6 CARDINALITY OF SETS

Size: px
Start display at page:

Download "6 CARDINALITY OF SETS"

Transcription

1 6 CARDINALITY OF SETS MATH Foundations of Pure Mathematics We all have an idea of what it means to count a finite collection of objects, but we must be careful to define rigorously what it means for a set to have a given number of elements, not least because we must be able to apply the same ideas to infinite sets, where counting can get less intuitive. In this section we will encounter some familiar combinatorial results, but here we approach them in a rigorous way, giving proofs using our definition of the cardinality of a set. Let n N. Define N n = {1, 2, 3,..., n} = { N : 1 n}. Let A be a set. We say A has cardinality n if there exists a bijection f : N n A. In this case write A = n. Define = 0. Example: Let A = {3, π, 2, 7}. Define f : N 4 A by f is a bijection, so A = 4. f(1 = 3 f(2 = 7 f(3 = π f(4 = 2. Let A be a set. If A = n for some n N {0}, then we say that A is finite. Otherwise we say A is infinite. The definition of A involved choice of f : N n A. It s not trivial to show that A does not depend on the choice of f. In proving this, we will derive results such as the pigeonhole principle. Theorem 6.1 Let m, n N. If there is a 1-1 function f : N m N n, then m n. Proof. We use induction on m. For m N, let p(m be the statement n N, if there is a 1-1 function f : N m N n, then m n. For m = 1, we have m n for all n N, so p(1 is trivially true. Let N, and suppose that p( is true. Let n N and suppose that we have a 1-1 function f : N +1 N n. Write b = f( + 1. Define a new function f 1 : N N n \ {b} by f 1 (x = f(x. It is easy to chec that f 1 is

2 Define g : N n \ {b} N n 1 by g(x = { x if x b 1 x 1 if x b + 1. It is easy to chec that g is 1-1. Since f 1 and g are both 1-1, it follows that g f 1 : N N n 1 is 1-1. Hence by the inductive hypothesis n 1. Hence + 1 n. So p( + 1 is true. Hence by induction p(m is true for all m N. Corollary 6.2 Let A be a set. Suppose that m, n N and that there are bijections f : N m A and g : N n A. Then m = n. Proof. Let A be a set. Suppose that m, n N and that there are bijections f : N m A and g : N n A. Now g 1 f : N m N n is a bijection, and so 1-1. Hence by the theorem above m n. On the other hand, f 1 g : N n N m is also 1-1, so by the theorem n m. So m = n. We have proved that the cardinality of a finite set is well-defined, i.e., it does not depend on choice. Corollary 6.3 Let A and B be finite sets and let f : A B be a 1-1 function. Then A B. If further f is a bijection, then A = B. Proof. If A =, then the result is immediate. So we may assume that A (and B. Write A = m and B = n, where m, n N. So there are bijections α : N m A and β : N n B. Then β 1 f α : N m N n is 1-1. Hence by the theorem m n. The contrapositive of this is the pigeonhole principle: Theorem 6.4 (Pigeonhole principle Let A and B be non-empty finite sets and let f : A B. If A > B, then there exist x 1, x 2 A with x 1 x 2 and f(x 1 = f(x 2. Example: In a group of 13 people, 2 will have a birthday in the same month. Definition 6.5 Let A be a set. We say that A is countable if it is finite or if there exists a bijection f : N A. In the latter case we say that A is countable infinite. Remar: An example of an uncountable set is R. We ll discuss uncountably infinite sets later. 2

