Introduction to Statistical Inference

Size: px
Start display at page:

Download "Introduction to Statistical Inference"

Transcription

1 Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural Health Monitoring. Supervised vs unsupervised learning Group classification, regression, outlier (novelty) detection Hypothesis testing Neyman Pearson Theorem Matched Filters Receiver operating characteristic curves Bayes risk formulation #5 stats Inf:

2 Pattern Recognition vs. First Principles Amount of Data Low High Pattern Recognition Prayer? Voodoo? More research? First Principles First Principles Low Strength of Model High Note: First principles models of complex damage mechanisms tend to be weak #5 stats Inf: 3 Statistical Model Building For Feature Discrimination Supervised learning: Data are available from undamaged and damaged system. Unsupervised learning: Data are available only from the undamaged system. Three general types of statistical models for structural health monitoring: Group classification (supervised, discrete) Regression analysis (supervised, continuous) Identification of outliers AKA Novelty Detection (unsupervised) Statistical models are used to answer five questions regarding the damage state of the system. #5 stats Inf: 4

3 Statistical Model Building (cont.) Is the system damaged? Group classification problem for supervised learning Identification of outliers for unsupervised learning Where is the damage located? Group classification or regression analysis problem for supervised learning Identification of outliers for unsupervised learning (in special cases) 3 What type of damage is present? Can only be answered in a supervised learning mode Group classification 4 What is the extent of damage? Can only be answered in a supervised learning mode Group classification or regression analysis 5 What is the remaining useful life of the structure? (Prognosis) Can only be answered in a supervised learning mode Regression analysis #5 stats Inf: 5 Statistical Model Building (cont.) Statistical models are also used to avoid incorrect diagnosis of damage False-positives (Type I, primary motivator for economic SHM concerns) Damage indicated when none is present False-negatives (Type II, primary motivator for life-safety SHM concerns) Damage is not identified when it is present To date, the rotating machinery industry has made the most use of statistical methods. The rotating machinery industry has made use of trend analysis or statistical process control. Statistical modeling can also employ various forms of data cleansing, normalization, compression, and fusion #5 stats Inf: 6

4 Background Early on (98s-99s) statistical modeling was, in general, applied sparingly to structural health monitoring studies. Statistical modeling is necessary to distinguish the changes in features caused by damage from changes caused by non-damaging events. Changes in features can result from non-damage events such as: test-to-test variability unit-to-unit variability environmental and operational variability Data collection & reduction variability Statistical procedures can combine various types of data. ##5 stats Inf: 7 Probabilistic Decision Making Also know as Hypothesis Testing, Statistical Inference, Decision Theory, Detection Theory, Pattern Recognition or Classification Goal is to decide when an event has occurred (Existence of damage) and then more information about the event (Location, Type, and Extent of damage). The rest of this lecture is based on detection theory that has it roots in radar and sonar detection problems From S. M. Kay, Fundamentals of Statistical Signal Processing Vol. II Detection Theory, Prentice Hall, 998. Also cover in most introductory statistics books that discuss hypothesis testing

5 Applicability of Statistical Models Statistical Models Outlier Detection Group Classification Damage Information Existence Location Type Extent X X X (In some cases) X (Discrete) Regression X X (Continuous) X X (Discrete) X (Continuous) Example of Outlier Detection Sees few patients, receives lots of dollars Conclusion: possible fraud Sees lots of patients, receives lots of dollars Conclusion: very industrious doctor Medicare Dollars Received Sees few patients, receives few dollars Conclusion: doctor in semi-retirement Number of Patients Seen Sees lots of patients, receives few dollars Conclusion: doesn t know how to fill out paper work #5 stats Inf:

6 Defining the Detection Problem Strain gage Undamaged Damaged Permanent Deformation Random excitation with shaker Time Histories & Associated PDFs Initial strain = 3 Initial strain = 6 Initial strain =

