February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM

Size: px
Start display at page:

Download "February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM"

Transcription

1 February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Abstract. The Rao-Blacwell theorem told us how to improve an estimator. We will discuss conditions on when the Rao-Blacwellization of an estimator is the best estimator. This is one of the major highlights of this course, and the classical theory of mathematical statistics. 1. Introduction Let F = (f θ ) θ Θ be a family of pdfs, as usual the family may be discrete or continuous. For each θ let Z = Z θ be a random variable with pdf f θ (z). The family F is complete if the condition: (1) E θ u(z) < and E θ u(z) = 0 for all θ Θ implies that for each θ Θ, we have u(z) = 0, P θ -almost surely; that is, (2) P θ (u(z) = 0) = 1 for all θ Θ. It is important to note that it in the definition, it is families which are complete, and the for all quantifier appears in the definition. Thus to chec if a family is complete, we consider any function u with Property (1), and using this property, we have to verify (2). If there is even one u for which (1) is satisfied, but (2) fails, then the family fails to be complete. From the statement of (2), we see that we will encounter some measure-theoretic difficulties. Let F = (f θ ) θ Θ be a family of pdfs. Let X = (X 1,..., X n ) be a random sample and T be a statistic. Here X, and T depend on θ. For each θ Θ, let h θ be the pdf for T. We say that T is complete statistic if the corresponding family H = (h θ ) θ Θ is complete. Let us remar that when considering the completeness of T, it is the family H that is important, not F. 1

2 2 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Theorem 1 (Lehmann-Schefee). Let X = (X 1,..., X n ) be a random sample from f θ, where θ Θ. Let T be a sufficient statistic for θ and suppose the corresponding family for T is complete. Let g : Θ R. If φ is a function that does not depend on θ and φ(t ) is an unbiased estimator of g(θ), the φ(t ) is the (almost surely) unique MVUE for g(θ). In particular, if Y is any unbiased estimator of g(θ), then E(Y T ) is the MVUE for g(θ). Proof of Theorem 1. First, we show the uniqueness using completeness. Let ψ(t ) be another unbiased estimator of g(θ). Then for all θ Θ, we have E θ φ(t ) = g(θ) = E θ ψ(t ), so that E θ (ψ(t ) φ(t )) = 0. Consider the function u(t) = ψ(t) φ(t). Since T is a complete family for every θ Θ, we have that u(t ) = 0, P θ -almost surely, from which we deduce that ψ(t ) = φ(t ) almost surely. Thus there is at most one unbiased estimator of g(θ) which is a function of T. Next, we show that it is a MVUE using the Rao-Blacwell theorem and the sufficiency of T. If Y is any unbiased estimator of g(θ), the Rao-Blacwell theorem gives that E(Y T ) is an unbiased estimator of g(θ) and Var θ (E(Y T )) Var θ (Y ) furthermore, since it is a conditional expectation, it is a function of T. Hence it must actually be φ(t ), and we have Var θ (φ(t )) = Var θ (E(Y T )) Var θ (Y ). Thus Theorem 1 gives us a powerful way of finding MVUE if we now that the corresponding family for a sufficient statistic is complete. It is not easy to show completeness. 2. Examples from the Binomial family Exercise 2. Fix n 1. Show that the Binomial family, given by f p () = p (1 p) n, where is an integer, with 0 n, and p (0, 1) is complete.