3 Example: Z is countable. To see this, tae the bijection f : N Z defined as follows: f(1 = 0 f(2 = 1 f(3 = 1 f(4 = 2 f(5 = 2 f(6 = 3 f(7 = 3 f(8 = 4 f(9 = 4 etc. We will wor towards the inclusion-exclusion principle for finding the size of a union of sets. We will do this in a number of stages. Theorem 6.6 Let X and Y be finite sets such that X Y = (we say that X and Y are disjoint. Then X Y = X + Y. Proof. If X = 0, then X = and X Y = Y, and the result holds. Similarly if Y = 0. Hence we may suppose that X = m > 0 and Y = n > 0. So there exist bijections f : N m X and g : N n Y. Define h : N m+n X Y by { h(i = f(i if 1 i m g(i m if m + 1 i m + n. We claim that h is a bijection. h is onto: Let z X Y. If z X, then j N m such that f(j = z (since f is onto. So h(j = f(j = z. If z Y, then j N n such that g(j = z (since g is onto. So h(m+j = g(j = z. In either case we have found an element mapping to z, so h is onto. h is 1-1 : Let h(i = h(j for some i, j N m+n. Write z = h(i = h(j. Since z X Y and X Y =, either z X or z Y, but not both. If z X (i.e., i, j m, then h(i = f(i and h(j = f(j. Since f is 1-1, we have i = j. If z Y (i.e., i, j, > m, then h(i = g(i m and h(j = g(j m. Since g is 1-1, we have i m = j m, so i = j. Hence h is 1-1. We have shown that h is a bijection. So X Y = m + n = X + Y. Corollary 6.7 Suppose that X 1,..., X n are pairwise disjoint finite sets. Then X 1 X n = n X i is a finite set and n n X i = X i. 3

4 Proof. By induction on n, using Theorem 6.6. What if X and Y in Theorem 6.6 are not disjoint? We have the inclusion-exclusion principle, which turns out to be an application of Corollary 6.7. Theorem 6.8 (Inclusion-exclusion principle Let X and Y be finite sets. Then X Y = X + Y X Y. Proof. Note that X Y = (X \ Y (Y \ X (X Y, a union of pairwise disjoint sets. By Corollary 6.7 X Y = X \ Y + Y \ X + X Y. Now X = (X \ Y (X Y, a union of disjoint sets, so by Theorem 6.6 X = X \ Y + X Y. Similarly Y = Y \ X + X Y. Substituting, we get X Y = ( X X Y + ( Y X Y + X Y = X + Y X Y. This can be generalized to more than two sets, as we will see later. We now turn our attention to Cartesian products. Theorem 6.9 Let X and Y be finite sets, with X = m and Y = n. Then X Y is a finite set and X Y = mn. Proof. Consider first the case X = or Y =. Then X Y = and the result holds in this case. Suppose that X and Y. Write X = {x 1,..., x m }. Then X Y = m ({x i } Y. Now i, {x i } Y = Y, since we may define a bijection f i : Y {x i } Y by f i (y = (x i, y and by Corollary 6.3 this implies the sets have the same cardinality. Note that the {x i } Y are pairwise disjoint (for distinct x i, so by Corollary 6.7 m X Y = ({x i } Y = m {x i } Y = m Y = m Y = mn. 4

5 Corollary 6.10 Let X 1,..., X m be finite sets, where X i = n i for each i. Then X 1 X m = n 1 n 2 n m. Proof. Use Theorem 6.9 and induction on m. We can now use these results to count functions. Corollary 6.11 Let X and Y be non-empty finite sets, where X = m and Y = n. Then the number of functions X Y is n m. Proof. Write X = {x 1,..., x m }. A function f : X Y determines an element of Y m = Y } {{ Y } by m times (f(x 1, f(x 2,..., f(x m. Conversely, each element (y 1,..., y m Y m determines a function f : X Y by i, f(x i = y i. So (given our labelling x 1,..., x m we have constructed a bijection g : {f : X Y is a function} Y m. [To see that g is 1-1, suppose f 1, f 2 are functions X Y and that g(f 1 = g(f 2. Then (f 1 (x 1,..., f 1 (x m = (f 2 (x 1,..., f 2 (x m. So f 1 (x = f 2 (x for all x X. So f 1 = f 2. To see that g is onto, let (y 1,..., y m Y m. Define f : X Y as above by f(x i = y i. Then g(f = (y 1,..., y m.] The result follows since Y m = Y m = n m by Corollary Notation: For n N, define n! = n(n Define 0! = 1 Theorem 6.12 Let A and B be finite sets with A = B = n. Then there are precisely n! bijections A B. In particular, there are precisely n! permutations of A. Proof. We use induction on n. The result is clear for n = 1. Let N. Suppose that the result is true for n =. Suppose that A = B = + 1. Fix a A. For each b B, count bijections f : A B for which f(a = b. By our assumption, there are! bijections A \ {a} B \ {b}. So there are! bijections f : A B satisfying f(a = b. There are +1 choices for b, so the total number of bijections is ( +1! = ( +1!. So by induction the result is true for all n. 5