7 Defining the Detection Problem Consider the beam for two cases: strain gage measures the n-point Gaussian undamaged response, w[n], n=,,,n-, with zero mean (=), variance, strain gage measures the n-point Gaussian damaged response, x[n]=w[n]+a, n=,,,n-, with A corresponding to the initial strain (A=3 in this case), variance is still Hypothesis statement H signal with zero mean, x[n] = w[n], system is undamaged H signal with DC offset caused by damage, x[n] = w[n] + 3 Logical choice is to compute the mean (designated T for this example) of each sample and compare it to a threshold,, maybe =5 in this case. Defining the Detection Problem As n increases the estimates of T becomes better separated. We can quantify a metric called the deflection coefficient, d, that increases with the difference in the means for our undamaged and damaged cases and that also increased as the variances of each pdf decreases: ET;H ET;H d vart;h For this case : 9,4 ET;H, ET;H A 3, vart;h 4.65 n 496 na so d 9,5

8 Defining the Detection Problem Performance of any detector depends on the difference in PDFs associate with features corresponding to the different conditions Difference will depend on means and variances of the two PDFs For this example this difference can be quantified as: (A) This quantity is known as the signal-to-noise ratio (SNR) We can improve detection by increasing the SNR Detection is also improved by increasing the record length, n, which effectively reduces the noise by averaging (i.e. reducing the variance on the estimate of the mean, T, remembering that var(t) = /n) Our goal is to find the optimal detector. -Class (or Binary) Hypothesis Test In the previous example, we were attempting to make assumptions about the damage state of the structure based on observed data. These assumptions are called Hypotheses and are designated: H = undamaged (null hypothesis) H = damaged (alternative hypothesis) If the distributions of features corresponding to the undamaged and damaged cases overlap, then there is the possibility of misclassification Type I Error false-positive, conclude that damage is present when it is not (reject H when H o is true) Minimize this type of error when economic considerations are driving the SHM system deployment Type II Error false-negative, conclude there is no damage when it is present ( accept H when H is true) Minimize this type of error when life-safety considerations are driving the SHM system deployment

9 Decision Errors By shifting the decision boundary, we can influence the probability of Type I vs Type II errors (shaded regions) However, we can not reduce both types of errors simultaneously Instead, we will design an optimal detector by constraining the Type I error (p(h ;H ), or probability of false alarm, PFA) to a value, and then minimize Type II error (p(h ;H )) Equivalent to maximizing -p(h ;H ) = p(h ;H ) = Probability of Detection, PD Neyman-Pearson Theorem P D is maximized for a given P FA = (False positive, Type I error) when H is selected if L x p x : H p x;h L(x) is referred to as the Likelihood Ratio For a given P FA =,the threshold is found from P FA x:l(x) p x;h dx

10 Examples: Likelihood Ratio Apply the NP test to our 3 offset beam data ( = 9,4) for a P FA = -3 We will try to correctly classify just a single data sample x[] Decide H (beam is damaged) if x 3 p x;h p x;h e 9,4 e 9,4 9,4 x 9,4 or e 3 x 45, 9,4 Example: Probability of Detection Now we need to determine based of the selected false alarm constraint. Let = e, then take log of the last equation using this new expressions for 9,4 45, 9,4 ln 45, x 3 3 9,4 ln 45, By setting 3 we will decide that the structure is damaged (H ) if x[]> Solve for ( or ) using the specified false alarm value 3 p px ;H FA e (9,4) t 9,4 dt 3

11 Example: Probability of Detection The probability of detection P px ;H D e (9,4) Performance of a detector is characterized by a Receiver Operating Characteristic (ROC) Curve Plot probability of detection vs probability of false alarm for a given threshold t 3 9,4 dt Receiver Operating Characteristic Curves Probability of Detection Probability of False Alarm Each point on the ROC curve corresponds to a specific threshold (values of thresholds are not evident from the plot). Diagonal line represents a random classifier. The closer the ROC plot is to the upper-left corner, the higher the overall classification accuracy.

