCO

EUSIPCO EUSIPCO 03 56974375 ON THE RESOLUTION PROBABILITY OF CONDITIONAL AND UNCONDITIONAL MAXIMUM LIKELIHOOD DOA ESTIMATION Xavier Mestre, Pascal Vallet, Philippe Loubaton 3, Centre Tecnològic de Telecomunicacions

More information

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 15) Root-MUSIC ime Delay Estimation Based on ropagator Method Bin Ba, Yun Long Wang, Na E Zheng & an Ying

More information

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O.

SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM. Neal Patwari and Alfred O. SIGNAL STRENGTH LOCALIZATION BOUNDS IN AD HOC & SENSOR NETWORKS WHEN TRANSMIT POWERS ARE RANDOM Neal Patwari and Alfred O. Hero III Department of Electrical Engineering & Computer Science University of

More information

Tensor polyadic decomposition for antenna array processing

Tensor polyadic decomposition for antenna array processing Tensor polyadic decomposition for antenna array processing Souleymen Sahnoun, Pierre Comon To cite this version: Souleymen Sahnoun, Pierre Comon. Tensor polyadic decomposition for antenna array processing.

More information

ABSTRACT. arrays with perturbed sensor locations (with unknown perturbations). Simplified

ABSTRACT. arrays with perturbed sensor locations (with unknown perturbations). Simplified ABSTRACT Title of Thesis: Performance and Robustness Analysis of Co-Prime and Nested Sampling Ali Koochakzadeh, Master of Science, 2016 Thesis Directed By: Professor Piya Pal Department of Electrical and

More information

Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego

Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego Direction of Arrival Estimation: Subspace Methods Bhaskar D Rao University of California, San Diego Email: brao@ucsdedu Reference Books and Papers 1 Optimum Array Processing, H L Van Trees 2 Stoica, P,

More information

Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters.

Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters. Title Adaptive beamforming for uniform linear arrays with unknown mutual coupling Author(s) Liao, B; Chan, SC Citation IEEE Antennas And Wireless Propagation Letters, 2012, v. 11, p. 464-467 Issued Date

More information

The mathematician Ramanujan, and digital signal processing

The mathematician Ramanujan, and digital signal processing The mathematician Ramanujan, and digital signal processing P. P. Vaidyanathan California Institute of Technology, Pasadena, CA SAM-2016, Rio, Brazil 1887-1920 Self-educated mathematician from India Grew

More information

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM Tadeu N. Ferreira, Sergio L. Netto, and Paulo S. R. Diniz Electrical Engineering Program COPPE/DEL-Poli/Federal University of Rio de Janeiro P.O.

More information

Azimuth-elevation direction finding, using one fourcomponent acoustic vector-sensor spread spatially along a straight line

Azimuth-elevation direction finding, using one fourcomponent acoustic vector-sensor spread spatially along a straight line Volume 23 http://acousticalsociety.org/ 169th Meeting of the Acoustical Society of America Pittsburgh, Pennsylvania 18-22 May 2015 Signal Processing in Acoustics: Paper 4aSP4 Azimuth-elevation direction

More information

Research Article Novel Diagonal Reloading Based Direction of Arrival Estimation in Unknown Non-Uniform Noise

Research Article Novel Diagonal Reloading Based Direction of Arrival Estimation in Unknown Non-Uniform Noise Mathematical Problems in Engineering Volume 2018, Article ID 3084516, 9 pages https://doi.org/10.1155/2018/3084516 Research Article Novel Diagonal Reloading Based Direction of Arrival Estimation in Unknown

More information

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Aalborg Universitet Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Christensen, Mads Græsbøll; Nielsen, Jesper Kjær Published in: I E E E / S P Workshop

More information

An introduction to G-estimation with sample covariance matrices

An introduction to G-estimation with sample covariance matrices An introduction to G-estimation with sample covariance matrices Xavier estre xavier.mestre@cttc.cat Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) "atrices aleatoires: applications aux communications

More information

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D.