6 6.1 Counting subsets and the binomial theorem Let A be a set and N {0}. A -subset of A is a subset X A with X =. Write P (A = {X A : X = }. Consequently, if A = n, then n P(A = P (A. =0 ( n We define to be the cardinality P (N n of P (N n. ( n is called a binomial coefficient, or n choose. WARNING: This is the definition used in this course - we will see later that it is equivalent to a more familiar one. ( n Remar: If A is a set with A = n, then P (A = P (N n. Hence number of -element subsets of A. Example: Let A = {a, b, c}. ( 3 P 0 (A = { } (so = 1. 0 ( 3 P 1 (A = {{a}, {b}, {c}} (so = 3. 1 ( 3 P 2 (A = {{a, b}, {b, c}, {a, c}} (so = 3. ( 2 3 P 3 (A = {A} (so = 1. 3 We collect some facts about ( n : Lemma ( 6.13 Let n, N {0}. Then n (i = 0 if > n, ( ( ( n n n (ii = = 1 and = n, ( 0 ( n 1 n n (iii =, n (iv if 0 < n, then ( ( n n 1 = 6 + ( n 1 1. is the

7 Proof. (i and (ii are clear. (iii f : P (A P n (A, f(x = A \ X defines a bijection. (iv See exercises. Theorem 6.14 Let n, N {0} with n. Then ( n n! =!(n!. Proof. Uses Lemma 6.13 and induction on n. See [IMR, ]. If n = 0, then = 0 and ( 0 = 1 = 0! 0 0!0!, so the result is true for n = 0. If n = 1, then = 0 or = 1. In either case ( 1 = 1 = 1! 1!0!. Let m N. Suppose that the result is true for n = m (and all. We will show that it is true for n = m + 1. Let N {0} with 0 m + 1. If = 0 or = m + 1, then ( m + 1 so we may assume that 1 m. By ( Lemma 6.13 ( m + 1 m = + ( m 1 = 1 = = m!!(m! + m! ( 1!(m ( 1! (since true for m (m + 1! 0!(m + 1!, = m!(m+1 + m!!(m+1! (!(m+1! = m!(m+1 +!(m+1! (m+1! =!(m+1! So the result is true for m + 1. Hence by induction the result is true for all n. An application of this is: Theorem 6.15 (Binomial theorem Let n N and let a, b R. Then (a + b n = n =0 7 ( n a b n.

8 Setch proof. (a + b n = (a + b... (a + b. }{{} n times Label the factors on the right hand side 1,..., n. (a + b n is obtained as a sum of 2 n products, each of which is a product of n a s and b s. Each product corresponds to a subset X of N n = {1,..., n} defined by i X if and only if the product involves a from factor i. Let Z with 0 n. Then X P (N n if and only if the corresponding product is a b n. So the number of times that a b n occurs in (a + b n is P (N n = ( n. 6.2 Bonus nonexaminable material Recall that a set A is countable if either A is finite or there is a bijection N A. (i There is a bijection N N N. The bijection f : N N N is given by f(1 = (1, 1, f(2 = (2, 1, f(3 = (1, 2, f(4 = (1, 3, f(5 = (2, 2, f(6 = (3, 1, f(7 = (4, 1, f(8 = (3, 2, f(9 = (2, 3, f(10 = (1, 4, etc. By induction, for all n N, there is a bijection N N n, i.e., N n is countable. More generally, a finite Cartesian product of countable sets is countable. (ii Existence of non-countable sets Theorem 6.16 (Cantor Let A be a set. Then there is no onto map A P(A. Proof. Suppose that f : A P(A is onto. Let x A. Note that f(x A, and so either x f(x or x f(x. This allows us to define a subset S = {x A : x f(x} A. Now since f is onto, there is a A such that f(a = S. Suppose that a f(a. Then a S since f(a = S, so by definition of S we have a f(a, a contradiction. Hence a f(a. But then a S by definition of S, and so a f(a since S = f(a, a contradiction. Corollary 6.17 P(N is not countable. Proof. Suppose that P(N is countable. Then there is a bijection f : N P(N. Then f is onto, a contradiction by the Theorem. 8

