Universal Gravitation and Central Net Force. Gravity 12/21/2017. supplemental

Size: px
Start display at page:

Download "Universal Gravitation and Central Net Force. Gravity 12/21/2017. supplemental"

Transcription

1 Universal Gravitation and Central Net Force Gravity supplemental Newton s Universal Law of Gravitation Inverse square law (all field forces are inverse squares) Why? Our universe has 3 dimensions of space, as you move outward you encounter 3 dimensional spheres of gravitational field the surface area of a sphere is 4πr, so each new sphere of field (influence) decreases by a r term. All massive objects put gravitational forces on other massive objects You have mass, and so does the person next you Yes, you are attracted to the person sitting next to you You are also attractive so someone living in another galaxy, but the force is so small it can t be measured 1

2 7 173 The equation is where little g comes from mg = GMm/r Cancel the little m s and you find g = GM/r where the mass of the Earth is 5.97 x 10 4 kg Where the radius of the Earth is x 10 6 m Big G is 6.67 x Multiple it out and g = 9.8 N/kg, tada!

3 Assignments on gravity Volume of a sphere: Density: m D = V V 4 = π r 3 3 The nature of orbits Throw a ball, projectile motion (a parabola) Throw it harder and the projectile motion is the same just a longer parabola Throw it so hard that it makes it to the horizon before it hits the ground that it will enter into a constant state of falling toward the center of the earth but never hitting it People in ISS are not floating, they are falling continuous state of sky-diving Centripetal vs centrifugal l In order to accelerate, you need an unbalanced force in the direction of acceleration. When you take the round-about at middle road too fast, you have to be accelerated into the circle (inward), but you feel like you are being thrown outward because of your inertia wanting to keep you in the path of your motion Centrifugal vs. centripetal motion (centrimeaning center and petal meaning seeking like a bee seeks a flower petal). Centrifugal is not real, it is the feeling of inertia. Silly Silo at Adventureland example Curves, Centrifugal, Centripetal Forces Going around a curve smushes you against window Understand this as inertia: your body wants to keep going straight but the car is accelerating towards the center of the curve Centripetal, Centrifugal Forces, continued The car is accelerated toward the center of the curve by a centripetal (center seeking) force The name for the net force toward the center of the circle that causes circular motion to occur NOT a separate force. Can use F net to represent it. In your reference frame of the car, you experience a fake, or fictitious centrifugal force Not a real force, just inertia relative to car s acceleration The Car accelerates you think you re being accelerated Centripetal Force on car velocity of car (and the way you d rather go) 3

4 Car Around a Curve - Friction Centripetal Force What provides it? If there isn t enough friction (icy or wet road), the car doesn t make the curve! Silly Silo the wall provides the centripetal force! Vertical drum rotates, you re pressed against wall Friction force against wall matches gravity Seem to stick to wall, feel very heavy Real Forces: Friction; up Centripetal; inwards Gravity (weight); down Lab How do mass, velocity and radius affect centripetal force? Three investigations Fc versus velocity Mass versus velocity Radius versus velocity Some values are filled in already Circular Motion w/ a sparkler How differentials work How do we create artificial gravity Circularly moving space stations The Martian (movie) Interstellar (movie) 001 Space Oddyssey(movie) Halo (video game) Elysium (movie) How differentials work Space Odyssey 4

5 How do trains turn? Baffling balloon behavior A Which direction does the net force (centripetal force) point for an object moving in a uniform circular motion? Which of the following is true for an object traveling in a circular path at constant speed? a) its speed is constant, so its acceleration is zero. b) both its speed and velocity are constant. c) its speed is constant, but its velocity is changing. d) both its velocity and acceleration are constant. F net 5

6 A 1500-kg car goes around a curve with a radius of 50.0-m at a speed of 8.0 m/s. a) How much Fc is needed? mv (1500)(8.0) Fc = = = 190 = 1900N r 50.0 A 50.0-g cork on a 1.00-m string twirls at 3.00 rev/s. The string can hold only 0.0-N. Will it break? Π(1) v = = 18.8m / s (18.8) F = = c 7 N IT WILL HOLD!!! A classmate swings a rock on a string in an overhead circle. Suppose that the string breaks at the point shown. Draw a line to show the path of the rock. Two identical boats race around a semi-circular turn, both are traveling at the same speed. a. Which boat takes longer to complete the turn? b. Which boat has a greater acceleration in the turn? c. Which boat has the greater net force on it? Unit 6 Universal Gravitation and Central Net Force Model Recap/Review 6

7 F net How do I figure this out? Try it out but make it easy on yourself. Substitute in easy #s to work with, like 1 and and find out! 7

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday.