3 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM 3 Solution. Let Z Bin(n, p). Assume that u : {0, 1,..., n} R is such that E p (u(z)) = 0 for all p (0, 1). We have that for all p (0, 1), 0 = E p (u(z)) = u() p (1 p) n =0 ( p ). = (1 p) n u() 1 p Set g(q) := =0 u() q. =0 We have that g is a polynomial in q of degree n, which means it must have at most n distinct roots, unless c := u() ( n ) = 0 for all. Since for all q (0, ), we have that g(q) = 0, we can conclude that c = 0, and infer that u() = 0, for all. Exercise 3. Let X = (X 1,..., X n ) be a random sample, where X 1 Bern(p), p (0, 1). Let X be the usual sample mean. Show that X is the MVUE for p. Solution. We already now that the sample sum T = X X n is sufficient and T B(n, p). We now that X 1 is an unbiased estimator for p. By Theorem 1, we have that E(X 1 T ) = X is the MVUE. Exercise 4. Referring to Exercise 3, find the MVUE for p 2. Solution. Here we will try to guess. Observe that X 2 = T 2 /n 2 is a good place to start, since it is at least consistent, and X is the MVUE for p. Note that E X 2 = Var( X) + (E X) 2 = p(1 p)/n + p 2 = p/n + p 2 (1 1/n). So consider 1 φ(t) := n(n 1) (t2 t). Our calculations gives that Eφ(T ) = p 2, and by Exercise 3, T is a complete and sufficient statistic, thus φ(t ) is the MVUE. Exercise 5. Do Exercise 4, by considering Y = X 1 X 2 and E(Y T ). Exercise 6. Do Exercise 4, by solving Eφ(T ) = p 2, for φ by brute force. Solution. We want to solve for φ, using the equation E p (φ(t )) = φ() p (1 p) n = p 2. =0

4 4 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Again, with the change of variables q = p/(1 p) = 1/(1 p) 1 we obtain the relation that for all q (0, ), we have n 2 2 φ() q = q 2 (q + 1) n 2 = q j+2. j =0 Thus we equate coefficients, to obtain that φ(0) = φ(1) = 0 and for 2 n, we have φ() = from which we deduce that φ() = j=0 2, 2 ( 1) n(n 1). Note also that formula remains valid for = 0, Examples from the Poisson distribution Exercise 7. Show that the Poisson family, given by λ λn f λ (n) = e n!, where n is a nonnegative integer and θ (0, ), is complete. Solution. Let Z P oi(λ). Assume that u : {0, 1, 2...} R is such that E λ u(z) = 0 for all λ > 0. We need to show that u = 0. We have that for all λ > 0, E λ u(z) = e λ n=0 u(n) λ n = 0, n! where the sum is absolutely convergent for all λ > 0. Let a n = u(n)/n! and consider the power series g(x) = a n x n. n=0 Recall, the by the root test, power series have a radius of absolute convergence. Hence in the case of g, the radius is infinite, and furthermore, g(x) = 0 for all x > 0. From our nowledge of power series and analytic functions this is enough to conclude that g(x) = 0 for all x R, and that a n = 0 for all n 0. Thus u(n) = 0.

5 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM 5 One way to see why g = 0 is to let c (0, ) and tae a Talyor series expansion of g at the point c, then g(x) = c n (x c) n, n=0 where c n = gn (c) n! = 0, since c > 0. Exercise 8. Let X = (X 1,..., X n ) be a random sample, where X 1 P oi(λ) Let X be the usual sample mean. Show that X is a MVUE for λ. Solution. We already now that the sample sum T = X X n is sufficient. We now that T P oi(nλ), since the sum of independent Poisson random variables is again Poisson. Thus it follows from Exercise 7 that T is complete. We also now that the sample mean X = T/n is a unbiased estimator of λ, so by Theorem 1 it must be the MVUE. Exercise 9. Referring to Exercise 8, find the MVUE for e λ. Hint: you already did this without officially nowing. Just apply Theorem 1 to what you already calculated using the Rao-Blacwell theorem. Exercise 10. Referring to Exercise 8, find the MVUE for λ 2. Solution. We will just try to find a unbiased estimator of λ 2 by inspection. We now that X 2 is at least a consistent estimator of λ 2, so we start here. Let T = X X n be the sample sum. Note that Var(T ) = n Var(X 1 ) = nλ. Thus E( X 2 ) = Var( X) + (E X) 2 = λ/n + λ 2. So consider Y := X 2 X/n. From our calculations we now that Y is an unbiased estimator for λ 2. Furthermore, since Y is a function of the sufficient statistic T, Y = (T/n) 2 T/n 2 T (T 1) =. n 2 we have by Theorem 1, it must be the MVUE. Exercise 11. Referring to Exercise 8, find E(X 1 X 2 T ), where T is the sample sum. Solution. We have that X 1 X 2 is an unbiased estimator for λ 2, thus by Theorem 1, and Exercise 10, we now that E(X 1 X 2 T ) = X 2 X/n.