Prof. Ila Varma HW 8 Solutions MATH 109. A B, h(i) := g(i n) if i > n. h : Z + f((i + 1)/2) if i is odd, g(i/2) if i is even.

Prof. Ila Varma HW 8 Solutions MATH 109. A B, h(i) := g(i n) if i > n. h : Z + f((i + 1)/2) if i is odd, g(i/2) if i is even. 1. Show that if A and B are countable, then A B is also countable. Hence, prove by contradiction, that if X is uncountable and a subset A is countable, then X A is uncountable. Solution: Suppose A and

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

1 of 8 7/15/2009 3:43 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 6. Cardinality Definitions and Preliminary Examples Suppose that S is a non-empty collection of sets. We define a relation

More information

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9

1.4 Cardinality. Tom Lewis. Fall Term Tom Lewis () 1.4 Cardinality Fall Term / 9 1.4 Cardinality Tom Lewis Fall Term 2006 Tom Lewis () 1.4 Cardinality Fall Term 2006 1 / 9 Outline 1 Functions 2 Cardinality 3 Cantor s theorem Tom Lewis () 1.4 Cardinality Fall Term 2006 2 / 9 Functions

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

MATH 3300 Test 1. Name: Student Id:

MATH 3300 Test 1. Name: Student Id: Name: Student Id: There are nine problems (check that you have 9 pages). Solutions are expected to be short. In the case of proofs, one or two short paragraphs should be the average length. Write your

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

The integers. Chapter 3

The integers. Chapter 3 Chapter 3 The integers Recall that an abelian group is a set A with a special element 0, and operation + such that x +0=x x + y = y + x x +y + z) =x + y)+z every element x has an inverse x + y =0 We also

More information

Finite and Infinite Sets

Finite and Infinite Sets Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

More information

Equivalence of Propositions

Equivalence of Propositions Equivalence of Propositions 1. Truth tables: two same columns 2. Sequence of logical equivalences: from one to the other using equivalence laws 1 Equivalence laws Table 6 & 7 in 1.2, some often used: Associative:

More information

Notes on counting. James Aspnes. December 13, 2010

Notes on counting. James Aspnes. December 13, 2010 Notes on counting James Aspnes December 13, 2010 1 What counting is Recall that in set theory we formally defined each natural number as the set of all smaller natural numbers, so that n = {0, 1, 2,...,

More information

Axioms for Set Theory

Axioms for Set Theory Axioms for Set Theory The following is a subset of the Zermelo-Fraenkel axioms for set theory. In this setting, all objects are sets which are denoted by letters, e.g. x, y, X, Y. Equality is logical identity:

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

Math 105A HW 1 Solutions

Math 105A HW 1 Solutions Sect. 1.1.3: # 2, 3 (Page 7-8 Math 105A HW 1 Solutions 2(a ( Statement: Each positive integers has a unique prime factorization. n N: n = 1 or ( R N, p 1,..., p R P such that n = p 1 p R and ( n, R, S

More information

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality.

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality. Some harder problems on cardinality. These are two series of problems with specific goals: the first goal is to prove that the cardinality of the set of irrational numbers is continuum, and the second

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

Solution. 1 Solutions of Homework 1. 2 Homework 2. Sangchul Lee. February 19, Problem 1.2

Solution. 1 Solutions of Homework 1. 2 Homework 2. Sangchul Lee. February 19, Problem 1.2 Solution Sangchul Lee February 19, 2018 1 Solutions of Homework 1 Problem 1.2 Let A and B be nonempty subsets of R + :: {x R : x > 0} which are bounded above. Let us define C = {xy : x A and y B} Show

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014 Functions and cardinality (solutions) 21-127 sections A and F TA: Clive Newstead 6 th May 2014 What follows is a somewhat hastily written collection of solutions for my review sheet. I have omitted some

More information

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS.

