Circular Motion: IN-CLASS REVIEW

Size: px
Start display at page:

Download "Circular Motion: IN-CLASS REVIEW"

Transcription

1 Circular Motion: IN-CLASS REVIEW Lyzinski, CRHS-South Basic Circular Motion Equations: You need to know how to get the centripetal acceleration and the centripetal force in terms of T (period) instead of v (velocity): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Things to Remember for BASIC CIRCULAR MOTION: o Concept #1: If an object travels in a circle, it does so against its will. It wants to move in a straight line. o Concept #2: The velocity of an object that travels in a circular path is TANGENT to the circle, at every moment in time. o Concept #3: Objects that move in a circular path, even those that are traveling at a constant velocity, are in fact accelerating. o Concept #4: The acceleration of an objects moving in circular path is always directed INWARD (but not just inward, rather inward towards the center of the circular path ). This acceleration is called the CENTRIPETAL acceleration, which mean center-seeking. o Concept #5: There is no such thing as a CENTRIFUGAL force. Things appear to pull outward b/c of their inertia. They want to continue in the direction in which they are traveling at any given moment (tangent to the circle, in a straight line). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 Things to Remember for HORIZONTAL circles: Always ask the question What supplies the centripetal force? If a force points into the circle, it s a WINNER. If a force points out of the circle, it s a LOSER. Winners Losers = FNet (or, more helpful in this chapter, INs OUTs = FC ) Things that supply Fc: Ff (= FN), Tension, force of adhesion, force of attraction, etc Things to Remember for VERTICAL circles: Can you derive each of these equations???? Ball on String Car doing Loop-deloop Plane doing Loop-de-loop Pilot doing Loop-de-loop At top At Bottom At Side Critical Speed * Apparent Weight and Normal Force mean the same thing. ** When talking about a maximum tension or pulling max # of g s, use the bottom equation. *** T, FN, and FL go to zero at the top when moving at the critical velocity. Can you derive each of these equations????

3 Things to remember for BANKED TURNS (and SWING RIDES): Ball on String (Swing ride) Airplane on banked turn Car/bike on banked turn What supplied FC? Velocity equation? F or T other Woop-de-doos Can you derive each of these equations???? Flat Road Top of Hump Bottom of Dip How you feel F N Critical speed Know your GR s (grrrrrrrrrrrrrr ) v gr v gr v tan gr v 5gR critical speed for critical speed critical speed for conical pendulums speed that you need Vertical circles for flat turns and frictionless banked turns to enter a vertical loop In order to complete it

4 Circular Motion: OUT-OF-CLASS REVIEW This review packet should prepare you well for the uniform circular motion exam. In fact, it should be a little bit harder than the test itself. If you have trouble on a particular problem, look at similar HW problems (from previous assignments) and/or look at the online Powerpoint Review. Make sure to draw free-body-diagrams (FBDs) for each problem. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. A circular turntable turns at a speed of 40 rev/min. A 3-gram ant sits 6 cm away from the center of rotation. Find: a) the period of the turntable. b) the force of friction that keeps the ant moving in the circular path. c) The minimum coefficient of friction that will provide this centripetal force. 2. A 30 g ball on a 45 cm string is swung in a horizontal circle above the head of a physics student. If 10 revolutions take 7 seconds, find the tension in the string. 3. Another physics student, who isn t the best cowboy swings his ball (again of mass 30g on a string of length 45cm) in a less-than-horizontal manner (instead, it looks more like a conical pendulum with a angle of 10 o between the horizontal and the string). After drawing a detailed FBD of the situation, find. a) the tension in the string. b) the radius of the circle that the ball actually travels. c) the velocity of the ball. d) the time necessary to complete 10 revolutions. 4. A 1500 kg truck travels around a flat circular turn at 25 m/s. If the turn s radius is 100 m, find the minimum coefficient of friction that will keep this car from sliding. 5. If the 1500 kg truck travels at 20 m/s around a circular turn with 20 o banked turns, find the radius of the turn that will keep the car from sliding up or down the embankment. 6. A ball is swung around in a vertical circle by a string that is 30 cm long. If the tension in the string is 20 N at the top of the circular path, and the ball s period is.25 seconds, find the mass of the ball.