12 ROC Example: Damaged Telescope Drive Mechanism ROC Example: Damaged Telescope Drive Mechanism Mahalanobis Squared Distance 4.5 Undamaged 4 Damaged Log Score Instance Receiver Operating Characteristic Curve.9.8 True Positive Rate False Positive Rate

13 Matched Filter Suppose we want to detect a known deterministic signal (e.g. sine wave) corrupted by Gaussian noise We can make use of the Neyman Pearson criterion to design an optimal detector for that known signal. s[n], n=,,,n- is the known deterministic signal we want to detect w[n], n=,,,n- is the Gaussian noise Matched Filter Then our hypothesis statement is: H : x[n]=w[n], n=,,,n- (signal is not present) H : x[n]=s[n]+w[n], n=,,,n- (signal present) The Neyman-Pearson Theorem tells us to decide H based on the likelihood ratio L x p x : H p x;h

14 Matched Filter After some derivation we find that we should choose H if N N x n n n s n ln s n Because we know s[n] we can define a new threshold ln N n s n Matched Filter Now we decide H if our new text statistic T(x) is greater than T x N n n We will interpret the test statistic by relating the correlation process to the effect of a filter on the data. Let x[n] be the input to a finite impulse response filter h[n], n=,, N- x[ n] s

15 x x Matched Filter The output of the filter is y n n h[ n k] x k for n k Now let h[n] be flipped around version of the signal we want to detect h[ n] s[ N n], n,,..., N y y n n s[ N n k ] xk k N N s[ k] xk k for n With change in summation variables, this gives us the NP detector Matched Filter Example Short Tone Ping with SNR = infinite db l Matched Filter Result lambda(x tau) l Short Tone Ping with SNR = db l Matched Filter Result lambda(x tau) l

16 Conditional Probability and Bayes Theorem P(YIX) is the probability of Y given X Bayes Theorem p Y X p X Y p( X ) p( Y ) Bayes Risk Approach Define C ij as the cost for choosing H i when H j is true C cost for deciding system is damaged when it is not C cost for deciding system is not damaged when it is Often C = C =, no cost for correct decision For many SHM cases, C > C Develop a decision rule based on minimizing Bayes risk, R R E c CijPH i H j PH j i j Assuming C > C and C > C detector that minimizes Bayes risk is to select H if p x : H p x;h C C P H C C P H

17 Classifying the Detection Problem Damaged Response Feature Characteristics Deterministic & Known e.g. DC offset Deterministic & Unknown Random w/known PDF Random w/unknown PDF Undamaged Response Feature Characteristics Deterministic Gaussian w/known PDF Example Typical SHM Problems Typical SHM Problems Non-Gaussian w/known PDF Challenges for Probabilistic Decision Making Analytical approaches to defining threshold levels One approach has been shown, but it requires knowledge of the probability density functions for both undamaged and damaged features Must balance tradeoffs between false-positive and false-negative indications of damage. Obtaining data from the damaged system Data normalization Updating statistical models as new data become available Managing the large volumes of data that will be produced by an on-line monitoring system Learn how others are do it (credit card fraud detection)

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Detection Theory Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Outline Neyman-Pearson Theorem Detector Performance Irrelevant Data Minimum Probability of Error Bayes Risk Multiple

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Introduction to Detection Theory

Introduction to Detection Theory Introduction to Detection Theory Detection Theory (a.k.a. decision theory or hypothesis testing) is concerned with situations where we need to make a decision on whether an event (out of M possible events)

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 3: Detection Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Detection theory

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Matched Filter Generalized Matched Filter Signal

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1 Adaptive Filtering and Change Detection Bo Wahlberg (KTH and Fredrik Gustafsson (LiTH Course Organization Lectures and compendium: Theory, Algorithms, Applications, Evaluation Toolbox and manual: Algorithms,

