AP Physics 1 Lesson 9 Homework Outcomes. Name


 Stewart Carson
 4 years ago
 Views:
Transcription
1 AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal acceleration of an object moving with uniform circular motion. 4. Determine the centripetal force exerted on an object moving with uniform circular motion. 5. Determine the work done on an object moving with uniform circular motion by a centripetal force. 6. Solve problems connecting uniform circular motion and other concepts previously addressed (tension, friction, forces on inclines, etc.) Period Practice Problems 1. A kg car rounds a circular section of track of radius 75. m. The speed of the car is 50 km/hr. Pay attention to the units. a. Determine the tangential velocity of the car (Vc) in m/s. b. Determine the centripetal acceleration of the car. c. Determine the magnitude and direction of the net force exerted on the car. d. Determine the magnitude and direction of the friction force exerted on the car. e. Determine the coefficient of friction on the road. 2. An average rider is 75 kg. µs = 0.3 on the wall. The radius is 2.5m. During this ride the floor that the people stand on drops, so the riders only have their backs against the cage and are not supported by the floor any longer. a. What is the weight of an average rider? b. What minimum friction force must be exerted on the rider? c. What normal force must be exerted on the rider? d. What is the centripetal force experienced by the rider? 1
2 3.. A ball of mass M is attached to a string of length R and negligible mass. The ball moves clockwise in a vertical circle, as shown above. When the ball is at point P, the string is horizontal. Point Q is at the bottom of the circle and point Z is at the top of the circle. Air resistance is negligible. Express all algebraic answers in terms of the given quantities and fundamental constants. a. Prepare freebody diagrams for the object at locations P and Q shown above. b. Derive an expression for v min the minimum speed the ball can have at point Z without leaving the circular path. c. The maximum tension the string can have without breaking is T max Derive an expression for v max, the maximum speed the ball can have at point Q without breaking the string. d. Suppose that the string breaks at the instant the ball is at point P. Describe the motion of the ball immediately after the string breaks. 4. 2
3 3
4 4
5 5. A roller coaster ride at an amusement park lifts a car of mass 700 kg to point A at a height of 90 m above the lowest point on the track, as shown above. The car starts from rest at point A, rolls with negligible friction down the incline and follows the track around a loop of radius 20 m. Point B, the highest point on the loop, is at a height of 50 m above the lowest point on the track a. Indicate on the figure the point P at which the maximum speed of the car is attained. b. Calculate the value v max of this maximum speed. c. Calculate the speed v B. of the car at point B. d. On the figure of the car below, draw and label vectors to represent the forces acting on the car when it is upside down at point B. e. Calculate the magnitude of all the forces identified in B. f. Now suppose that friction is not negligible. How could the loop be modified to maintain the same speed at the top of the loop as found in 3. Justify your answer. 5
6 1. 1. A racing car is moving around the circular track of radius 300 meters shown above. At the instant when the car's velocity is directed due east, its acceleration is directed due south and has a magnitude of 3 meters per second squared. When viewed from above, the car is moving (A) clockwise at 30 m/s (B) clockwise at 10 m/s (C) counterclockwise at 30 m/s (D) counterclockwise at 10 m/s (E) with constant velocity AP 2. The horizontal turntable shown above rotates at a constant rate. As viewed from above, a coin on the turntable moves counterclockwise in a circle as shown. Which of the following vectors best represents the direction of the frictional force exerted on the coin by the turntable when the coin is in the position shown? In which of the following situations would an object be accelerated? 3. I. It moves in a straight line at constant speed. II. It moves with uniform circular motion. III. It travels as a projectile in a gravitational field with negligible air resistance. (A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 4. An automobile moves at constant speed down one hill and up another hill along the smoothly curved surface shown above. Which of the following diagrams best represents the directions of the velocity and the acceleration of the automobile at the instant that it is at the lowest position, as shown. AP 6