5 7. What would be the minimum velocity necessary to keep the ball from problem #6 above in the same circular path? 8. A stunt biker goes through a loop-de-loop of radius 2 m. If the biker s (w/ the bike) total mass is 300 kg, find the constant speed that would produce an apparent weight at the bottom of the loop of 3 times his regular weight. 9. What would be the minimum velocity necessary to keep the biker from problem #8 above from losing contact with the track at the top of the loop? 10. A plane is traveling at 300 m/s in a vertical, circular loop of radius 1800m. Find the maximum lift force exerted on the 90 kg pilot by the plane s seat. How many G s does the pilot pull when he is in this position? 11. A 1200 kg car travels at 25 m/s over a woop-de-doo of dip radius 30 m and bump radius 50 m. Find the maximum constant speed (before contact with the road is lost) and the maximum normal force on the road that accompanies this constant speed. 12. HONORS ONLY: Complete problem #50 on pg. 251 in the Wilson, Buffa, Lou Physics book. 13. HONORS ONLY: Complete problem #51 on pg. 251 in the Wilson, Buffa, Lou Physics book. Answers: 1) 1.5 sec;.003n,.1 2) 1.088N 3) 1.693N; cm; m/s; 5.61 sec 4).638 5) 112 m 6) 111 g 7) m/s 8) m/s 9) m/s 10) 5,382 N; ) 31,360 N 12) NO, because the tension would only be providing a horizontal force and nothing would be balancing the weight of the ball, 7.85 m/s, N 13) 78.7 o between string and vertical, but 11.3 o between string and horizontal.

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Uniform Circular Motion. Uniform Circular Motion

Uniform Circular Motion. Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion An object that moves at uniform speed in a circle of constant radius is said to be in uniform circular motion. Question: Why is uniform

More information

Uniform (constant rotational rate) Circular Motion

Uniform (constant rotational rate) Circular Motion Uniform (constant rotational rate) Circular Motion Uniform circular motion is the motion of an object in a circle with a constant speed and a constant radius. Centrifugal Force (center fleeing) is an apparent

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture ask a physicist

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture ask a physicist Welcome back to Physics 211 Today s agenda: Forces in Circular Motion Impulse Physics 211 Spring 2014 Lecture 07-1 1 ask a physicist My question is on sonoluminescence, which is supposed to be when a sound

More information

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

More information

Circular Velocity and Centripetal Acceleration

Circular Velocity and Centripetal Acceleration 1. An object is spun around in circular motion such that it completes 100 cycles in 25 s. a. What is the period of its rotation? [0.25 s] b. If the radius is 0.3 m what is the velocity? [7.54 m/s] c. Draw

More information

Circular Motion. Unit 7

Circular Motion. Unit 7 Circular Motion Unit 7 Do Now You drive a car that follows a circular path with the radius r = 100 m. Find the distance travelled if you made one complete circle. C 2 R 2(3.14)(100) 6.28(100) 628m Uniform

More information

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli Lecture PowerPoints Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

Section 9.2. Centripetal Acceleration Centripetal Force

Section 9.2. Centripetal Acceleration Centripetal Force Section 9.2 Centripetal Acceleration Centripetal Force Centripetal Acceleration Uniform Circular Motion The motion of an object in a circular path at a constant speed is known as uniform circular motion

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 CH 4: Uniform Circular Motion The velocity vector is tangent to the path The change in velocity vector is due to the change in direction.

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Circular Motion. - The velocity is tangent to the path and perpendicular to the radius of the circle

Circular Motion. - The velocity is tangent to the path and perpendicular to the radius of the circle Circular Motion Level : Physics Teacher : Kim 1. Uniform Circular Motion - According to Newton s 1 st law, an object in motion will move in a straight line at a constant speed unless an unbalance force

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion Lecture 10 Goals: Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapters 8 & 9, due 3/4, Wednesday) For Tuesday: Finish reading Chapter 8, start Chapter 9. Physics 207: Lecture

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

Circular Motion PreTest

Circular Motion PreTest Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday.

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. Centripetal Acceleration and Newtonian Gravitation Reminders: 15

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

AP Physics C - Problem Drill 18: Gravitation and Circular Motion

AP Physics C - Problem Drill 18: Gravitation and Circular Motion AP Physics C - Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

Multiple Choice (A) (B) (C) (D)

Multiple Choice (A) (B) (C) (D) Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions are: (A) (B) (C) (D) 2.