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

Intelligent Systems Statistical Machine Learning

Intelligent Systems Statistical Machine Learning Intelligent Systems Statistical Machine Learning Carsten Rother, Dmitrij Schlesinger WS2014/2015, Our tasks (recap) The model: two variables are usually present: - the first one is typically discrete k

More information

Estimation and Detection

Estimation and Detection Estimation and Detection Lecture : Detection Theory Unknown Parameters Dr. ir. Richard C. Hendriks //05 Previous Lecture H 0 : T (x) < H : T (x) > Using detection theory, rules can be derived on how to

More information

WILEY STRUCTURAL HEALTH MONITORING A MACHINE LEARNING PERSPECTIVE. Charles R. Farrar. University of Sheffield, UK. Keith Worden

WILEY STRUCTURAL HEALTH MONITORING A MACHINE LEARNING PERSPECTIVE. Charles R. Farrar. University of Sheffield, UK. Keith Worden STRUCTURAL HEALTH MONITORING A MACHINE LEARNING PERSPECTIVE Charles R. Farrar Los Alamos National Laboratory, USA Keith Worden University of Sheffield, UK WILEY A John Wiley & Sons, Ltd., Publication Preface

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 15 Computing Many slides adapted from B. Schiele Machine Learning Lecture 2 Probability Density Estimation 16.04.2015 Bastian Leibe RWTH Aachen

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

ECE531 Lecture 2b: Bayesian Hypothesis Testing

ECE531 Lecture 2b: Bayesian Hypothesis Testing ECE531 Lecture 2b: Bayesian Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute 29-January-2009 Worcester Polytechnic Institute D. Richard Brown III 29-January-2009 1 / 39 Minimizing

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Error and Noise outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Linear is limited Data Hypothesis Linear in what? Linear regression implements Linear classification

More information

Hypothesis testing (cont d)

Hypothesis testing (cont d) Hypothesis testing (cont d) Ulrich Heintz Brown University 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 1 Hypothesis testing Is our hypothesis about the fundamental physics correct? We will not be able

More information

ECE531 Lecture 4b: Composite Hypothesis Testing

ECE531 Lecture 4b: Composite Hypothesis Testing ECE531 Lecture 4b: Composite Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute 16-February-2011 Worcester Polytechnic Institute D. Richard Brown III 16-February-2011 1 / 44 Introduction

More information

Unsupervised Learning Methods

Unsupervised Learning Methods Structural Health Monitoring Using Statistical Pattern Recognition Unsupervised Learning Methods Keith Worden and Graeme Manson Presented by Keith Worden The Structural Health Monitoring Process 1. Operational

More information

Advanced statistical methods for data analysis Lecture 1

Advanced statistical methods for data analysis Lecture 1 Advanced statistical methods for data analysis Lecture 1 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

Lecture 22: Error exponents in hypothesis testing, GLRT

Lecture 22: Error exponents in hypothesis testing, GLRT 10-704: Information Processing and Learning Spring 2012 Lecture 22: Error exponents in hypothesis testing, GLRT Lecturer: Aarti Singh Scribe: Aarti Singh Disclaimer: These notes have not been subjected

More information

Intelligent Systems Statistical Machine Learning

Intelligent Systems Statistical Machine Learning Intelligent Systems Statistical Machine Learning Carsten Rother, Dmitrij Schlesinger WS2015/2016, Our model and tasks The model: two variables are usually present: - the first one is typically discrete

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set MAS 6J/1.16J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1)

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Detection problems can usually be casted as binary or M-ary hypothesis testing problems. Applications: This chapter: Simple hypothesis

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters D. Richard Brown III Worcester Polytechnic Institute 26-February-2009 Worcester Polytechnic Institute D. Richard Brown III 26-February-2009

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 211 Urbauer

More information

Classifier performance evaluation

Classifier performance evaluation Classifier performance evaluation Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánu 1580/3, Czech Republic

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

Signal Detection Basics - CFAR

Signal Detection Basics - CFAR Signal Detection Basics - CFAR Types of noise clutter and signals targets Signal separation by comparison threshold detection Signal Statistics - Parameter estimation Threshold determination based on the