6 6 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Exercise 12. Let Z P oi(λ) Let r 1, set g r (n) = n(n 1)(n 2) (n r + 1), where the product contains r terms. Show that Eg r (Z) = λ r. Exercise 13. Referring to Exercise 8, find the MVUE for λ r, where r is a positive integer. 4. Examples from the uniform family Exercise 14. Let X = (X 1,..., X n ) be a random sample, where X 1 U(0, θ), where θ > 0. Find the MVUE for θ. Solution. Consider M := max {X 1,..., X n }. First, we show that M is a sufficient statistic for θ. Let x (0, ) n. We now that L(x; θ) = 1 n 1[0 < x θ n i < θ]. i=1 Observe that if m = max {x 1,..., x n }, we have n 1[x i < θ] = 1[m < θ]. i=1 Hence L(x; θ) = g(m; θ) := 1 1[m < θ], θn and it follows from the Neyman factorization theorem that M is sufficient. Next, we show that M is complete. For this, we will need to now the distribution of M. An easy computation gives that M has pdf g(m) = nmn 1 1[0 < m < θ]. θ n We need to show that this family is complete. Suppose E θ u(m) = 0 for all θ, then θ u(m) nmn 1 dm = 0. 0 θ n This is equivalent to the statement that for all θ > 0, we have θ 0 u(m)m n 1 dm = 0. Tae a derivative on both sides with respect to θ, we have by the fundamental theorem of calculus tells us that if u is continuous, then u(θ)θ n 1 = 0,

7 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM 7 from which we deduce that u = 0. If u is not continuous, we have to use a measure-theoretic version of the fundamental theorem of calculus, from which we can conclude that u = 0 Lebesgue-almost everywhere, from which we can deduce that u(z) = 0 P θ -almost surely, for every θ > 0. Finally, another easy calculation gives that E θ M = n θ. Hence, if n+1 we set Y = n+1 M, we have by Theorem 1 that M is the MVUE. n Exercise 15. Referring to Exercise 14, find the MVUE for θ Examples from the normal family Proposition 16. The normal family with nown variance σ 2, given by f(x; µ) = 1 σ (x µ) 2 2π e 2σ, where x R and µ R is complete. The proof of Proposition 16 requires nowledge of Laplace transforms, which is beyond the scope of this course. In general, showing that a family is normal may require advanced techniques from analysis. We will not be able to provide all the details, but we will be able to motivate why such statements are true. Setch Proof of Proposition 16. Let X N(µ, σ 2 ). Suppose that for all µ R, we have E µ u(x) = 1 u(x) σ (x µ) 2 2π e 2σ dx = 0. We have to show that u(x) = 0, P µ -almost surely. After some algebra, we find that the above is equivalent to the statement that for all µ R, we have u(x)e x2 /2σ e xµ/σ dx = 0. Setting g(x) := u(x)e x2 /2σ, for all µ R, we have ĝ(µ) := g(x)e xµ/σ dx = 0. The above expression may remind you of a Laplace transform. In the case that u is continuous, by appealing to theory of Laplace transforms, we can deduce that g = 0, from which we can deduce that u = 0. Exercise 17. Let X = (X 1,..., X n ) be a random sample, where X i N(µ, 1), where µ is unnown. Show that X is the MVUE for µ.

8 8 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Solution. We already now that X is a sufficient statistic for µ. We also now that X N(µ, 1/n) is a complete statistic by Proposition 16. Of course X is an unbiased estimator, so Theorem 1 tells us it is a MVUE. Exercise 18. Referring to Exercise 17. Find the MVUE for µ 2. Solution. As usual, we will try to modify X 2. We now that 1/n = Var( X) = E X 2 (E X) 2 = E X 2 µ 2. Thus set Y := X 2 1/n. Clearly, Y is an unbiased estimator for µ 2, and also it is a function of the sufficient statistic X, by Theorem 1, we are done.