7 5. A compressed spring mounted on a disk can project a small ball. When the disk is not rotating as shown in the view above, the ball moves radically outward. The disk then rotates in a counterclockwise direction as seen from above. and the ball is projected outward at the instant the disk is in the position shown left. Which of the following best shows the subsequent path of the ball relative to the ground? AP A steel ball supported by a stick rotates in a circle of radius r, shown above. The direction of the net force acting on the ball when it is in the position shown is indicated by which of the following 6. AP A satellite of mass M moves in a circular orbit of radius R at a constant speed v. Which of the following must be true? I. The net force on the satellite is equal to mv 2 and is directed toward the center of the orbit. R II. The net work done on the satellite by gravity in one revolution is zero. III. The angular momentum of the satellite is a constant. (A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III Use this information for The diagram below shows a 5.0kilogram cart traveling clockwise in a horizontal circle of radius 2.0 meters at a constant speed of 4.0 meters per second. AP At the position shown, the centripetal acceleration of the cart is directed toward point A) Q B) P C) S D) R What is the magnitude of the centripetal force acting on the cart? A) 40. N B ) 20. N C ) 50. N D ) 8.0 N At the position shown, the velocity of the cart is directed toward point A) S B) R C) Q D) P If the mass of the cart was doubled, the magnitude of the centripetal acceleration of the cart would be A) halved B) doubled C) unchanged D) quadrupled 7
8 12. Use this information for At an amusement park, a passenger whose mass is 50. kilograms rides in a cage. The cage has a constant speed of 10. meters per second in a vertical circular path of radius R, equal to 10. meters. What is the magnitude of the centripetal acceleration of the passenger? A) 1.0 m/s 2 B) 5.0 x 102 m/s 2 C) 10. m/s 2 D) 2.0 x 103 m/s What does the 50.kilogram passenger weigh at rest? A) 1600 N B) 0 N C) 490 N D) 50. N What is the magnitude of the centripetal force acting on the passenger? A) 5.0 x 10 2 N B) 0 N C) 50. N D ) 4.9 x 10 2 N What is the direction of the centripetal acceleration of the passenger at the instant the cage reaches the highest point in the circle? A) up B) to the right C) down D) to the left As the time taken for a car to make one lap around a circular track decreases, the centripetal acceleration of the car A) decreases B) increases C) remains the same Use this information for The diagram below shows a student spinning a kilogram ball at the end of 0.50meter string in a horizontal circle at a constant speed of 10. meters per second. [Neglect air resistance.] The magnitude of the centripetal force required to keep the ball in this circular path is A) 20. N B ) 10. N C ) 5.0 N D ) 200 N Which is the best description of the force keeping the ball in the circular path? A) perpendicular to the circle and directed toward the center of the circle B) tangent to the circle and directed opposite to the direction that the ball is moving C) perpendicular to the circle and directed away from the center of the circle D) tangent to the circle and directed in the same direction that the ball is moving If the magnitude of the force applied to the string by the student's hand is increased, the magnitude of the acceleration of the ball in its circular path will A) decrease B) remain the same C ) increase 20. A 60.kilogram adult and a 30.kilogram child are passengers on a rotor ride at an amusement park. When the rotating hollow cylinder reaches a certain constant speed, v, the floor moves downward. Both passengers stay "pinned" against the wall of the rotor, as shown in the diagram below. The magnitude of the frictional force between the adult and the wall of the spinning rotor is F. What is the magnitude of the frictional force between the child and the wall of the spinning rotor? A) F B) 2F C) ½ F D) ¼ F 21. A satellite of mass 3400 kg is in a circular orbit around a planet at a radius of 9.4 x m from the planet s center. If the speed of the satellite is 20.5 m/s, what is the gravitational force acting on the satellite? A) 7.4 x108 N B) 1.5 x 106 N C) 50 N D) 150N 8
9 22. A coin of mass m is placed on a vinyl stereo record of radius R and moves at a constant tangential speed v. If the frictional force between the coin and the vinyl record is at its maximum value, then which of the following expressions can be used to find the value of the coefficient of friction between the coin and the vinyl record? An object revolves in uniform circular motion. Which of the graphs below best represents the centripetal force on the vertical axis vs. the speed of the object on the horizontal axis? A) µ = gr/ v B) µ = gv/ R C) µ = vgr D) µ = v2 /gr A 30 kg child sits on the edge of a merry go round at a radius of 6 m. The tangential speed of the child is 12 m/s. The work done by the centripetal force during one complete revolution is Use the diagram below for the following questions. A) 0J B) 1440 J C) 5760 J D) J Which of the following vectors represents the centripetal force acting on the ball at position I? 25. 9
10 If the string were suddenly cut when the ball is at position II shown in the figure above, the subsequent motion of the ball would be The tension in the string is The ball has a mass m and a speed v as it moves around the vertical circle of radius r. Which of the following expressions can be used to find the minimum speed of the ball at position I such that the circular path is maintained? 10
Name St. Mary's HS AP Physics Circular Motion HW
Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.