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS. 4 Functions Before studying functions we will first quickly define a more general idea, namely the notion of a relation. A function turns out to be a special type of relation. Definition: Let S and T be

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya Resources: Kenneth

More information

The Inclusion Exclusion Principle

The Inclusion Exclusion Principle The Inclusion Exclusion Principle 1 / 29 Outline Basic Instances of The Inclusion Exclusion Principle The General Inclusion Exclusion Principle Counting Derangements Counting Functions Stirling Numbers

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations D. R. Wilkins Academic Year 1996-7 1 Number Systems and Matrix Algebra Integers The whole numbers 0, ±1, ±2, ±3, ±4,...

More information

S15 MA 274: Exam 3 Study Questions

S15 MA 274: Exam 3 Study Questions S15 MA 274: Exam 3 Study Questions You can find solutions to some of these problems on the next page. These questions only pertain to material covered since Exam 2. The final exam is cumulative, so you

More information

Section 2: Classes of Sets

Section 2: Classes of Sets Section 2: Classes of Sets Notation: If A, B are subsets of X, then A \ B denotes the set difference, A \ B = {x A : x B}. A B denotes the symmetric difference. A B = (A \ B) (B \ A) = (A B) \ (A B). Remarks

More information

Week Some Warm-up Questions

Week Some Warm-up Questions 1 Some Warm-up Questions Week 1-2 Abstraction: The process going from specific cases to general problem. Proof: A sequence of arguments to show certain conclusion to be true. If... then... : The part after

More information

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 39 Chapter Summary The Basics

More information

Introductory Analysis I Fall 2014 Homework #5 Solutions

Introductory Analysis I Fall 2014 Homework #5 Solutions Introductory Analysis I Fall 2014 Homework #5 Solutions 6. Let M be a metric space, let C D M. Now we can think of C as a subset of the metric space M or as a subspace of the metric space D (D being a

More information

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant).

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant). Sets and Functions 1. The language of sets Informally, a set is any collection of objects. The objects may be mathematical objects such as numbers, functions and even sets, or letters or symbols of any

More information

Cardinality and ordinal numbers

Cardinality and ordinal numbers Cardinality and ordinal numbers The cardinality A of a finite set A is simply the number of elements in it. When it comes to infinite sets, we no longer can speak of the number of elements in such a set.

More information

Lecture 9: Cardinality. a n. 2 n 1 2 n. n=1. 0 x< 2 n : x = :a 1 a 2 a 3 a 4 :::: s n = s n n+1 x. 0; if 0 x<

Lecture 9: Cardinality. a n. 2 n 1 2 n. n=1. 0 x< 2 n : x = :a 1 a 2 a 3 a 4 :::: s n = s n n+1 x. 0; if 0 x< Lecture 9: Cardinality 9. Binary representations Suppose fa n g n= is a sequence such that, for each n =; 2; 3;:::, either a n =0ora n = and, for any integer N, there exists an integer n>n such that a

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions

Sets and Functions. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Sets and Functions Sets and Functions MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Notation x A means that element x is a member of set A. x / A means that x is not a member of A.

More information

Abstract Measure Theory

Abstract Measure Theory 2 Abstract Measure Theory Lebesgue measure is one of the premier examples of a measure on R d, but it is not the only measure and certainly not the only important measure on R d. Further, R d is not the

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017 Economics 04 Summer/Fall 07 Lecture Monday July 7, 07 Section.. Methods of Proof We begin by looking at the notion of proof. What is a proof? Proof has a formal definition in mathematical logic, and a

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

CITS2211 Discrete Structures (2017) Cardinality and Countability

CITS2211 Discrete Structures (2017) Cardinality and Countability CITS2211 Discrete Structures (2017) Cardinality and Countability Highlights What is cardinality? Is it the same as size? Types of cardinality and infinite sets Reading Sections 45 and 81 84 of Mathematics