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Abstract. We will introduce a class of distributions that will contain many of the discrete and continuous we are familiar with. This class will help

More information

SUFFICIENT STATISTICS

SUFFICIENT STATISTICS SUFFICIENT STATISTICS. Introduction Let X (X,..., X n ) be a random sample from f θ, where θ Θ is unknown. We are interested using X to estimate θ. In the simple case where X i Bern(p), we found that the

More information

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized.

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. BEST TESTS Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. 1. Most powerful test Let {f θ } θ Θ be a family of pdfs. We will consider

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

Last Lecture. Biostatistics Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator. Related Theorems. Rao-Blackwell Theorem

Last Lecture. Biostatistics Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator. Related Theorems. Rao-Blackwell Theorem Last Lecture Biostatistics 62 - Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator Hyun Min Kang February 28th, 213 For single-parameter exponential family, is Cramer-Rao bound always attainable?

More information

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee Stochastic Processes Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee 1 Outline Methods of Mean Squared Error Bias and Unbiasedness Best Unbiased Estimators CR-Bound for variance

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

1 Complete Statistics

1 Complete Statistics Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X P θ, θ Θ. Let (X (1),..., X (n) ) denote the order statistics. Definition 1. A statistic T = T (X) is complete if E θ g(t

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

3.4 Introduction to power series

3.4 Introduction to power series 3.4 Introduction to power series Definition 3.4.. A polynomial in the variable x is an expression of the form n a i x i = a 0 + a x + a 2 x 2 + + a n x n + a n x n i=0 or a n x n + a n x n + + a 2 x 2

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory Charles J. Geyer School of Statistics University of Minnesota 1 Asymptotic Approximation The last big subject in probability

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1)

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1) IB Mathematics HL Year Unit : Completion of Algebra (Core Topic ) Homewor for Unit Ex C:, 3, 4, 7; Ex D: 5, 8, 4; Ex E.: 4, 5, 9, 0, Ex E.3: (a), (b), 3, 7. Now consider these: Lesson 73 Sequences and

More information

18.175: Lecture 13 Infinite divisibility and Lévy processes

18.175: Lecture 13 Infinite divisibility and Lévy processes 18.175 Lecture 13 18.175: Lecture 13 Infinite divisibility and Lévy processes Scott Sheffield MIT Outline Poisson random variable convergence Extend CLT idea to stable random variables Infinite divisibility

More information

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2. Handout on induction and written assignment 1. MA113 Calculus I Spring 2007 Why study mathematical induction? For many students, mathematical induction is an unfamiliar topic. Nonetheless, this is an important

More information

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions MATH 103 Pre-Calculus Mathematics Test #3 Fall 008 Dr. McCloskey Sample Solutions 1. Let P (x) = 3x 4 + x 3 x + and D(x) = x + x 1. Find polynomials Q(x) and R(x) such that P (x) = Q(x) D(x) + R(x). (That

More information

1 Generating functions

1 Generating functions 1 Generating functions Even quite straightforward counting problems can lead to laborious and lengthy calculations. These are greatly simplified by using generating functions. 2 Definition 1.1. Given a

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

Moment Generating Functions

Moment Generating Functions MATH 382 Moment Generating Functions Dr. Neal, WKU Definition. Let X be a random variable. The moment generating function (mgf) of X is the function M X : R R given by M X (t ) = E[e X t ], defined for

More information

Lecture 4: Probability and Discrete Random Variables

Lecture 4: Probability and Discrete Random Variables Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 4: Probability and Discrete Random Variables Wednesday, January 21, 2009 Lecturer: Atri Rudra Scribe: Anonymous 1

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Properties of Point Estimators and Methods of Estimation 2 3 If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

Lecture 4: UMVUE and unbiased estimators of 0

Lecture 4: UMVUE and unbiased estimators of 0 Lecture 4: UMVUE and unbiased estimators of Problems of approach 1. Approach 1 has the following two main shortcomings. Even if Theorem 7.3.9 or its extension is applicable, there is no guarantee that