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. Centripetal Acceleration and Newtonian Gravitation Reminders: 15

More information

Uniform Circular Motion. Uniform Circular Motion

Uniform Circular Motion. Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion An object that moves at uniform speed in a circle of constant radius is said to be in uniform circular motion. Question: Why is uniform

More information

Earth moves 30,000 m/s around sun

Earth moves 30,000 m/s around sun Motion in Our Daily Lives Emphasis on amusement parks, circular motion What kind of motions do we feel? Aside from vibrations, don t feel constant velocity Earth moves 30,000 m/s around sun only curves

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

Angle recap. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Angle recap. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration: Angle recap Angular position: Angular displacement: s Angular velocity: Angular Acceleration: Every point on a rotating rigid object has the same angular, but not the same linear motion! Today s lecture

More information

AP Physics C - Problem Drill 18: Gravitation and Circular Motion

AP Physics C - Problem Drill 18: Gravitation and Circular Motion AP Physics C - Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some

More information

Chapter 5 Review : Circular Motion; Gravitation

Chapter 5 Review : Circular Motion; Gravitation Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration

More information

Circular Motion (Chapter 5)

Circular Motion (Chapter 5) Circular Motion (Chapter 5) So far we have focused on linear motion or motion under gravity (free-fall). Question: What happens when a ball is twirled around on a string at constant speed? Ans: Its velocity

More information

Uniform (constant rotational rate) Circular Motion

Uniform (constant rotational rate) Circular Motion Uniform (constant rotational rate) Circular Motion Uniform circular motion is the motion of an object in a circle with a constant speed and a constant radius. Centrifugal Force (center fleeing) is an apparent

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center

More information

Experiment #7 Centripetal Force Pre-lab Questions Hints

Experiment #7 Centripetal Force Pre-lab Questions Hints Experiment #7 Centripetal Force Pre-lab Questions Hints The following are some hints for this pre-lab, since a few of these questions can be a little difficult. Note that these are not necessarily the

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

An object moving in a circle with radius at speed is said to be undergoing.

An object moving in a circle with radius at speed is said to be undergoing. Circular Motion Study Guide North Allegheny High School Mr. Neff An object moving in a circle with radius at speed is said to be undergoing. In this case, the object is because it is constantly changing

More information

Linear vs. Rotational Motion

Linear vs. Rotational Motion Linear vs. Rotational Motion Every term in a linear equation has a similar term in the analogous rotational equation. Displacements: s = r θ v t ω Speeds: v t = ω r Accelerations: a t = α r Every point

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Centripetal force keeps an Rotation and Revolution

Centripetal force keeps an Rotation and Revolution Centripetal force keeps an object in circular motion. Which moves faster on a merry-go-round, a horse near the outside rail or one near the inside rail? While a hamster rotates its cage about an axis,

More information

2. SKIP THIS YEAR What event will produce the greatest increase in the gravitational force between the two masses?

2. SKIP THIS YEAR What event will produce the greatest increase in the gravitational force between the two masses? Forces Review: look over all labs and worksheets. Your answers should be in another color pen. This is not all inclusive of items on the test but a very close representation. 1. The table shows the results

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration 3. Going around a curve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac 2. Slowing down v velocity and acceleration

More information

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed Conceptual Physics 11 th Edition Circular Motion Rotational Inertia Torque Center of Mass and Center of Gravity Centripetal Force Centrifugal Force Chapter 8: ROTATION Rotating Reference Frames Simulated

More information

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice Physics 3204 Assignment 2.1 UCM DUE: Thursday Nov 24, 2017 Name: Part A. Multiple Choice: Select the best possible answer. Place the answer on the answer sheet. 1. In which situation is an object undergoing

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW: Assignment - Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 4 Newton s Three Laws, Free Body Diagrams, Friction Chapter 5 (except

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

Centripetal Acceleration & Projectile Motion. 4th 6wks

Centripetal Acceleration & Projectile Motion. 4th 6wks Centripetal Acceleration & Projectile Motion 4th 6wks Centripetal Force and Acceleration Centripetal Acceleration (A C ) is the acceleration of an object towards the center of a curved or circular path.

