# PHYS 1303 Final Exam Example Questions

Size: px
Start display at page:

Transcription

1 PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm h? s a. feet per second b. feet per hour c. miles per second d. miles per hour e. miles per minute 2.A particle moving with a constant acceleration has a velocity of 20 cm/s when its position is x = 10 cm. Its position 7.0 s later is x = 30 cm. What is the acceleration of the particle? a. 7.3 cm/s 2 b. 8.9 cm/s 2 c. 11 cm/s 2 d. 15 cm/s 2 e. 13 cm/s 2 3.A rocket, initially at rest, is fired vertically with an upward acceleration of 10 m/s 2. At an altitude of 0.50 km, the engine of the rocket cuts off. What is the maximum altitude it achieves? a. 1.9 km b. 1.3 km c. 1.6 km d. 1.0 km e. 2.1 km 4.In a location where the train tracks run parallel to a road, a high speed train traveling at 60 m/s passes a car traveling at 30 m/s in the opposite direction. How long does it take for the train to be 180 m away from the car? a. 2.0 s b. 3.0 s c. 6.0 s d. 9.0 s e s

2 5.At t = 0, a particle leaves the origin with a velocity of 12 m/s in the positive x direction and moves in the xy plane with a constant acceleration of 2.0ˆ i 4.0ˆ j m/s 2. At the instant the y coordinate of the particle is 18 m, what is the x coordinate of the particle? a. 30 m b. 21 m c. 27 m d. 24 m e. 45 m 6.The site from which an airplane takes off is the origin. The x-axis points east; the y-axis points straight up. The position and velocity vectors of the plane at a later time are given by r ( ˆ i ˆ j ) m and v (150ˆ i 21ˆ j ) m s. The magnitude, in meters, of the plane s displacement from the origin is a b c d t. e t. 3 7.A 3.0-kg block slides on a frictionless 20 inclined plane. A force of 16 N acting parallel to the incline and up the incline is applied to the block. What is the acceleration of the block? a. 2.0 m/s 2 down the incline b. 5.3 m/s 2 up the incline c. 2.0 m/s 2 up the incline d. 3.9 m/s 2 down the incline e. 3.9 m/s 2 up the incline 8.In the figure, if F = 2.0 N and M = 1.0 kg, what is the tension in the connecting string? The pulley and all surfaces are frictionless. a. 2.6 N b. 1.1 N c. 2.1 N d. 1.6 N e. 3.7 N

3 9.A 1.0-kg block is pushed up a rough 22 inclined plane by a force of 7.0 N acting parallel to the incline. The acceleration of the block is 1.4 m/s 2 up the incline. Determine the magnitude of the force of friction acting on the block. a. 1.9 N b. 2.2 N c. 1.3 N d. 1.6 N e. 3.3 N 10.A race car travels 40 m/s around a banked (45 with the horizontal) circular (radius = 0.20 km) track. What is the magnitude of the resultant force on the 80-kg driver of this car? a kn b kn c kn d kn e kn 11.A 30-kg child rides on a circus Ferris wheel that takes her around a vertical circular path with a radius of 20 m every 22 s. What is the magnitude of the resultant force on the child at the highest point on this trajectory? a. 49 N b kn c kn d kn e kn 12.A 0.60-kg object is suspended from the ceiling at the end of a 2.0-m string. When pulled to the side and released, it has a speed of 4.0 m/s at the lowest point of its path. What maximum angle does the string make with the vertical as the object swings up? a. 61 b. 54 c. 69 d. 77 e. 47