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

A Few Notes on Fisher Information (WIP)

A Few Notes on Fisher Information (WIP) A Few Notes on Fisher Information (WIP) David Meyer dmm@{-4-5.net,uoregon.edu} Last update: April 30, 208 Definitions There are so many interesting things about Fisher Information and its theoretical properties

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Averages of Random Variables. Expected Value. Die Tossing Example. Averages of Random Variables

Averages of Random Variables. Expected Value. Die Tossing Example. Averages of Random Variables Averages of Random Variables Suppose that a random variable U can tae on any one of L random values, say u 1, u 2,...u L. Imagine that we mae n independent observations of U and that the value u is observed

More information

Math 362, Problem set 1

Math 362, Problem set 1 Math 6, roblem set Due //. (4..8) Determine the mean variance of the mean X of a rom sample of size 9 from a distribution having pdf f(x) = 4x, < x

More information

CMSC Discrete Mathematics FINAL EXAM Tuesday, December 5, 2017, 10:30-12:30

CMSC Discrete Mathematics FINAL EXAM Tuesday, December 5, 2017, 10:30-12:30 CMSC-37110 Discrete Mathematics FINAL EXAM Tuesday, December 5, 2017, 10:30-12:30 Name (print): Email: This exam contributes 40% to your course grade. Do not use book, notes, scrap paper. NO ELECTRONIC

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

the convolution of f and g) given by

the convolution of f and g) given by 09:53 /5/2000 TOPIC Characteristic functions, cont d This lecture develops an inversion formula for recovering the density of a smooth random variable X from its characteristic function, and uses that

More information

Expectation, variance and moments

Expectation, variance and moments Expectation, variance and moments John Appleby Contents Expectation and variance Examples 3 Moments and the moment generating function 4 4 Examples of moment generating functions 5 5 Concluding remarks

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

and the compositional inverse when it exists is A.

and the compositional inverse when it exists is A. Lecture B jacques@ucsd.edu Notation: R denotes a ring, N denotes the set of sequences of natural numbers with finite support, is a generic element of N, is the infinite zero sequence, n 0 R[[ X]] denotes

More information

Proof In the CR proof. and

Proof In the CR proof. and Question Under what conditions will we be able to attain the Cramér-Rao bound and find a MVUE? Lecture 4 - Consequences of the Cramér-Rao Lower Bound. Searching for a MVUE. Rao-Blackwell Theorem, Lehmann-Scheffé

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Topic 15: Simple Hypotheses

Topic 15: Simple Hypotheses Topic 15: November 10, 2009 In the simplest set-up for a statistical hypothesis, we consider two values θ 0, θ 1 in the parameter space. We write the test as H 0 : θ = θ 0 versus H 1 : θ = θ 1. H 0 is

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

6 CARDINALITY OF SETS

6 CARDINALITY OF SETS 6 CARDINALITY OF SETS MATH10111 - Foundations of Pure Mathematics We all have an idea of what it means to count a finite collection of objects, but we must be careful to define rigorously what it means

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Stochastic Processes and Monte-Carlo Methods. University of Massachusetts: Spring Luc Rey-Bellet

Stochastic Processes and Monte-Carlo Methods. University of Massachusetts: Spring Luc Rey-Bellet Stochastic Processes and Monte-Carlo Methods University of Massachusetts: Spring 2010 Luc Rey-Bellet Contents 1 Random variables and Monte-Carlo method 3 1.1 Review of probability............................