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 6 Computing Announcements Machine Learning Lecture 2 Course webpage http://www.vision.rwth-aachen.de/teaching/ Slides will be made available on

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Data Privacy in Biomedicine. Lecture 11b: Performance Measures for System Evaluation

Data Privacy in Biomedicine. Lecture 11b: Performance Measures for System Evaluation Data Privacy in Biomedicine Lecture 11b: Performance Measures for System Evaluation Bradley Malin, PhD (b.malin@vanderbilt.edu) Professor of Biomedical Informatics, Biostatistics, & Computer Science Vanderbilt

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell,

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell, Recall The Neyman-Pearson Lemma Neyman-Pearson Lemma: Let Θ = {θ 0, θ }, and let F θ0 (x) be the cdf of the random vector X under hypothesis and F θ (x) be its cdf under hypothesis. Assume that the cdfs

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Announcements Machine Learning Lecture 2 Eceptional number of lecture participants this year Current count: 449 participants This is very nice, but it stretches our resources to their limits Probability

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 1 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Fundamentals to Biostatistics Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Statistics collection, analysis, interpretation of data development of new

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

What does Bayes theorem give us? Lets revisit the ball in the box example.

What does Bayes theorem give us? Lets revisit the ball in the box example. ECE 6430 Pattern Recognition and Analysis Fall 2011 Lecture Notes - 2 What does Bayes theorem give us? Lets revisit the ball in the box example. Figure 1: Boxes with colored balls Last class we answered

More information

Evaluation. Andrea Passerini Machine Learning. Evaluation

Evaluation. Andrea Passerini Machine Learning. Evaluation Andrea Passerini passerini@disi.unitn.it Machine Learning Basic concepts requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain

More information

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1

Introduction to Machine Learning. Introduction to ML - TAU 2016/7 1 Introduction to Machine Learning Introduction to ML - TAU 2016/7 1 Course Administration Lecturers: Amir Globerson (gamir@post.tau.ac.il) Yishay Mansour (Mansour@tau.ac.il) Teaching Assistance: Regev Schweiger

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition Memorial University of Newfoundland Pattern Recognition Lecture 6 May 18, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 Review Distance-based Classification

More information

Notes on Discriminant Functions and Optimal Classification

Notes on Discriminant Functions and Optimal Classification Notes on Discriminant Functions and Optimal Classification Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Discriminant Functions Consider a classification problem

More information

STOCHASTIC PROCESSES, DETECTION AND ESTIMATION Course Notes

STOCHASTIC PROCESSES, DETECTION AND ESTIMATION Course Notes STOCHASTIC PROCESSES, DETECTION AND ESTIMATION 6.432 Course Notes Alan S. Willsky, Gregory W. Wornell, and Jeffrey H. Shapiro Department of Electrical Engineering and Computer Science Massachusetts Institute

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Evaluation requires to define performance measures to be optimized

Evaluation requires to define performance measures to be optimized Evaluation Basic concepts Evaluation requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain (generalization error) approximation

More information

Chapter 2 Signal Processing at Receivers: Detection Theory

Chapter 2 Signal Processing at Receivers: Detection Theory Chapter Signal Processing at Receivers: Detection Theory As an application of the statistical hypothesis testing, signal detection plays a key role in signal processing at receivers of wireless communication

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

Bayes Rule for Minimizing Risk

Bayes Rule for Minimizing Risk Bayes Rule for Minimizing Risk Dennis Lee April 1, 014 Introduction In class we discussed Bayes rule for minimizing the probability of error. Our goal is to generalize this rule to minimize risk instead

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

STONY BROOK UNIVERSITY. CEAS Technical Report 829

STONY BROOK UNIVERSITY. CEAS Technical Report 829 1 STONY BROOK UNIVERSITY CEAS Technical Report 829 Variable and Multiple Target Tracking by Particle Filtering and Maximum Likelihood Monte Carlo Method Jaechan Lim January 4, 2006 2 Abstract In most applications

More information

Does Unlabeled Data Help?