4 13.A 20-kg mass is fastened to a light spring (k = 380 N/m) that passes over a pulley as shown. The pulley is frictionless, and the mass is released from rest when the spring is unstretched. After the mass has dropped 0.40 m, what is its speed? a. 2.2 m/s b. 2.5 m/s c. 1.9 m/s d. 1.5 m/s e. 3.6 m/s 14.The only force acting on a 2.0-kg body moving along the x axis is given by F x = (2.0x) N, where x is in m. If the velocity of the object at x = 0 is +3.0 m/s, how fast is it moving at x = 2.0 m? a. 4.2 m/s b. 3.6 m/s c. 5.0 m/s d. 5.8 m/s e. 2.8 m/s 15.An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving 50 m/s in the positive y direction. How much kinetic energy is lost in this collision? a. 96 J b. 89 J c. 175 J d. 86 J e. 110 J

5 16.A 3.0-kg ball with an initial velocity of (4i + 3j) m/s collides with a wall and rebounds with a velocity of ( 4i + 3j) m/s. What is the impulse exerted on the ball by the wall? a. +24i N s b. 24i N s c. +18j N s d. 18j N s e. +8.0i N s 17.At the instant a 2.0-kg particle has a velocity of 4.0 m/s in the positive x direction, a 3.0-kg particle has a velocity of 5.0 m/s in the positive y direction. What is the speed of the center of mass of the two-particle system? a. 3.8 m/s b. 3.4 m/s c. 5.0 m/s d. 4.4 m/s e. 4.6 m/s 18.A 4.2-kg object, initially at rest, explodes into three objects of equal mass. Two of these are determined to have velocities of equal magnitudes (5.0 m/s) with directions that differ by 90. How much kinetic energy was released in the explosion? a. 70 J b. 53 J c. 60 J d. 64 J e. 35 J 19.A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During a 5.0-s interval the angular velocity increases to 40 rad/s. Assume that the angular acceleration was constant during the 5.0-s interval. How many revolutions does the wheel turn through during the 5.0-s interval? a. 20 rev b. 24 rev c. 32 rev d. 28 rev e. 39 rev 20.A wheel rotating about a fixed axis with a constant angular acceleration of 2.0 rad/s 2 starts from rest at t = 0. The wheel has a diameter of 20 cm. What is the magnitude of the total linear acceleration of a point on the outer edge of the wheel at t = 0.60 s? a m/s 2 b m/s 2 c m/s 2 d m/s 2 e m/s 2

6 21.A particle whose mass is 2 kg moves in the xy plane with a constant speed of 3 m/s in the x- direction along the line y = 5. What is its angular momentum (in kg m 2 /s) relative to the origin? a. 30 k b. 30 k c. 15 k d. 15 k e. 45 k 22.A merry-go-round of radius R = 2.0 m has a moment of inertia I = 250 kg m 2, and is rotating at 10 rpm. A child whose mass is 25 kg jumps onto the edge of the merry-go-round, heading directly toward the center at 6.0 m/s. The new angular speed (in rpm) of the merry-go-round is approximately a. 10 b. 9.2 c. 8.5 d. 7.1 e The rigid body shown is rotated about an axis perpendicular to the paper and through the point P. If M = 0.40 kg, a = 30 cm, and b = 50 cm, how much work is required to take the body from rest to an angular speed of 5.0 rad/s? Neglect the mass of the connecting rods and treat the masses as particles. a. 2.9 J b. 2.6 J c. 3.1 J d. 3.4 J e. 1.6 J

7 24.Two forces of magnitude 50 N, as shown in the figure below, act on a cylinder of radius 4 m and mass 6.25 kg. The cylinder, which is initially at rest, sits on a frictionless surface. After 1 second, the velocity and angular velocity of the cylinder in m/s and rad/s are respectively a. v = 0; = 0. b. v = 0; = 4. c. v = 0; = 8. d. v = 8; = 8. e. v = 16; = A horizontal meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging from it at the 20-cm mark and a 0.30 kg mass hanging from it at the 60-cm mark. Determine the position on the meter stick at which one would hang a third mass of 0.60 kg to keep the meter stick balanced. a. 74 cm b. 70 cm c. 65 cm d. 86 cm e. 62 cm 26.The period of a satellite circling planet Nutron is observed to be 84 s when it is in a circular orbit with a radius of m. What is the mass of planet Nutron? a kg b kg c kg d kg e kg