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Stat 5101 Lecture Slides Deck 4. Charles J. Geyer School of Statistics University of Minnesota

Stat 5101 Lecture Slides Deck 4. Charles J. Geyer School of Statistics University of Minnesota Stat 5101 Lecture Slides Deck 4 Charles J. Geyer School of Statistics University of Minnesota 1 Existence of Integrals Just from the definition of integral as area under the curve, the integral b g(x)

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Lecture 3 - Tuesday July 5th

Lecture 3 - Tuesday July 5th Lecture 3 - Tuesday July 5th jacques@ucsd.edu Key words: Identities, geometric series, arithmetic series, difference of powers, binomial series Key concepts: Induction, proofs of identities 3. Identities

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 18, 016 Debdeep Pati 1 Probability Model Model: A family of distributions P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Integer-Valued Polynomials

Integer-Valued Polynomials Integer-Valued Polynomials LA Math Circle High School II Dillon Zhi October 11, 2015 1 Introduction Some polynomials take integer values p(x) for all integers x. The obvious examples are the ones where

More information

DA Freedman Notes on the MLE Fall 2003

DA Freedman Notes on the MLE Fall 2003 DA Freedman Notes on the MLE Fall 2003 The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can be found in the references cited below. Calculus. Let f be a smooth, scalar

More information

Statistics (1): Estimation

Statistics (1): Estimation Statistics (1): Estimation Marco Banterlé, Christian Robert and Judith Rousseau Practicals 2014-2015 L3, MIDO, Université Paris Dauphine 1 Table des matières 1 Random variables, probability, expectation

More information

n=0 xn /n!. That is almost what we have here; the difference is that the denominator is (n + 1)! in stead of n!. So we have x n+1 n=0

n=0 xn /n!. That is almost what we have here; the difference is that the denominator is (n + 1)! in stead of n!. So we have x n+1 n=0 DISCRETE MATHEMATICS HOMEWORK 8 SOL Undergraduate Course Chukechen Honors College Zhejiang University Fall-Winter 204 HOMEWORK 8 P496 6. Find a closed form for the generating function for the sequence

More information

Conditional distributions (discrete case)

Conditional distributions (discrete case) Conditional distributions (discrete case) The basic idea behind conditional distributions is simple: Suppose (XY) is a jointly-distributed random vector with a discrete joint distribution. Then we can

More information

Chapters 9. Properties of Point Estimators

Chapters 9. Properties of Point Estimators Chapters 9. Properties of Point Estimators Recap Target parameter, or population parameter θ. Population distribution f(x; θ). { probability function, discrete case f(x; θ) = density, continuous case The

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 8: Expectation in Action Relevant textboo passages: Pitman [6]: Chapters 3 and 5; Section 6.4

More information

Stat 426 : Homework 1.

Stat 426 : Homework 1. Stat 426 : Homework 1. Moulinath Banerjee University of Michigan Announcement: The homework carries 120 points and contributes 10 points to the total grade. (1) A geometric random variable W takes values

More information

Physics 6720 Introduction to Statistics April 4, 2017

Physics 6720 Introduction to Statistics April 4, 2017 Physics 6720 Introduction to Statistics April 4, 2017 1 Statistics of Counting Often an experiment yields a result that can be classified according to a set of discrete events, giving rise to an integer

More information

Conditional distributions. Conditional expectation and conditional variance with respect to a variable.

Conditional distributions. Conditional expectation and conditional variance with respect to a variable. Conditional distributions Conditional expectation and conditional variance with respect to a variable Probability Theory and Stochastic Processes, summer semester 07/08 80408 Conditional distributions

More information

Exercises from other sources REAL NUMBERS 2,...,

Exercises from other sources REAL NUMBERS 2,..., Exercises from other sources REAL NUMBERS 1. Find the supremum and infimum of the following sets: a) {1, b) c) 12, 13, 14, }, { 1 3, 4 9, 13 27, 40 } 81,, { 2, 2 + 2, 2 + 2 + } 2,..., d) {n N : n 2 < 10},

More information

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise.