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

Circular Motion CENTRIPETAL ACCELERATION. tf-t,

Circular Motion CENTRIPETAL ACCELERATION. tf-t, Circular Motion Ill SECTION OBJECTIVES Solve problems involving centripetal acceleration. Solve problems involving centripetal force. Explain how the apparent existence of an outward force in circular

More information

Circular Motion. For You To Do

Circular Motion. For You To Do Activity 9 Circular Motion Activity 9 Circular Motion GOALS In this activity you will: Understand that a centripetal force is required to keep a mass moving in a circular path at constant speed. Understand

More information

GRAVITY IS AN ATTRACTIVE FORCE

GRAVITY IS AN ATTRACTIVE FORCE WHAT IS GRAVITY? Gravity: force of attraction between objects due to their mass Gravity is a noncontact force that acts between two objects at any distance apart GRAVITY IS AN ATTRACTIVE FORCE Earth s

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Unit 2: Forces Chapter 6: Systems in Motion

Unit 2: Forces Chapter 6: Systems in Motion Forces Unit 2: Forces Chapter 6: Systems in Motion 6.1 Motion in Two Dimension 6.2 Circular Motion 6.3 Centripetal Force, Gravitation, and Satellites 6.4 Center of Mass 6.1 Investigation: Launch Angle

More information

Midterm Grades Midterm HW and MidtermGrades in ecampus. Check clicker grades Check HW (WebAssign) grade HW and Reading Assignments

Midterm Grades Midterm HW and MidtermGrades in ecampus. Check clicker grades Check HW (WebAssign) grade HW and Reading Assignments Exam 2 Grades not in yet Midterm Grades Midterm HW and MidtermGrades in ecampus Check clicker grades Check HW (WebAssign) grade HW and Reading Assignments Today s Objectives Rotational Motion After today,

More information

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 CH 4: Uniform Circular Motion The velocity vector is tangent to the path The change in velocity vector is due to the change in direction.

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS GIANCOLI CHAPTER 5: CIRCULAR MOTION; GRAVITATION LSN 5-1: KINEMATICS OF UNIFORM CIRCULAR MOTION LSN 5-2: DYNAMICS OF UNIFORM CIRCULAR MOTION LSN 5-3:

More information

Circular/Gravity ~ Learning Guide Name:

Circular/Gravity ~ Learning Guide Name: Circular/Gravity ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular motion Impulse and momentum 08-2 1 Current assignments Reading: Chapter 9 in textbook Prelecture due next Thursday HW#8 due NEXT Friday (extension!)

More information

Chapter 3 Celestial Sphere Movie

Chapter 3 Celestial Sphere Movie Chapter 3 Celestial Sphere Movie Gravity and Motion Projects I moved due-date for Part 1 to 10/21 I added a descriptive webpage about the projects. Preview Ch 1 Ch 2 Galileo Movie Essay 1: Backyard Astronomy

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration! Δv! aavg t 3. Going around urve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac. Slowing down v velocity and

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Projectile and Circular Motion Review Packet

Projectile and Circular Motion Review Packet Conceptual Physics Projectile and Circular Motion Review Packet Mr. Zimmerman Textbook Reference: pp. 33-42, 122-135 Key Terms (fill in definitions) projectile - any object that moves through the air or

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

07. GRAVITATION. Questions and Answers

07. GRAVITATION. Questions and Answers CLASS-09 07. GRAVITATION Questions and Answers PHYSICAL SCIENCES 1. A car moves with a constant speed of 10 m/s in a circular path of radius 10 m. The mass of the car is 1000 Kg. Who or What is providing

More information

Forces. Dynamics FORCEMAN

Forces. Dynamics FORCEMAN 1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

More information

PHYSICS - CLUTCH CH 06: CENTRIPETAL FORCES & GRAVITATION.