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Exam 2 Phys Fall 2002 Version A. Name ID Section

Exam 2 Phys Fall 2002 Version A. Name ID Section Closed book exam - Calculators are allowed. Only the official formula sheet downloaded from the course web page can be used. You are allowed to write notes on the back of the formula sheet. Use the scantron

More information

Centripetal force keeps an Rotation and Revolution

Centripetal force keeps an Rotation and Revolution Centripetal force keeps an object in circular motion. Which moves faster on a merry-go-round, a horse near the outside rail or one near the inside rail? While a hamster rotates its cage about an axis,

More information

Homework #19 (due Friday 5/6)

Homework #19 (due Friday 5/6) Homework #19 (due Friday 5/6) Physics ID number Group Letter One issue that people often have trouble with at this point is distinguishing between tangential acceleration and centripetal acceleration for

More information

Section Centripetal Acceleration Centripetal Force

Section Centripetal Acceleration Centripetal Force Section 10.2 Centripetal Acceleration Centripetal Force Centripetal Acceleration Uniform Circular Motion The motion of an object in a circular path at a constant speed is known as uniform circular motion

More information

Chapter 8: Newton s Laws Applied to Circular Motion

Chapter 8: Newton s Laws Applied to Circular Motion Chapter 8: Newton s Laws Applied to Circular Motion Circular Motion Milky Way Galaxy Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Mercury: 48 km/s Venus: 35 km/s Earth: 30

More information

Central Force Particle Model

Central Force Particle Model Name: Central Force Particle Model 1 from Modeling Workshop Project 2006, 2010 Worksheet 1: Horizontal and Vertical UCM Honors Physics / Unit 09 / CFPM First, some warm-ups: 1. A bowling ball rolls down

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

Episode 224: Describing circular motion

Episode 224: Describing circular motion Episode 224: Describing circular motion In this episode, you will introduce the importance of circular motion and explain the need for a centripetal force to keep an object moving along a circular path.

More information

Circular Motion Ch. 10 in your text book

Circular Motion Ch. 10 in your text book Circular Motion Ch. 10 in your text book Objectives Students will be able to: 1) Define rotation and revolution 2) Calculate the rotational speed of an object 3) Calculate the centripetal acceleration

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Name Period Date A) B) C) D)

Name Period Date A) B) C) D) Example Problems 9.2 E1. A car rounds a curve of constant radius at a constant speed. Which diagram best represents the directions of both the car s velocity and acceleration? Explain: A) B) C) D) E2.

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s Objectives: Students will be able to: 1. Apply the equation of motion using normal and tangential coordinates. In-Class Activities: Check

More information

Chapter 7: Circular Motion

Chapter 7: Circular Motion Chapter 7: Circular Motion Spin about an axis located within the body Example: Spin about an axis located outside the body. Example: Example: Explain why it feels like you are pulled to the right side

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice Physics 3204 Assignment 2.1 UCM DUE: Thursday Nov 24, 2017 Name: Part A. Multiple Choice: Select the best possible answer. Place the answer on the answer sheet. 1. In which situation is an object undergoing

More information

Physics 8 Wednesday, October 11, 2017

Physics 8 Wednesday, October 11, 2017 Physics 8 Wednesday, October 11, 2017 HW5 due Friday. It s really Friday this week! Homework study/help sessions (optional): Bill will be in DRL 2C6 Wednesdays from 4 6pm (today). Grace will be in DRL

More information

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam.

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam. December 2015 Exam Review July-15-14 10:39 AM Here are solutions to the December 2014 final exam. 1. [5 marks] A soccer ball is kicked from the ground so that it is projected at an initial angle of 39

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

In the y direction, the forces are balanced, which means our force equation is simply F A = F C.

In the y direction, the forces are balanced, which means our force equation is simply F A = F C. Unit 3: Dynamics and Gravitation DYNAMICS Dynamics combine the concept of forces with our understanding of motion (kinematics) to relate forces to acceleration in objects. Newton s Second Law states that

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

1 Page. Uniform Circular Motion Introduction. Earlier we defined acceleration as being the change in velocity with time:

1 Page. Uniform Circular Motion Introduction. Earlier we defined acceleration as being the change in velocity with time: Uniform Circular Motion Introduction Earlier we defined acceleration as being the change in velocity with time: a=δv/t Until now we have only talked about changes in the magnitude of the acceleration:

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

More information

An object moving in a circle with radius at speed is said to be undergoing.

An object moving in a circle with radius at speed is said to be undergoing. Circular Motion Study Guide North Allegheny High School Mr. Neff An object moving in a circle with radius at speed is said to be undergoing. In this case, the object is because it is constantly changing

More information

Earth moves 30,000 m/s around sun

Earth moves 30,000 m/s around sun Motion in Our Daily Lives Emphasis on amusement parks, circular motion What kind of motions do we feel? Aside from vibrations, don t feel constant velocity Earth moves 30,000 m/s around sun only curves

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Centripetal acceleration

Centripetal acceleration Book page 250-252 cgrahamphysics.com 2016 Centripetal acceleration Acceleration for circular motion Linear acceleration a = v = v u t t For circular motion: Instantaneous velocity is always tangent to