8 27. NOT USED 28.Three 5.0-kg masses are located at points in the xy plane in deep space. What is the magnitude of the resultant gravitational force on the mass at x = 0, y = 0.30 m? a N b N c N d N e N

9 1.D 2. A 3. D 4. A 5. C 6. C 7. C 8. A 9. A 10. B 11. A 12. B 13. A 14. B 15. D 16. B 17. B 18. A 19. B 20. A 21. A 22. D 23. B 24. B 25. B 26. D 27. C 28. D

### PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

### is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

### Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force

### Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

### Physics 201 Midterm Exam 3

Name: Date: _ Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above Please write and bubble your Name and Student

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

### r r Sample Final questions for PS 150

Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

### v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

### A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

### 1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

### Practice Test for Midterm Exam

A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

### PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

### (1) +0.2 m/s (2) +0.4 m/s (3) +0.6 m/s (4) +1 m/s (5) +0.8 m/s

77777 77777 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 2, 120 minutes November 13, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized

### Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

### Phys 2210 S18 Practice Exam 3: Ch 8 10

1. As a 1.0-kg object moves from point A to point B, it is acted upon by a single conservative force which does 40 J of work during this motion. At point A the speed of the particle is 6.0 m/s and the

### Rolling, Torque & Angular Momentum

PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

### Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

### frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

### Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on

### Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST:

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST: This test is closed book. You may use a dictionary. You may use your own calculator

### 1 MR SAMPLE EXAM 3 FALL 2013

SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

### Rotation. PHYS 101 Previous Exam Problems CHAPTER

PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

### Practice Exam 2. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Date: _ Practice Exam 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A roller-coaster car has a mass of 500 kg when fully loaded with passengers.

### Unless otherwise specified, use g = 9.80 m/s2

Phy 111 Exam 2 March 10, 2015 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

### COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013 PROGRAMME SUBJECT CODE SUBJECT : Foundation in Engineering : PHYF115 : Physics I DATE : September 2012

### Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

The exam is closed book and closed notes. There are 30 multiple choice questions. Make sure you put your name, section, and ID number on the SCANTRON form. The answers for the multiple choice Questions

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

### Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

### NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

### P211 Spring 2004 Form A

1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

### Q1. Which of the following is the correct combination of dimensions for energy?

Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

### (A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

### 11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

### Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see

### NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

(1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are

### Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

### Potential Energy & Conservation of Energy

PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

### Physics 121k Exam 2 27 Oct 2011

Answer each question and show your work. A correct answer with no supporting reasoning may receive no credit. Unless directed otherwise, please use g=10.0 m/s 2. Name: 1. (15 points) A 3.0 kg block travels

### AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

### Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

### - 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

### On my honor, I have neither given nor received unauthorized aid on this examination.

Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

### HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

### 1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

### Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

### Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

### TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB 1. A car traveling at 20 m/s rounds a curve so that its centripetal acceleration

### Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You want to swim straight across a river that is 76 m wide. You find that you can do

### Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

### 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

### Webreview Torque and Rotation Practice Test

Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

### Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?

1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates

### Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133

Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133

### Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

### Physics 23 Exam 2 March 3, 2009

Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

### LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

### Dynamics Examples. Robin Hughes and Anson Cheung. 28 th June, 2010

Dynamics Examples Robin Hughes and Anson Cheung 28 th June, 2010 1 Newton s Laws Figure 1: 3 connected blocks Figure 2: Masses on a trolley 1. Two blocks of mass m 1 = 1kg and m 2 = 2kg on a frictionless

### Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

### Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

### Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

### 6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

### PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

### Regents Physics. Physics Midterm Review - Multiple Choice Problems

Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

### AP Physics C. Momentum. Free Response Problems

AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

### PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

Final Review: Chapters 1-11, 13-14 These are selected problems that you are to solve independently or in a team of 2-3 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This