More information

Countability. 1 Motivation. 2 Counting

Countability. 1 Motivation. 2 Counting Countability 1 Motivation In topology as well as other areas of mathematics, we deal with a lot of infinite sets. However, as we will gradually discover, some infinite sets are bigger than others. Countably

More information

Stat 451: Solutions to Assignment #1

Stat 451: Solutions to Assignment #1 Stat 451: Solutions to Assignment #1 2.1) By definition, 2 Ω is the set of all subsets of Ω. Therefore, to show that 2 Ω is a σ-algebra we must show that the conditions of the definition σ-algebra are

More information

COMBINATORIAL COUNTING

COMBINATORIAL COUNTING COMBINATORIAL COUNTING Our main reference is [1, Section 3] 1 Basic counting: functions and subsets Theorem 11 (Arbitrary mapping Let N be an n-element set (it may also be empty and let M be an m-element

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET DO FIVE OUT OF SIX ON EACH SET PROBLEM SET 1. THE AXIOM OF FOUNDATION Early on in the book (page 6) it is indicated that throughout the formal development set is going to mean pure set, or set whose elements,

More information

Mathematical Structures Combinations and Permutations

Mathematical Structures Combinations and Permutations Definitions: Suppose S is a (finite) set and n, k 0 are integers The set C(S, k) of k - combinations consists of all subsets of S that have exactly k elements The set P (S, k) of k - permutations consists

More information

Math 109 September 1, 2016

Math 109 September 1, 2016 Math 109 September 1, 2016 Question 1 Given that the proposition P Q is true. Which of the following must also be true? A. (not P ) or Q. B. (not Q) implies (not P ). C. Q implies P. D. A and B E. A, B,

More information

Section 7.5: Cardinality

Section 7.5: Cardinality Section 7: Cardinality In this section, we shall consider extend some of the ideas we have developed to infinite sets One interesting consequence of this discussion is that we shall see there are as many

More information

20 Ordinals. Definition A set α is an ordinal iff: (i) α is transitive; and. (ii) α is linearly ordered by. Example 20.2.

20 Ordinals. Definition A set α is an ordinal iff: (i) α is transitive; and. (ii) α is linearly ordered by. Example 20.2. 20 Definition 20.1. A set α is an ordinal iff: (i) α is transitive; and (ii) α is linearly ordered by. Example 20.2. (a) Each natural number n is an ordinal. (b) ω is an ordinal. (a) ω {ω} is an ordinal.

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Introduction to Decision Sciences Lecture 10

Introduction to Decision Sciences Lecture 10 Introduction to Decision Sciences Lecture 10 Andrew Nobel October 17, 2017 Mathematical Induction Given: Propositional function P (n) with domain N + Basis step: Show that P (1) is true Inductive step:

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

Solutions to Homework Problems

Solutions to Homework Problems Solutions to Homework Problems November 11, 2017 1 Problems II: Sets and Functions (Page 117-118) 11. Give a proof or a counterexample of the following statements: (vi) x R, y R, xy 0; (x) ( x R, y R,

More information

MATH 802: ENUMERATIVE COMBINATORICS ASSIGNMENT 2

MATH 802: ENUMERATIVE COMBINATORICS ASSIGNMENT 2 MATH 80: ENUMERATIVE COMBINATORICS ASSIGNMENT KANNAPPAN SAMPATH Facts Recall that, the Stirling number S(, n of the second ind is defined as the number of partitions of a [] into n non-empty blocs. We

More information

Notes on ordinals and cardinals

Notes on ordinals and cardinals Notes on ordinals and cardinals Reed Solomon 1 Background Terminology We will use the following notation for the common number systems: N = {0, 1, 2,...} = the natural numbers Z = {..., 2, 1, 0, 1, 2,...}

More information

Lecture 8: Equivalence Relations

Lecture 8: Equivalence Relations Lecture 8: Equivalence Relations 1 Equivalence Relations Next interesting relation we will study is equivalence relation. Definition 1.1 (Equivalence Relation). Let A be a set and let be a relation on

