Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Size: px
Start display at page:

Download "Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T"

Transcription

1 Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih he bes esimae for How o obain i? Use he leas squares crierion SS E ˆ

2 No Consan process Can we use? ˆ his smooher accumulaes more and more daa poins and gains some sor of ineria So i canno reac o he change Obviousl, if he process change, earlier daa do no carr he informaion abou he i Use a smooher ha disregards he old values and reacs faser o he change Simple moving average

3 N N N N N M Simple moving average Choice of span N: -If N small :reacs faser o he change - large N:consan process N M Var ) ( he moving averages will be auocorrelaed since successive moving averages conain he same N- observaions N k N k N k k,, 3 Bigger variance for small N

4 Firs order exponenial smoohing Idea: give geomericall decreasing weighs o he pas observaions Obain a smooher ha reacs faser o he change However, Adjus he smooher, b mulipling ) ( ~ Simple or firs order exponenial smooher 4

5 ~ ~ Firs-order exponenial smoohing: linear combinaion of he curren observaion & he smoohed observaion a he previous ime uni ) ~ ( ~ ~ ~ Discoun facor : weigh on he las observaion : weigh on he smoohed value of he previous observaions ) ( 5

6 he iniial value ~ ~ ~ ~ ~ ) ~ ( ~ ~ ~ ~ As ges large, he conribuion of o becomes negligible ~ ~

7 ~ he iniial value commonl used esimaes of ~ ~ If he changes in he process are expeced o occur earl & fas ~ If he process a he beginning is consan 7

8 he value of As ges closer o, & more emphasis is given in he las observaions : he smoohed values follow he original values more closel : ~ ~ : ~ he smoohed values equal o a consan he leas smoohed version of he original ime series..4 Values recommended Choice of he smoohing consan: Subjecive: depending of willingness o have fas adapivi or more rigidi. Choice advocaed b Brown (invenor of he mehod): λ =.7 3 Objecive: consan chosen o minimize he sum of squared forecas errors 8

9 Use exponenial smoohers for model esimaion General class of models f ; vecor of unknown parameers uncorrelaed errors e.g. consan process Esimae parameers SS E If no all observaions have equal influence on he sum : inroduce weighs ha geomericall decrease in ime SS * E, * dss d E ake he derivaive ˆ he soluion ˆ For large ˆ ( ) ~ 9

10 Second order exponenial smoohing uncorrelaed wih mean & consan variance Use single exponenial smoohing: under/over esimae he acual values Linear rend model ) ( ~ E E E Given E ) ( ~ E ~ E E Simple exponenial smooher:biased esimae for he linear rend model Wh? bias & ) (

11 Soluions: a) Use a large value : Smoohed values ver close o he observed: fails o saisfacoril smooh he daa b) Use a mehod based on adapive updaing of he discoun facor c) Use second order exponenial smoohing

12 Second order exponenial smoohing Appl simple exponenial smoohing on ~ ~ ( ) ~ () ( ) ~ () ˆ ) () ~( ~ Unbiased esimae of main issues: choice of iniial values for he smoohers& he discoun facors Iniial values ~ ~ () ˆ ˆ,, ˆ, ˆ, Esimae parameers hrough leas squares

13 Hol s Mehod Divide ime series ino Level and rend L =λ +( α)(l + ) =β(l +L - )+( β) - F + =L + = acual value in ime λ = consan-process smoohing consan β = rend-smoohing consan L = smoohed consan-process value for period = smoohed rend value for period F = forecas value for period + = curren ime period 3

14 Use exponenial smoohers for forecasing A ime, we wish o forecas observaion a ime +, or a ime + ˆ sep ahead forecas Consan Process Can be esimaed b he firs-order exponenial smooher Forecas : ˆ ( ) ~ A ime + ˆ ~ ˆ ( ) ˆ ˆ ˆ () ˆ ( ) ˆ () e () e ( ) ˆ ( ) One-sep-ahead forecas error 4

15 ˆ ˆ ( ) () ˆ () e () ˆ Our forecas for he nex observaion is our previous forecas for he curren observaion plus a fracion of he forecas error we made in forecasing he curren observaion 5

16 Choice of Sum of he squared one-sep-ahead forecas errors SS E e Calculae for various values of Pick he one ha gives he smalles sum of squared forecas errors 6

17 Predicion Inervals Consan process ~ Z a ˆ e ~ firs-order exponenial smooher Z a ˆ e (-a/) percenile of he sandard normal disribuion Esimae of he sandard deviaion of he forecas errors 7

18 Linear rend Process forecas ahead sep ˆ,,,,,, ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ () () () () () () ~ ~ ~ ~ ~ ~ ˆ In erms of he exponenial smoohers 8