### (a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

### Physics for Scientists and Engineers 4th Edition, 2017

A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

### End-of-Chapter Exercises

End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

### PH201 Chapter 6 Solutions

PH201 Chapter 6 Solutions 6.2. Set Up: Since the stone travels in a circular path, its acceleration is directed toward the center of the circle. The only horizontal force on the stone is the tension of

### Physics 201, Practice Midterm Exam 3, Fall 2006

Physics 201, Practice Midterm Exam 3, Fall 2006 1. A figure skater is spinning with arms stretched out. A moment later she rapidly brings her arms close to her body, but maintains her dynamic equilibrium.

### Concept Question: Normal Force

Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

### Physics 53 Exam 3 November 3, 2010 Dr. Alward

1. When the speed of a rear-drive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all

### s_3x03 Page 1 Physics Samples

Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

### AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

### TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2

### Test 7 wersja angielska

Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

### PHYSICS 221 SPRING 2014

PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

### Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

### Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

### Use the following to answer question 1:

Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

### APPLIED MATHEMATICS HIGHER LEVEL

L.42 PRE-LEAVING CERTIFICATE EXAMINATION, 203 APPLIED MATHEMATICS HIGHER LEVEL TIME : 2½ HOURS Six questions to be answered. All questions carry equal marks. A Formulae and Tables booklet may be used during

### Phys101-T121-First Major Exam Zero Version, choice A is the correct answer

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Q1. Find the mass of a solid cylinder of copper with a radius of 5.00 cm and a height of 10.0 inches if the density of copper

### = W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

1. Four identical 0.18 kg masses are placed at the corners of a 4.0 x 3.0 m rectangle, and are held there by very light connecting rods which form the sides of the rectangle. What is the moment of inertia

### UNIVERSITY OF MANITOBA. All questions are of equal value. Answer all questions. No marks are subtracted for wrong answers.

PAGE NO.: 1 of 5 All questions are of equal value. Answer all questions. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will

### St. Joseph s Anglo-Chinese School

Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

### Physics 12 Final Exam Review Booklet # 1

Physics 12 Final Exam Review Booklet # 1 1. Which is true of two vectors whose sum is zero? (C) 2. Which graph represents an object moving to the left at a constant speed? (C) 3. Which graph represents

### 1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement

1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement r = ( 3ˆ i + ˆ j )m. Find (a) the work done by the force on the particle and (b) the angle between F and r. 2- The force acting

### Rotational Motion Examples:

Rotational Motion Examples: 1. A 60. cm diameter wheel rotates through 50. rad. a. What distance will it move? b. How many times will the wheel rotate in this time? 2. A saw blade is spinning at 2000.

### Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Old Exams Questions Ch. 8 T072 Q2.: A ball slides without friction around a loop-the-loop (see Fig 2). A ball is released, from rest, at a height h from the left side of the loop of radius R. What is the

### Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2

Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 1. The 50-kg crate is projected along the floor with an initial

### 2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m

Name VECTORS 1) An airplane undergoes the following displacements: First, it flies 59 km in a direction 30 east of north. Next, it flies 58 km due south. Finally, it flies 100 km 30 north of west. Using

### 5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

### Circular Motion Test Review

Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

### Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY

Tutorial #: Circle correct course: PHYS 1P21 or PHYS 1P91 Name: Student #: BROCK UNIVERSITY Test 7: November 2015 Number of pages: 5 Course: PHYS 1P21/1P91 Number of students: 218 Examination date: 17

### 3) When a rigid body rotates about a fixed axis all the points in the body have the same centripetal acceleration. FALSE

PHYSICS 1401 Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body rotates about a fixed axis all the points in the body have the same

### Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

### IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet

IB Questionbank Physics NAME IB Physics 2 HL Summer Packet Summer 2017 About 2 hours 77 marks Please complete this and hand it in on the first day of school. - Mr. Quinn 1. This question is about collisions.