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D. COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION Aditya K Jagannatham and Bhaskar D Rao University of California, SanDiego 9500 Gilman Drive, La Jolla, CA 92093-0407

More information

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES Progress In Electromagnetics Research C, Vol. 25, 233 247, 212 A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES Q. C. Zhou, H. T. Gao *, and F. Wang Radio Propagation Lab.,

More information

2542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 10, MAY 15, Keyong Han, Student Member, IEEE, and Arye Nehorai, Fellow, IEEE

2542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 10, MAY 15, Keyong Han, Student Member, IEEE, and Arye Nehorai, Fellow, IEEE 2542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 10, MAY 15, 2014 Nested Vector-Sensor Array Processing via Tensor Modeling Keyong Han, Student Member, IEEE, and Arye Nehorai, Fellow, IEEE Abstract

More information

Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation

Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation 1 Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation Hang Ruan and Rodrigo C. de Lamare arxiv:1311.2331v1 [cs.it] 11 Nov 213 Abstract In this work, we propose a low-complexity

More information

Copyright c 2006 IEEE. Reprinted from:

Copyright c 2006 IEEE. Reprinted from: Copyright c 2006 IEEE Reprinted from: F Belloni, and V Koivunen, Beamspace Transform for UCA: Error Analysis and Bias Reduction, IEEE Transactions on Signal Processing, vol 54 no 8, pp 3078-3089, August

More information

ADAPTIVE ANTENNAS. SPATIAL BF

ADAPTIVE ANTENNAS. SPATIAL BF ADAPTIVE ANTENNAS SPATIAL BF 1 1-Spatial reference BF -Spatial reference beamforming may not use of embedded training sequences. Instead, the directions of arrival (DoA) of the impinging waves are used

More information

This is a repository copy of Direction finding and mutual coupling estimation for uniform rectangular arrays.

This is a repository copy of Direction finding and mutual coupling estimation for uniform rectangular arrays. This is a repository copy of Direction finding and mutual coupling estimation for uniform rectangular arrays. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/90492/ Version:

More information

2484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER Weighted Subspace Fitting for General Array Error Models

2484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER Weighted Subspace Fitting for General Array Error Models 2484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998 Weighted Subspace Fitting for General Array Error Models Magnus Jansson, Member, IEEE, A. Lee Swindlehurst, Member, IEEE, and

More information

Direction Finding for Bistatic MIMO Radar with Non-Circular Sources

Direction Finding for Bistatic MIMO Radar with Non-Circular Sources Progress In Electromagnetics Research M, Vol. 66, 173 182, 2018 Direction Finding for Bistatic MIMO Radar with Non-Circular Sources Hao Chen 1, 2, *, Xinggan Zhang 2,YechaoBai 2, and Jinji Ma 1 Abstract

More information

DOA Estimation using MUSIC and Root MUSIC Methods

DOA Estimation using MUSIC and Root MUSIC Methods DOA Estimation using MUSIC and Root MUSIC Methods EE602 Statistical signal Processing 4/13/2009 Presented By: Chhavipreet Singh(Y515) Siddharth Sahoo(Y5827447) 2 Table of Contents 1 Introduction... 3 2

More information

THE BAYESIAN ABEL BOUND ON THE MEAN SQUARE ERROR

THE BAYESIAN ABEL BOUND ON THE MEAN SQUARE ERROR THE BAYESIAN ABEL BOUND ON THE MEAN SQUARE ERROR Alexandre Renaux, Philippe Forster, Pascal Larzabal, Christ Richmond To cite this version: Alexandre Renaux, Philippe Forster, Pascal Larzabal, Christ Richmond

More information

IEEE SENSORS JOURNAL, VOL. 17, NO. 3, FEBRUARY 1,

IEEE SENSORS JOURNAL, VOL. 17, NO. 3, FEBRUARY 1, IEEE SENSORS JOURNAL, VOL. 17, NO. 3, FEBRUARY 1, 2017 755 Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective Zhiguo Shi, Senior Member, IEEE, Chengwei Zhou, Student Member, IEEE,

More information

CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION

CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION International Conference on Computer Science and Intelligent Communication (CSIC ) CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION Xuefeng LIU, Yuping FENG,

More information

IEEE copyright notice

IEEE copyright notice IEEE copyright notice Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for