19 Parameer Esimaes b,+ = l ( + l) + + ( - l) çb, + b, b,+ = ( ) + - l l - l b,+ - b, æ è ( ) ( - l) b, ö ø (-α/) predicion inervals for an lead ime τ æ ç + l è - l ö æ () -ç+ l ø è - l ö c () ± Z a/ s e ø c l c i =+ é -4l + 5l ( - l) 3 ë ( ) + il 4-3l ( ) + i l ù û 9

20 Esimaion of he variance of he forecas errors, σ e Assumpions: model correc & consan in ime Appl he model o he hisoric daa & obain he forecas errors s e = = å = å = e () ( ( ) ) Updae he variance of he forecas errors when have more daa s e,+ ( ) = + s e, + e + () s e,+ = å e ( ) - + = ( )

21 Define mean absolue deviaion Δ D = E( e - E( e) ) Assuming ha he model is correc D = d e ( ) + ( -d)d - s e, =.5D

22 Model assessmen Check if he forecas errors are uncorrelaed Sample auocorrelaion funcion of he forecas errors - åéë e ( ) - eù û éë e -k =k r k = - éë ù û å = e ( ) - e ( ) - e ù û e n e -If he one-sep-ahead forecas errors are uncorrelaed, he sample auocorrelaions for an lag k should be around wih a sandard error /sq() -A sample auocorrelaion for an lag k ha lies ouside he Limis will require furher invesigaion of he model /

23 Exponenial Smoohing for Seasonal daa Seasonal ime Series Addiive Seasonal Model = L + S +e L = b + b S = S +s = S +s = L : linear rend componen S : seasonal adjusmen s: he period of he lengh of ccles ε : uncorrelaed wih mean zero & consan variance σ ε s Consrain: ås = = 3

24 Forecasing - Sar from curren observaion - Updae he esimae L L = l ( - S -s ) + ( - l )( L - + b,- ), < l < - Updae he esimae of β b, = l ( L - L - ) + ( - l )b,-, < l < S - Updae he esimae of S = l 3 - L ( ) + ( - l 3 )S -s, < l 3 < - τ- sep-ahead foreceas + () = L + b, + S ( - s) 4

25 Esimae he iniial values of he smooher Use leas-squares s- å ( ) = b + b + g i I,i - I,s { i=, =i,i+s,i+s I,i =, oherwise +e b, = L = b b, = b S j-s = g j, j s - S = - s- g j å j= 5

26 Exponenial Smoohing for Seasonal daa Seasonal ime Series Muliplicaive Seasonal Model = L S +e L = b + b S = S +s = S +s = L : linear rend componen S : seasonal adjusmen s: he period of he lengh of ccles ε : uncorrelaed wih mean zero & consan variance σ ε s Consrain: ås = = 6

27 Forecasing - Sar from curren observaion - Updae he esimae L L = l ( / S -s ) + ( - l )( L - + b,- ), < l < - Updae he esimae of β b, = l ( L - L - ) + ( - l )b,-, < l < S - Updae he esimae of S = l 3 / L ( ) + ( - l 3 )S -s, < l 3 < - τ- sep-ahead foreceas + () = L + b, + S ( - s) 7

28 Esimae he iniial values of he smooher From he hisorical daa, obain he iniial values b, = L = - n (n -)s, i = s is å = ( i-)+ b, = - s b, S j-s = s S * j S * = n s å i= n å = S i *, j s (-)s+ j - ((s +) / - j)b 8

29 Exponenial smoohing & ARIMA models = l +(- l) - e = - - e - = e - (- l)e - = = e -qe - (- B) = (-qb)e 9

30 3

31 3

32 3

33 33

34 34

35 . Make a ime series plo of he daa. Use a simple exponenial smoohing wih lambda= o smooh he firs 4 ime period of his daa. How well does his smoohing procedure work? 3. Make one-sep-ahead forecass of he las observaions. Deermine he forecas errors 35

36

37 = l +(- l) - = l + (- l), = = l + (- l) Series Series

38 Forecas : ˆ ( ) ~ One-sep-ahead error : e ( ) ˆ ( ) ˆ ~ obs acual forecas Forecas error

39 . Make a ime series plo of he daa. Use simple exponenial smoohing wih lambda=. o smooh he firs 3 ime periods of his daa. How well does his smoohing procedure work? 3. Make one-sep-ahead forecass of he las observaions. Deermine he forecas errors 39

40 Series 4

41 Series Series Series Series he smoohing procedures works well; i capures he rend of he daa and reduces he variance 4

42 obs acual Forecas Error

43 Shewhar chars 43

44 Shewhar chars A plo of he forecas errors vs ime: Conains a cener line ha represens he average of he forecas errors A se of conrol limis ha are designed o provide an indicaion ha he forecasing model Performance has changed Cener line: eiher zero or he average forecas error Conrol limis : placed a he hree sandard deviaions of he forecas errors n å MR = e i= ( ) - e - ( ) s e ( ) =.8865 MR 44