More information

Review 3. Andreas Klappenecker

Review 3. Andreas Klappenecker Review 3 Andreas Klappenecker Final Exam Friday, May 4, 2012, starting at 12:30pm, usual classroom Topics Topic Reading Algorithms and their Complexity Chapter 3 Logic and Proofs Chapter 1 Logic and Proofs

More information

ABOUT THE CLASS AND NOTES ON SET THEORY

ABOUT THE CLASS AND NOTES ON SET THEORY ABOUT THE CLASS AND NOTES ON SET THEORY About the Class Evaluation. Final grade will be based 25%, 25%, 25%, 25%, on homework, midterm 1, midterm 2, final exam. Exam dates. Midterm 1: Oct 4. Midterm 2:

More information

7.11 A proof involving composition Variation in terminology... 88

7.11 A proof involving composition Variation in terminology... 88 Contents Preface xi 1 Math review 1 1.1 Some sets............................. 1 1.2 Pairs of reals........................... 3 1.3 Exponentials and logs...................... 4 1.4 Some handy functions......................

More information

Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability

Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability Salil Vadhan September 20, 2012 Reading: Sipser, 1.3 and The Diagonalization Method, pages 174 178 (from just before Definition

More information

Section 0. Sets and Relations

Section 0. Sets and Relations 0. Sets and Relations 1 Section 0. Sets and Relations NOTE. Mathematics is the study of ideas, not of numbers!!! The idea from modern algebra which is the focus of most of this class is that of a group

More information

3 Hausdorff and Connected Spaces

3 Hausdorff and Connected Spaces 3 Hausdorff and Connected Spaces In this chapter we address the question of when two spaces are homeomorphic. This is done by examining two properties that are shared by any pair of homeomorphic spaces.

More information

n if n is even. f (n)=

n if n is even. f (n)= 6 2. PROBABILITY 4. Countable and uncountable Definition 32. An set Ω is said to be finite if there is an n N and a bijection from Ω onto [n]. An infinite set Ω is said to be countable if there is a bijection

More information

Zermelo-Fraenkel Set Theory

Zermelo-Fraenkel Set Theory Zermelo-Fraenkel Set Theory Zak Mesyan University of Colorado Colorado Springs The Real Numbers In the 19th century attempts to prove facts about the real numbers were limited by the lack of a rigorous

More information

Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1

Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1 22M:132 Fall 07 J. Simon Handout 2 (Correction of Handout 1 plus continued discussion/hw) Comments and Homework in Chapter 1 Chapter 1 contains material on sets, functions, relations, and cardinality that

More information

A Short Review of Cardinality

A Short Review of Cardinality Christopher Heil A Short Review of Cardinality November 14, 2017 c 2017 Christopher Heil Chapter 1 Cardinality We will give a short review of the definition of cardinality and prove some facts about the

More information

Homework #3: 1.4.1, a & b, 1.5.1, 1.5.3, 1.5.6, 1.5.7, 1.5.8, Prove that the set of all real numbers is uncountable.

Homework #3: 1.4.1, a & b, 1.5.1, 1.5.3, 1.5.6, 1.5.7, 1.5.8, Prove that the set of all real numbers is uncountable. Lecture 3 Homework #3: 1.4.1, 1.4.2 a & b, 1.5.1, 1.5.3, 1.5.6, 1.5.7, 1.5.8, Prove that the set of all real numbers is uncountable. Note that this lecture will likely run over but the net one is very

More information

Let us first solve the midterm problem 4 before we bring up the related issues.

Let us first solve the midterm problem 4 before we bring up the related issues. Math 310 Class Notes 6: Countability Let us first solve the midterm problem 4 before we bring up the related issues. Theorem 1. Let I n := {k N : k n}. Let f : I n N be a one-toone function and let Im(f)

More information

586 Index. vertex, 369 disjoint, 236 pairwise, 272, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

586 Index. vertex, 369 disjoint, 236 pairwise, 272, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 465 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

More information

CDM Combinatorial Principles

CDM Combinatorial Principles CDM Combinatorial Principles 1 Counting Klaus Sutner Carnegie Mellon University Pigeon Hole 22-in-exclusion 2017/12/15 23:16 Inclusion/Exclusion Counting 3 Aside: Ranking and Unranking 4 Counting is arguably

More information

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B.