PHYSICS - CLUTCH CH 06: CENTRIPETAL FORCES & GRAVITATION. !! www.clutchprep.com UNIFORM CIRCULAR MOTION In Uniform Circular Motion, an object moves with constant speed in a circular path. v,t = a,c = a,c = v,t 2 / r r = When an object completes one lap ( or ),

More information

Principles and Problems. Chapter 6: Motion in Two Dimensions

Principles and Problems. Chapter 6: Motion in Two Dimensions PHYSICS Principles and Problems Chapter 6: Motion in Two Dimensions CHAPTER 6 Motion in Two Dimensions BIG IDEA You can use vectors and Newton s laws to describe projectile motion and circular motion.

More information

Mechanics Lecture Notes

Mechanics Lecture Notes Mechanics Lecture Notes Lectures 0 and : Motion in a circle. Introduction The important result in this lecture concerns the force required to keep a particle moving on a circular path: if the radius of

More information

2010 F=ma Solutions. that is

2010 F=ma Solutions. that is 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Circular Motion. Unit 7

Circular Motion. Unit 7 Circular Motion Unit 7 Do Now You drive a car that follows a circular path with the radius r = 100 m. Find the distance travelled if you made one complete circle. C 2 R 2(3.14)(100) 6.28(100) 628m Uniform

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Circular Motion Milky Way Galaxy Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Mercury: 48 km/s Venus: 35 km/s Earth: 30

More information

Circular Motion: IN-CLASS REVIEW

Circular Motion: IN-CLASS REVIEW Circular Motion: IN-CLASS REVIEW Lyzinski, CRHS-South Basic Circular Motion Equations: You need to know how to get the centripetal acceleration and the centripetal force in terms of T (period) instead

More information

Circular Motion Tangential Speed. Conceptual Physics 11 th Edition. Circular Motion Rotational Speed. Circular Motion

Circular Motion Tangential Speed. Conceptual Physics 11 th Edition. Circular Motion Rotational Speed. Circular Motion Conceptual Physics 11 th Edition Circular Motion Tangential Speed The distance traveled by a point on the rotating object divided by the time taken to travel that distance is called its tangential speed

More information

Chapter 7: Circular Motion

Chapter 7: Circular Motion Chapter 7: Circular Motion Spin about an axis located within the body Example: Spin about an axis located outside the body. Example: Example: Explain why it feels like you are pulled to the right side

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

Chapter 12 Study Guide

Chapter 12 Study Guide Chapter 12 Study Guide Key Concepts 12.1 12.2 12.3 12.4 A force can cause a resting object to move, or it can accelerate a moving object by changing the object s speed or direction. When the forces on

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Section 9.2. Centripetal Acceleration Centripetal Force

Section 9.2. Centripetal Acceleration Centripetal Force Section 9.2 Centripetal Acceleration Centripetal Force Centripetal Acceleration Uniform Circular Motion The motion of an object in a circular path at a constant speed is known as uniform circular motion

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

University Physics 226N/231N Old Dominion University. More Circular Motion, then Newton s Laws

University Physics 226N/231N Old Dominion University. More Circular Motion, then Newton s Laws University Physics 226N/231N Old Dominion University More Circular Motion, then Newton s Laws Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-odu Wednesday, September

More information

Circular Motion. - The velocity is tangent to the path and perpendicular to the radius of the circle

Circular Motion. - The velocity is tangent to the path and perpendicular to the radius of the circle Circular Motion Level : Physics Teacher : Kim 1. Uniform Circular Motion - According to Newton s 1 st law, an object in motion will move in a straight line at a constant speed unless an unbalance force

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

More information

In the y direction, the forces are balanced, which means our force equation is simply F A = F C.

In the y direction, the forces are balanced, which means our force equation is simply F A = F C. Unit 3: Dynamics and Gravitation DYNAMICS Dynamics combine the concept of forces with our understanding of motion (kinematics) to relate forces to acceleration in objects. Newton s Second Law states that

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

Student Exploration: Uniform Circular Motion

Student Exploration: Uniform Circular Motion Name: Date: Student Exploration: Uniform Circular Motion Vocabulary: acceleration, centripetal acceleration, centripetal force, Newton s first law, Newton s second law, uniform circular motion, vector,

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem.

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Circular Motion Concepts When an object moves in a circle,

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Some Questions We ll Address Today

Some Questions We ll Address Today Some Questions We ll Address Today What makes a rocket go? How can a rocket work in outer space? How do things get into orbit? What s s special about geo-synchronous orbit? How does the force of gravity

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information