45 he forecas error falls near he 3σ limi. he forecasing procedure works well ; however he ime series is ver nois as he forecas errors s e ( ) = = Sum Aver LCL= UCL=.4 45

46 Series

47 Plo he firs differences of his daa?. Has differencing removed he rend? 3. Use exponenial smoohing on he firs differences. Insead of forecasing he original daa, forecas he firs differences for he remaining daa using exponenial smoohing and use hese forecass of he firs differences o obain forecass from he original daa 47

48 Series Series

49 49

50 Find he auocorrelaion funcion. Does i show an rend? Do ou obain an informaion abou he smoohing parameer ou could use? 5

51 Series

52 5

53 53

54 54

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Lecture 3: Exponential Smoothing

Lecture 3: Exponential Smoothing NATCOR: Forecasing & Predicive Analyics Lecure 3: Exponenial Smoohing John Boylan Lancaser Cenre for Forecasing Deparmen of Managemen Science Mehods and Models Forecasing Mehod A (numerical) procedure

More information

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis Summer Term 2009 Alber-Ludwigs-Universiä Freiburg Empirische Forschung und Okonomerie Time Series Analysis Classical Time Series Models Time Series Analysis Dr. Sevap Kesel 2 Componens Hourly earnings:

More information

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013 STATGRAPHICS Cenurion Rev. 9/16/2013 Forecasing Summary... 1 Daa Inpu... 3 Analysis Opions... 5 Forecasing Models... 9 Analysis Summary... 21 Time Sequence Plo... 23 Forecas Table... 24 Forecas Plo...

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business THE UNIVERITY OF TEXA AT AUTIN McCombs chool of Business TA 7.5 Tom hively CLAICAL EAONAL DECOMPOITION - MULTIPLICATIVE MODEL Examples of easonaliy 8000 Quarerly sales for Wal-Mar for quarers a l e s 6000

More information

Affine term structure models

Affine term structure models Affine erm srucure models A. Inro o Gaussian affine erm srucure models B. Esimaion by minimum chi square (Hamilon and Wu) C. Esimaion by OLS (Adrian, Moench, and Crump) D. Dynamic Nelson-Siegel model (Chrisensen,

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

PROC NLP Approach for Optimal Exponential Smoothing Srihari Jaganathan, Cognizant Technology Solutions, Newbury Park, CA.

PROC NLP Approach for Optimal Exponential Smoothing Srihari Jaganathan, Cognizant Technology Solutions, Newbury Park, CA. PROC NLP Approach for Opimal Exponenial Smoohing Srihari Jaganahan, Cognizan Technology Soluions, Newbury Park, CA. ABSTRACT Esimaion of smoohing parameers and iniial values are some of he basic requiremens

More information

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4.

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4. Seasonal models Many business and economic ime series conain a seasonal componen ha repeas iself afer a regular period of ime. The smalles ime period for his repeiion is called he seasonal period, and

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

Math 2214 Solution Test 1B Fall 2017

Math 2214 Solution Test 1B Fall 2017 Mah 14 Soluion Tes 1B Fall 017 Problem 1: A ank has a capaci for 500 gallons and conains 0 gallons of waer wih lbs of sal iniiall. A soluion conaining of 8 lbsgal of sal is pumped ino he ank a 10 galsmin.

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LDA, logisic

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2 Pak. J. Sais. 017 Vol. 33(1), 1-13 BOOTSTRAP PREDICTIO ITERVAS FOR TIME SERIES MODES WITH HETROSCEDASTIC ERRORS Amjad Ali 1, Sajjad Ahmad Khan, Alamgir 3 Umair Khalil and Dos Muhammad Khan 1 Deparmen of

More information

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad,

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad, GINI MEAN DIFFEENCE AND EWMA CHATS Muhammad iaz, Deparmen of Saisics, Quaid-e-Azam Universiy Islamabad, Pakisan. E-Mail: riaz76qau@yahoo.com Saddam Akbar Abbasi, Deparmen of Saisics, Quaid-e-Azam Universiy

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Exponentially Weighted Moving Average (EWMA) Chart Based on Six Delta Initiatives

Exponentially Weighted Moving Average (EWMA) Chart Based on Six Delta Initiatives hps://doi.org/0.545/mjis.08.600 Exponenially Weighed Moving Average (EWMA) Char Based on Six Dela Iniiaives KALPESH S. TAILOR Deparmen of Saisics, M. K. Bhavnagar Universiy, Bhavnagar-36400 E-mail: kalpesh_lr@yahoo.co.in