Does Unlabeled Data Help? Does Unlabeled Data Help? Worst-case Analysis of the Sample Complexity of Semi-supervised Learning. Ben-David, Lu and Pal; COLT, 2008. Presentation by Ashish Rastogi Courant Machine Learning Seminar. Outline

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Hypothesis testing Machine Learning CSE546 Kevin Jamieson University of Washington October 30, 2018 2018 Kevin Jamieson 2 Anomaly detection You are

More information

Parameter Estimation, Sampling Distributions & Hypothesis Testing

Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation & Hypothesis Testing In doing research, we are usually interested in some feature of a population distribution (which

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density 0 Minimum-Error-Rate Classification Actions are decisions on classes

More information

Machine Learning Lecture 1

Machine Learning Lecture 1 Many slides adapted from B. Schiele Machine Learning Lecture 1 Introduction 18.04.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de Organization Lecturer Prof.

More information

Classification and Pattern Recognition

Classification and Pattern Recognition Classification and Pattern Recognition Léon Bottou NEC Labs America COS 424 2/23/2010 The machine learning mix and match Goals Representation Capacity Control Operational Considerations Computational Considerations

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(0, σ I n n and S = [s, s,..., s n ] T

More information

Statistical Methods for Particle Physics (I)

Statistical Methods for Particle Physics (I) Statistical Methods for Particle Physics (I) https://agenda.infn.it/conferencedisplay.py?confid=14407 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Estimation, Detection, and Identification CMU 18752

Estimation, Detection, and Identification CMU 18752 Estimation, Detection, and Identification CMU 18752 Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt Phone: +351 21 8418053

More information

Statistical Learning. Philipp Koehn. 10 November 2015

Statistical Learning. Philipp Koehn. 10 November 2015 Statistical Learning Philipp Koehn 10 November 2015 Outline 1 Learning agents Inductive learning Decision tree learning Measuring learning performance Bayesian learning Maximum a posteriori and maximum

More information

Anomaly Detection. Jing Gao. SUNY Buffalo

Anomaly Detection. Jing Gao. SUNY Buffalo Anomaly Detection Jing Gao SUNY Buffalo 1 Anomaly Detection Anomalies the set of objects are considerably dissimilar from the remainder of the data occur relatively infrequently when they do occur, their

More information

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline Other Measures 1 / 52 sscott@cse.unl.edu learning can generally be distilled to an optimization problem Choose a classifier (function, hypothesis) from a set of functions that minimizes an objective function

More information

44 CHAPTER 2. BAYESIAN DECISION THEORY

44 CHAPTER 2. BAYESIAN DECISION THEORY 44 CHAPTER 2. BAYESIAN DECISION THEORY Problems Section 2.1 1. In the two-category case, under the Bayes decision rule the conditional error is given by Eq. 7. Even if the posterior densities are continuous,

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Last Time. Today. Bayesian Learning. The Distributions We Love. CSE 446 Gaussian Naïve Bayes & Logistic Regression

Last Time. Today. Bayesian Learning. The Distributions We Love. CSE 446 Gaussian Naïve Bayes & Logistic Regression CSE 446 Gaussian Naïve Bayes & Logistic Regression Winter 22 Dan Weld Learning Gaussians Naïve Bayes Last Time Gaussians Naïve Bayes Logistic Regression Today Some slides from Carlos Guestrin, Luke Zettlemoyer

More information

Topic 3: Hypothesis Testing

Topic 3: Hypothesis Testing CS 8850: Advanced Machine Learning Fall 07 Topic 3: Hypothesis Testing Instructor: Daniel L. Pimentel-Alarcón c Copyright 07 3. Introduction One of the simplest inference problems is that of deciding between

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology SE lecture revision 2013 Outline 1. Bayesian classification

More information