More information

On the Application of the Global Matched Filter to DOA Estimation with Uniform Circular Arrays

On the Application of the Global Matched Filter to DOA Estimation with Uniform Circular Arrays 702 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001 On the Application of the Global Matched Filter to DOA Estimation with Uniform Circular Arrays Jean-Jacques Fuchs, Member, IEEE Abstract

More information

THE estimation of covariance matrices is a crucial component

THE estimation of covariance matrices is a crucial component 1 A Subspace Method for Array Covariance Matrix Estimation Mostafa Rahmani and George K. Atia, Member, IEEE, arxiv:1411.0622v1 [cs.na] 20 Oct 2014 Abstract This paper introduces a subspace method for the

More information

On DOA estimation in unknown colored noise-fields using an imperfect estimate of the noise covariance. Karl Werner and Magnus Jansson

On DOA estimation in unknown colored noise-fields using an imperfect estimate of the noise covariance. Karl Werner and Magnus Jansson On DOA estimation in unknown colored noise-fields using an imperfect estimate of the noise covariance Karl Werner and Magnus Jansson 005-06-01 IR-S3-SB-0556 Proceedings IEEE SSP05 c 005 IEEE. Personal

More information

Research Article Joint Phased-MIMO and Nested-Array Beamforming for Increased Degrees-of-Freedom

Research Article Joint Phased-MIMO and Nested-Array Beamforming for Increased Degrees-of-Freedom International Journal of Antennas and Propagation Volume 215, Article ID 989517, 11 pages http://dxdoiorg/11155/215/989517 Research Article Joint Phased-MIMO and Nested-Array Beamforming for Increased

More information

Conditional and Unconditional Cramér Rao Bounds for Near-Field Source Localization

Conditional and Unconditional Cramér Rao Bounds for Near-Field Source Localization IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 5, MAY 00 90 Conditional and Unconditional Cramér Rao Bounds for Near-Field Source Localization Mohammed Nabil El Korso, Rémy Boyer, Alexandre Renaux,

More information

Underdetermined DOA Estimation Using MVDR-Weighted LASSO

Underdetermined DOA Estimation Using MVDR-Weighted LASSO Article Underdetermined DOA Estimation Using MVDR-Weighted LASSO Amgad A. Salama, M. Omair Ahmad and M. N. S. Swamy Department of Electrical and Computer Engineering, Concordia University, Montreal, PQ

More information

JOINT ANGLE-DELAY ESTIMATION BASED ON SMOOTHED MAXIMUM-LIKELIHOOD ALGORITHM

JOINT ANGLE-DELAY ESTIMATION BASED ON SMOOTHED MAXIMUM-LIKELIHOOD ALGORITHM Progress In Electromagnetics Research C, Vol. 21, 13 31, 2011 JOINT ANGLE-DELAY ESTIMATION BASED ON SMOOTHED MAXIMUM-LIKELIHOOD ALGORITHM L. Zhang and Y. Zhu Communication and Security Lab Shenzhen Graduate

More information

DESIGN AND ANALYSIS OF MULTI-COSET ARRAYS

DESIGN AND ANALYSIS OF MULTI-COSET ARRAYS DESIGN AND ANALYSIS OF MULTI-COSET ARRAYS James D. Krieger?, Yuval Kochman, and Gregory W. Wornell?? Dept. EECS, Massachusetts Institute of Technology, Cambridge, MA 39, USA School of CSE, Hebrew University

More information

-Dimensional ESPRIT-Type Algorithms for Strictly Second-Order Non-Circular Sources and Their Performance Analysis

-Dimensional ESPRIT-Type Algorithms for Strictly Second-Order Non-Circular Sources and Their Performance Analysis 4824 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 18, SEPTEMBER 15, 2014 -Dimensional ESPRIT-Type Algorithms for Strictly Second-Order Non-Circular Sources Their Performance Analysis Jens Steinwt,

More information

Measure-Transformed Quasi Maximum Likelihood Estimation

Measure-Transformed Quasi Maximum Likelihood Estimation Measure-Transformed Quasi Maximum Likelihood Estimation 1 Koby Todros and Alfred O. Hero Abstract In this paper, we consider the problem of estimating a deterministic vector parameter when the likelihood