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LTU, decision

More information

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average Applied Time Series Noes Whie noise: e mean 0, variance 5 uncorrelaed Moving Average Order 1: (Y. ) œ e ) 1e -1 all Order q: (Y. ) œ e ) e â ) e all 1-1 q -q ( 14 ) Infinie order: (Y. ) œ e ) 1e -1 ) e

More information

III. Module 3. Empirical and Theoretical Techniques

III. Module 3. Empirical and Theoretical Techniques III. Module 3. Empirical and Theoreical Techniques Applied Saisical Techniques 3. Auocorrelaion Correcions Persisence affecs sandard errors. The radiional response is o rea he auocorrelaion as a echnical

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian CS 4495 Compuer Vision A. Bobick CS 4495 Compuer Vision - KalmanGaussian Aaron Bobick School of Ineracive Compuing CS 4495 Compuer Vision A. Bobick Adminisrivia S5 will be ou his Thurs Due Sun Nov h :55pm

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif Chaper Kalman Filers. Inroducion We describe Bayesian Learning for sequenial esimaion of parameers (eg. means, AR coeciens). The updae procedures are known as Kalman Filers. We show how Dynamic Linear

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Intermittent Demand Forecast and Inventory Reduction Using Bayesian ARIMA Approach

Intermittent Demand Forecast and Inventory Reduction Using Bayesian ARIMA Approach Proceedings of he 00 Inernaional Conference on Indusrial Engineering and Operaions Managemen Dhaka, Bangladesh, January 9 0, 00 Inermien Demand orecas and Invenory Reducion Using Bayesian ARIMA Approach

More information

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand Excel-Based Soluion Mehod For The Opimal Policy Of The Hadley And Whiin s Exac Model Wih Arma Demand Kal Nami School of Business and Economics Winson Salem Sae Universiy Winson Salem, NC 27110 Phone: (336)750-2338

More information

Dynamic models for largedimensional. Yields on U.S. Treasury securities (3 months to 10 years) y t

Dynamic models for largedimensional. Yields on U.S. Treasury securities (3 months to 10 years) y t Dynamic models for largedimensional vecor sysems A. Principal componens analysis Suppose we have a large number of variables observed a dae Goal: can we summarize mos of he feaures of he daa using jus

More information

COMPUTATION OF THE PERFORMANCE OF SHEWHART CONTROL CHARTS. Pieter Mulder, Julian Morris and Elaine B. Martin

COMPUTATION OF THE PERFORMANCE OF SHEWHART CONTROL CHARTS. Pieter Mulder, Julian Morris and Elaine B. Martin COMUTATION OF THE ERFORMANCE OF SHEWHART CONTROL CHARTS ieer Mulder, Julian Morris and Elaine B. Marin Cenre for rocess Analyics and Conrol Technology, School of Chemical Engineering and Advanced Maerials,

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan Tracking Man slides adaped from Krisen Grauman Deva Ramanan Coures G. Hager Coures G. Hager J. Kosecka cs3b Adapive Human-Moion Tracking Acquisiion Decimaion b facor 5 Moion deecor Grascale convers. Image

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

TREND ESTIMATION AT THE ENDS OF SERIES USING ADAPTIVE SEMI-PARAMETRIC LOCAL DYNAMIC MODELS.

TREND ESTIMATION AT THE ENDS OF SERIES USING ADAPTIVE SEMI-PARAMETRIC LOCAL DYNAMIC MODELS. TREND ESTIMATION AT THE ENDS OF SERIES USING ADAPTIVE SEMI-PARAMETRIC LOCAL DYNAMIC MODELS. Alisair G. Gray and Peer J. Thomson Saisics New Zealand and Saisics Research Associaes Ld Alisair Gray, Analyical

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN Inernaional Journal of Applied Economerics and Quaniaive Sudies. Vol.1-3(004) STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN 001-004 OBARA, Takashi * Absrac The

More information

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates)

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates) ECON 48 / WH Hong Time Series Daa Analysis. The Naure of Time Series Daa Example of ime series daa (inflaion and unemploymen raes) ECON 48 / WH Hong Time Series Daa Analysis The naure of ime series daa

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Age (x) nx lx. Age (x) nx lx dx qx

Age (x) nx lx. Age (x) nx lx dx qx Life Tables Dynamic (horizonal) cohor= cohor followed hrough ime unil all members have died Saic (verical or curren) = one census period (day, season, ec.); only equivalen o dynamic if populaion does no

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Linear Dynamic Models

Linear Dynamic Models Linear Dnamic Models and Forecasing Reference aricle: Ineracions beween he muliplier analsis and he principle of acceleraion Ouline. The sae space ssem as an approach o working wih ssems of difference

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information