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise. 1. Suppose Y 1, Y 2,..., Y n is an iid sample from a Bernoulli(p) population distribution, where 0 < p < 1 is unknown. The population pmf is p y (1 p) 1 y, y = 0, 1 p Y (y p) = (a) Prove that Y is the

More information

Probability and Measure

Probability and Measure Chapter 4 Probability and Measure 4.1 Introduction In this chapter we will examine probability theory from the measure theoretic perspective. The realisation that measure theory is the foundation of probability

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Connexions module: m11446 1 Maximum Likelihood Estimation Clayton Scott Robert Nowak This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Chapter 8: Least squares (beginning of chapter)

Chapter 8: Least squares (beginning of chapter) Chapter 8: Least squares (beginning of chapter) Least Squares So far, we have been trying to determine an estimator which was unbiased and had minimum variance. Next we ll consider a class of estimators

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

Space Telescope Science Institute statistics mini-course. October Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses

Space Telescope Science Institute statistics mini-course. October Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses Space Telescope Science Institute statistics mini-course October 2011 Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses James L Rosenberger Acknowledgements: Donald Richards, William

More information

Theory of Statistics.

Theory of Statistics. Theory of Statistics. Homework V February 5, 00. MT 8.7.c When σ is known, ˆµ = X is an unbiased estimator for µ. If you can show that its variance attains the Cramer-Rao lower bound, then no other unbiased

More information

Math WW08 Solutions November 19, 2008

Math WW08 Solutions November 19, 2008 Math 352- WW08 Solutions November 9, 2008 Assigned problems 8.3 ww ; 8.4 ww 2; 8.5 4, 6, 26, 44; 8.6 ww 7, ww 8, 34, ww 0, 50 Always read through the solution sets even if your answer was correct. Note

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get 18:2 1/24/2 TOPIC. Inequalities; measures of spread. This lecture explores the implications of Jensen s inequality for g-means in general, and for harmonic, geometric, arithmetic, and related means in

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

18 Green s function for the Poisson equation

18 Green s function for the Poisson equation 8 Green s function for the Poisson equation Now we have some experience working with Green s functions in dimension, therefore, we are ready to see how Green s functions can be obtained in dimensions 2

More information

Classical Estimation Topics

Classical Estimation Topics Classical Estimation Topics Namrata Vaswani, Iowa State University February 25, 2014 This note fills in the gaps in the notes already provided (l0.pdf, l1.pdf, l2.pdf, l3.pdf, LeastSquares.pdf). 1 Min

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) = x 3 5x 2 4x + 20. Its derivative

More information

Stochastic Processes and Monte-Carlo methods. University of Massachusetts: Fall Luc Rey-Bellet

Stochastic Processes and Monte-Carlo methods. University of Massachusetts: Fall Luc Rey-Bellet Stochastic Processes and Monte-Carlo methods University of Massachusetts: Fall 2007 Luc Rey-Bellet Contents 1 Random Variables 3 1.1 Review of probability............................ 3 1.2 Some Common

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

F X (x) = P [X x] = x f X (t)dt. 42 Lebesgue-a.e, to be exact 43 More specifically, if g = f Lebesgue-a.e., then g is also a pdf for X.

F X (x) = P [X x] = x f X (t)dt. 42 Lebesgue-a.e, to be exact 43 More specifically, if g = f Lebesgue-a.e., then g is also a pdf for X. 10.2 Properties of PDF and CDF for Continuous Random Variables 10.18. The pdf f X is determined only almost everywhere 42. That is, given a pdf f for a random variable X, if we construct a function g by

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn!

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Questions?! C. Porciani! Estimation & forecasting! 2! Cosmological parameters! A branch of modern cosmological research focuses

More information

Constructing Taylor Series

Constructing Taylor Series Constructing Taylor Series 8-8-200 The Taylor series for fx at x = c is fc + f cx c + f c 2! x c 2 + f c x c 3 + = 3! f n c x c n. By convention, f 0 = f. When c = 0, the series is called a Maclaurin series.

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

16.5 Problem Solving with Functions

16.5 Problem Solving with Functions CHAPTER 16. FUNCTIONS Excerpt from "Introduction to Algebra" 2014 AoPS Inc. Exercises 16.4.1 If f is a function that has an inverse and f (3) = 5, what is f 1 (5)? 16.4.2 Find the inverse of each of the

More information

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with Example: Alternative calculation of mean and variance of binomial distribution A r.v. X has the Bernoulli distribution if it takes the values 1 ( success ) or 0 ( failure ) with probabilities p and (1

More information