More information

Vandermonde-form Preserving Matrices And The Generalized Signal Richness Preservation Problem

Vandermonde-form Preserving Matrices And The Generalized Signal Richness Preservation Problem Vandermonde-form Preserving Matrices And The Generalized Signal Richness Preservation Problem Borching Su Department of Electrical Engineering California Institute of Technology Pasadena, California 91125

More information

OPTIMAL ADAPTIVE TRANSMIT BEAMFORMING FOR COGNITIVE MIMO SONAR IN A SHALLOW WATER WAVEGUIDE

OPTIMAL ADAPTIVE TRANSMIT BEAMFORMING FOR COGNITIVE MIMO SONAR IN A SHALLOW WATER WAVEGUIDE OPTIMAL ADAPTIVE TRANSMIT BEAMFORMING FOR COGNITIVE MIMO SONAR IN A SHALLOW WATER WAVEGUIDE Nathan Sharaga School of EE Tel-Aviv University Tel-Aviv, Israel natyshr@gmail.com Joseph Tabrikian Dept. of

More information

Performance Analysis of an Adaptive Algorithm for DOA Estimation

Performance Analysis of an Adaptive Algorithm for DOA Estimation Performance Analysis of an Adaptive Algorithm for DOA Estimation Assimakis K. Leros and Vassilios C. Moussas Abstract This paper presents an adaptive approach to the problem of estimating the direction

More information

Using an Oblique Projection Operator for Highly Correlated Signal Direction-of-Arrival Estimations

Using an Oblique Projection Operator for Highly Correlated Signal Direction-of-Arrival Estimations Appl. Math. Inf. Sci. 9, No. 5, 2663-2671 (2015) 2663 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090552 Using an Oblique Projection Operator for

More information

Copyright 2008 IEEE. Reprinted from IEEE Transactions on Signal Processing, 2007; 55 (1):20-31

Copyright 2008 IEEE. Reprinted from IEEE Transactions on Signal Processing, 2007; 55 (1):20-31 Copyright 2008 IEEE. Reprinted from IEEE Transactions on Signal Processing, 2007; 55 (1):20-31 This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way

More information

On the duality of Phase-based and Phase-less RSSI MUSIC algorithm for Direction of Arrival estimation

On the duality of Phase-based and Phase-less RSSI MUSIC algorithm for Direction of Arrival estimation On the duality of Phase-based and Phase-less RSSI MUSIC algorithm for Direction of Arrival estimation MARCO PASSAFIUME, STEFANO MADDIO, ALESSANDRO CIDRONALI and GIANFRANCO MANES University of Florence

More information

Energy Based Acoustic Source Localization

Energy Based Acoustic Source Localization Energy Based Acoustic Source Localization Xiaohong Sheng and Yu-Hen Hu University of Wisconsin Madison, Department of Electrical and Computer Engineering Madison WI 5376, USA, sheng@ece.wisc.edu, hu@engr.wisc.edu,

More information

Sensitivity Considerations in Compressed Sensing

Sensitivity Considerations in Compressed Sensing Sensitivity Considerations in Compressed Sensing Louis L. Scharf, 1 Edwin K. P. Chong, 1,2 Ali Pezeshki, 2 and J. Rockey Luo 2 1 Department of Mathematics, Colorado State University Fort Collins, CO 8523,

More information

THERE is considerable literature about second-order statistics-based

THERE is considerable literature about second-order statistics-based IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 5, MAY 2004 1235 Asymptotically Minimum Variance Second-Order Estimation for Noncircular Signals Application to DOA Estimation Jean-Pierre Delmas, Member,

More information

Spatial Smoothing and Broadband Beamforming. Bhaskar D Rao University of California, San Diego

Spatial Smoothing and Broadband Beamforming. Bhaskar D Rao University of California, San Diego Spatial Smoothing and Broadband Beamforming Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu Reference Books and Papers 1. Optimum Array Processing, H. L. Van Trees 2. Stoica, P.,