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Chapter 4 Functions Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Definition 2 Let A and B be sets. A function from A to B is a relation f between A and B such that

More information

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Topology, Math 581, Fall 2017 last updated: November 24, 2017 1 Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Class of August 17: Course and syllabus overview. Topology

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 2: Countability and Cantor Sets Countable and Uncountable Sets The concept of countability will be important in this course

More information

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005 POL502: Foundations Kosuke Imai Department of Politics, Princeton University October 10, 2005 Our first task is to develop the foundations that are necessary for the materials covered in this course. 1

More information

A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 10: Sizes of Infinite Sets 1. Show that the set of all polynomials

More information

Topology Math Conrad Plaut

Topology Math Conrad Plaut Topology Math 467 2010 Conrad Plaut Contents Chapter 1. Background 1 1. Set Theory 1 2. Finite and Infinite Sets 3 3. Indexed Collections of Sets 4 Chapter 2. Topology of R and Beyond 7 1. The Topology

More information

Section 21. The Metric Topology (Continued)

Section 21. The Metric Topology (Continued) 21. The Metric Topology (cont.) 1 Section 21. The Metric Topology (Continued) Note. In this section we give a number of results for metric spaces which are familar from calculus and real analysis. We also

More information

FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling

FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling Note: You are expected to spend 3-4 hours per week working on this course outside of the lectures and tutorials. In this time you are expected to review

More information

Exercises for Unit VI (Infinite constructions in set theory)

Exercises for Unit VI (Infinite constructions in set theory) Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

Sets, Logic and Categories Solutions to Exercises: Chapter 2

Sets, Logic and Categories Solutions to Exercises: Chapter 2 Sets, Logic and Categories Solutions to Exercises: Chapter 2 2.1 Prove that the ordered sum and lexicographic product of totally ordered (resp., well-ordered) sets is totally ordered (resp., well-ordered).

More information

Lecture Notes on Discrete Mathematics. October 15, 2018 DRAFT

Lecture Notes on Discrete Mathematics. October 15, 2018 DRAFT Lecture Notes on Discrete Mathematics October 15, 2018 2 Contents 1 Basic Set Theory 5 1.1 Basic Set Theory....................................... 5 1.1.1 Union and Intersection of Sets...........................

More information

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions Economics 204 Fall 2011 Problem Set 1 Suggested Solutions 1. Suppose k is a positive integer. Use induction to prove the following two statements. (a) For all n N 0, the inequality (k 2 + n)! k 2n holds.

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27 CS 70 Discrete Mathematics for CS Spring 007 Luca Trevisan Lecture 7 Infinity and Countability Consider a function f that maps elements of a set A (called the domain of f ) to elements of set B (called

More information

Infinite constructions in set theory

Infinite constructions in set theory VI : Infinite constructions in set theory In elementary accounts of set theory, examples of finite collections of objects receive a great deal of attention for several reasons. For example, they provide

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

Chapter 0. Introduction: Prerequisites and Preliminaries

Chapter 0. Introduction: Prerequisites and Preliminaries Chapter 0. Sections 0.1 to 0.5 1 Chapter 0. Introduction: Prerequisites and Preliminaries Note. The content of Sections 0.1 through 0.6 should be very familiar to you. However, in order to keep these notes

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

LECTURE 22: COUNTABLE AND UNCOUNTABLE SETS

LECTURE 22: COUNTABLE AND UNCOUNTABLE SETS LECTURE 22: COUNTABLE AND UNCOUNTABLE SETS 1. Introduction To end the course we will investigate various notions of size associated to subsets of R. The simplest example is that of cardinality - a very

More information

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Our main goal is here is to do counting using functions. For that, we

More information

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. 2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa:

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa: Economics 04 Summer/Fall 011 Lecture Tuesday July 6, 011 Section 1.4. Cardinality (cont.) Theorem 1 (Cantor) N, the set of all subsets of N, is not countable. Proof: Suppose N is countable. Then there

More information