More information

Circular Motion Test Review

Circular Motion Test Review Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

More information

PH201 Chapter 6 Solutions

PH201 Chapter 6 Solutions PH201 Chapter 6 Solutions 6.2. Set Up: Since the stone travels in a circular path, its acceleration is directed toward the center of the circle. The only horizontal force on the stone is the tension of

More information

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB 1. A car traveling at 20 m/s rounds a curve so that its centripetal acceleration

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

Circular Motion Dynamics Concept Questions

Circular Motion Dynamics Concept Questions Circular Motion Dynamics Concept Questions Problem 1: A puck of mass m is moving in a circle at constant speed on a frictionless table as shown above. The puck is connected by a string to a suspended bob,

More information

S Notre Dame 1

S Notre Dame 1 Worksheet 1 Horizontal Circular Motion 1. Will the acceleration of a car be the same if it travels Around a sharp curve at 60 km/h as when it travels around a gentle curve at the same speed? Explain. 2.

More information

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem.

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Circular Motion Concepts When an object moves in a circle,

More information

A-level FURTHER MATHEMATICS Paper 3 - Mechanics

A-level FURTHER MATHEMATICS Paper 3 - Mechanics SPECIMEN MATERIAL Please write clearly, in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level FURTHER MATHEMATICS Paper 3 - Mechanics Exam Date Morning Time

More information

Physics 130: Questions to study for midterm #1 from Chapter 7

Physics 130: Questions to study for midterm #1 from Chapter 7 Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be one-half the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.

More information

Chapter 9: Circular Motion

Chapter 9: Circular Motion Text: Chapter 9 Think and Explain: 1-5, 7-9, 11 Think and Solve: --- Chapter 9: Circular Motion NAME: Vocabulary: rotation, revolution, axis, centripetal, centrifugal, tangential speed, Hertz, rpm, rotational

More information

Accelerated / Honors Physics Review Packet (for studying for the Midterm and Final Exams)

Accelerated / Honors Physics Review Packet (for studying for the Midterm and Final Exams) Motion Graphs: Displacement: Δx = x 2 x Average Speed: s = d t Average Velocity: v = Δx t Average Acceleration: a = Δv t x- t graphs: slopes give velocities v- t graphs: slopes give accelerations while

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

Physics Semester 2 Final Exam Review Answers

Physics Semester 2 Final Exam Review Answers Physics Semester 2 Final Exam Review Answers A student attaches a string to a 3 kg block resting on a frictionless surface, and then pulls steadily (with a constant force) on the block as shown below.

More information

Circular Motion Concept Questions

Circular Motion Concept Questions Circular Motion Concept Questions Question 1 A bead is given a small push at the top of a hoop (position A) and is constrained to slide around a frictionless circular wire (in a vertical plane). Circle

More information

Physics Circular Motion Question Paper

Physics Circular Motion Question Paper We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with physics circular motion

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS MECHANICS: CIRCULAR MOTION QUESTIONS CIRCULAR MOTION (2016;1) Alice is in a car on a ride at a theme park. The car travels along a circular track that is banked, as shown in the diagram. On the diagram,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

P211 Spring 2004 Form A

P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

Page 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass

Page 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass Q1. satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass M. Which line, to, in the table gives correct expressions for the centripetal acceleration a and the speed

More information

Circular Motion CENTRIPETAL ACCELERATION. tf-t,

Circular Motion CENTRIPETAL ACCELERATION. tf-t, Circular Motion Ill SECTION OBJECTIVES Solve problems involving centripetal acceleration. Solve problems involving centripetal force. Explain how the apparent existence of an outward force in circular

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

Chapter 8: Dynamics in a plane

Chapter 8: Dynamics in a plane 8.1 Dynamics in 2 Dimensions p. 210-212 Chapter 8: Dynamics in a plane 8.2 Velocity and Acceleration in uniform circular motion (a review of sec. 4.6) p. 212-214 8.3 Dynamics of Uniform Circular Motion

More information

Circular Motion. For You To Do

Circular Motion. For You To Do Activity 9 Circular Motion Activity 9 Circular Motion GOALS In this activity you will: Understand that a centripetal force is required to keep a mass moving in a circular path at constant speed. Understand

More information

AP C - Webreview ch 7 (part I) Rotation and circular motion

AP C - Webreview ch 7 (part I) Rotation and circular motion Name: Class: _ Date: _ AP C - Webreview ch 7 (part I) Rotation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2 600 rev/min is equivalent

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

Basic Physics 29:008 Spring 2005 Exam I

Basic Physics 29:008 Spring 2005 Exam I Exam I solutions Name: Date: 1. Two cars are moving around a circular track at the same constant speed. If car 1 is at the inner edge of the track and car 2 is at the outer edge, then A) the acceleration

More information