More information

Support recovery in compressive sensing for estimation of Direction-Of-Arrival

Support recovery in compressive sensing for estimation of Direction-Of-Arrival Support recovery in compressive sensing for estimation of Direction-Of-Arrival Zhiyuan Weng and Xin Wang Department of Electrical and Computer Engineering Stony Brook University Abstract In the estimation

More information

IN THE FIELD of array signal processing, a class of

IN THE FIELD of array signal processing, a class of 960 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 4, APRIL 1997 Distributed Source Modeling Direction-of-Arrival Estimation Techniques Yong Up Lee, Jinho Choi, Member, IEEE, Iickho Song, Senior

More information

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu Reference Books 1. Optimum Array Processing, H. L. Van Trees 2.

More information

I Introduction Sensor array processing has been a key technology in radar, sonar, communications and biomedical signal processing. Recently, as the ce

I Introduction Sensor array processing has been a key technology in radar, sonar, communications and biomedical signal processing. Recently, as the ce TWO-DIMENSIONAL SPATIAL SMOOTHING FOR MULTIPATH COHERENT SIGNAL IDENTIFICATION AND SEPARATION Hongyi Wang and K. J. Ray Liu Electrical Engineering Department Institute for Systems Research University of

More information

ON IDENTIFIABILITY AND INFORMATION-REGULARITY IN PARAMETRIZED NORMAL DISTRIBUTIONS*

ON IDENTIFIABILITY AND INFORMATION-REGULARITY IN PARAMETRIZED NORMAL DISTRIBUTIONS* CIRCUITS SYSTEMS SIGNAL PROCESSING VOL. 16, NO. 1,1997, Pp. 8~89 ON IDENTIFIABILITY AND INFORMATION-REGULARITY IN PARAMETRIZED NORMAL DISTRIBUTIONS* Bertrand Hochwald a and Arye Nehorai 2 Abstract. We

More information

Faouzi Belli1i, and Sofiene Affes. Sonia Ben Hassen, and Abdelaziz Samet

Faouzi Belli1i, and Sofiene Affes. Sonia Ben Hassen, and Abdelaziz Samet Closed Form Expression for the Cramer-Rao Lower Bound for the DOA Estimates from Spatially and Temporally Correlated Narrowband Signals Considering Noncircular Sources Sonia Ben Hassen, and Abdelaziz Samet

More information

Self-Calibration and Biconvex Compressive Sensing

Self-Calibration and Biconvex Compressive Sensing Self-Calibration and Biconvex Compressive Sensing Shuyang Ling Department of Mathematics, UC Davis July 12, 2017 Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 1 / 22 Acknowledgements

More information

CLOSED-FORM 2D ANGLE ESTIMATION WITH A SPHERICAL ARRAY VIA SPHERICAL PHASE MODE EXCITATION AND ESPRIT. Roald Goossens and Hendrik Rogier

CLOSED-FORM 2D ANGLE ESTIMATION WITH A SPHERICAL ARRAY VIA SPHERICAL PHASE MODE EXCITATION AND ESPRIT. Roald Goossens and Hendrik Rogier CLOSED-FORM 2D AGLE ESTIMATIO WITH A SPHERICAL ARRAY VIA SPHERICAL PHASE MODE EXCITATIO AD ESPRIT Roald Goossens and Hendrik Rogier Ghent University Department of Information Technology St-Pietersnieuwstraat

More information

IMPROVED BLIND 2D-DIRECTION OF ARRIVAL ESTI- MATION WITH L-SHAPED ARRAY USING SHIFT IN- VARIANCE PROPERTY

IMPROVED BLIND 2D-DIRECTION OF ARRIVAL ESTI- MATION WITH L-SHAPED ARRAY USING SHIFT IN- VARIANCE PROPERTY J. of Electromagn. Waves and Appl., Vol. 23, 593 606, 2009 IMPROVED BLIND 2D-DIRECTION OF ARRIVAL ESTI- MATION WITH L-SHAPED ARRAY USING SHIFT IN- VARIANCE PROPERTY X. Zhang, X. Gao, and W. Chen Department

More information

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling 140 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014 Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling Cheng Qian, Lei Huang, and H. C. So Abstract A novel pseudo-noise

More information