More informationB) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25
1. 3. A ball attached to a string is whirled around a horizontal circle of radius r with a tangential velocity v. If the radius is changed to 2r and the magnitude of the centripetal force is doubled the
More information1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of
1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal
More informationUCMCircular Motion. Base your answers to questions 1 and 2 on the information and diagram below.
Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal
More information5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.
1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)
More informationPSI AP Physics B Circular Motion
PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions
More informationAP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes
AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes 1. Use Law of Universal Gravitation to solve problems involving different masses. 2. Determine changes in gravitational and kinetic
More informationCircular Motion Class:
Circular Motion Class: Name: Date: 1. What is the magnitude of the centripetal acceleration of a 4kilogram mass orbiting at 10 meters per second with a radius of 2 meters? (1) 5 m/sec 2 (2) 50 m/sec 2
More information3 UCM & Gravity Student Physics Regents Date
Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by
More informationAP Physics Free Response Practice Dynamics
AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless
More informationPeriod: Date: Review  UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.
Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a kilogram student at point A on an amusement park ride. The ride spins the student in a
More informationProficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the
Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work. Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems
More informationMultiple Choice (A) (B) (C) (D)
Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions are: (A) (B) (C) (D) 2.
More informationPage 1. Name:
Name: 38341  Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the
More informationUpon collision, the clay and steel block stick together and move to the right with a speed of
1. A 2.0kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two
More informationPage 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass
Q1. satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass M. Which line, to, in the table gives correct expressions for the centripetal acceleration a and the speed
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More informationhttps://njctl.org/courses/science/apphysicscmechanics/attachments/summerassignment3/
AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter
More informationCircular Motion PreTest
Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant
More informationC) D) 2. The diagram below shows a worker using a rope to pull a cart.
1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope
More informationΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!
PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the
More informationA) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale
1. A 15kilogram cart is at rest on a horizontal surface. A 5kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cartbox system has A) more mass and more inertia B)
More information 1 APPH_MidTerm. Mid  Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E
Name  1 APPH_MidTerm AP Physics Date Mid  Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)
More information1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice
Physics 3204 Assignment 2.1 UCM DUE: Thursday Nov 24, 2017 Name: Part A. Multiple Choice: Select the best possible answer. Place the answer on the answer sheet. 1. In which situation is an object undergoing
More informationCircular motion minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor Page 1 of 22. Name: Class: Date: Time: Marks:
Circular motion 2 Name: Class: Date: Time: 67 minutes Marks: 62 marks Comments: Page 1 of 22 1 A lead ball of mass 0.25 kg is swung round on the end of a string so that the ball moves in a horizontal circle
More informationPage 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!
Name: Section This assignment is due at the first class in 2019 Part I Show all work! 71641  Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided
More informationKinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.
Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x
More informationChapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)
A 1500 kg car travels at a constant speed of 22 m/s around a circular track which has a radius of 80 m. Which statement is true concerning this car? A) The velocity of the car is changing. B) The car is
More informationi. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.
1. A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x = 0
More informationCircular Motion and Gravitation Practice Test Provincial Questions
Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this
More informationCircular Motion & Gravitation FR Practice Problems
1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the
More informationChapter 6 Motion in Two Dimensions
Conceptual Physics/ PEP Name: Date: Chapter 6 Motion in Two Dimensions Section Review 6.1 1. What is the word for the horizontal distance a projectile travels? 2. What does it mean to say a projectile
More informationThe diagram below shows a block on a horizontal frictionless surface. A 100.newton force acts on the block at an angle of 30. above the horizontal.
Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet
More informationCentripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.
Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,
More information1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?
Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The
More informationSt. Joseph s AngloChinese School
Time allowed:.5 hours Take g = 0 ms  if necessary. St. Joseph s AngloChinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationCentripetal force keeps an Rotation and Revolution
Centripetal force keeps an object in circular motion. Which moves faster on a merrygoround, a horse near the outside rail or one near the inside rail? While a hamster rotates its cage about an axis,
More informationAP* Circular & Gravitation Free Response Questions
1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10kilogram solid rubber ball is attached to the end of a 0.80meter length of light thread. The ball is swung in a vertical circle, as shown
More informationChapter 6 Circular Motion, Orbits and Gravity
Chapter 6 Circular Motion, Orbits and Gravity Topics: The kinematics of uniform circular motion The dynamics of uniform circular motion Circular orbits of satellites Newton s law of gravity Sample question:
More informationAP Q1 Practice Questions Kinematics, Forces and Circular Motion
AP Q1 Practice Questions Kinematics, Forces and Circular Motion Q1 1999B1. (REDUCED 9 mins) The Sojourner rover vehicle shown in the sketch above was used to explore the surface of Mars as part of the
More informationAP Physics Daily Problem #31
AP Physics Daily Problem #31 A 10kg mass is whirled around on the end of a 3m long cord. The speed of the mass is 7m/s. Ignore gravitational forces. 3.0m 7.0m/s Draw a free body diagram of the mass. (hint:
More informationPhysics. Chapter 8 Rotational Motion
Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationChapter 8: Dynamics in a plane
8.1 Dynamics in 2 Dimensions p. 210212 Chapter 8: Dynamics in a plane 8.2 Velocity and Acceleration in uniform circular motion (a review of sec. 4.6) p. 212214 8.3 Dynamics of Uniform Circular Motion
More information(1) +0.2 m/s (2) +0.4 m/s (3) +0.6 m/s (4) +1 m/s (5) +0.8 m/s
77777 77777 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 2, 120 minutes November 13, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences
More informationAP Physics II Summer Packet
Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch
More informationPreparing for Six Flags Physics Concepts
Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given
More informationAP Physics C Summer Assignment Kinematics
AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle
More informationAP Physics C: Work, Energy, and Power Practice
AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing
More informationCircular Velocity and Centripetal Acceleration
1. An object is spun around in circular motion such that it completes 100 cycles in 25 s. a. What is the period of its rotation? [0.25 s] b. If the radius is 0.3 m what is the velocity? [7.54 m/s] c. Draw
More informationPhysics 12. Unit 5 Circular Motion and Gravitation Part 1
Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting
More informationCircular Orbits. Slide Pearson Education, Inc.
Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationChapter 5 Review : Circular Motion; Gravitation
Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration
More informationLecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity
Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 62 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned
More informationTest 7 wersja angielska
Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with
More informationAssignment  Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:
Assignment  Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,
More informationExam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!
Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:
More information(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m
PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At
More informationFriction is always opposite to the direction of motion.
6. Forces and MotionII Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:
More informationRotational Motion Examples:
Rotational Motion Examples: 1. A 60. cm diameter wheel rotates through 50. rad. a. What distance will it move? b. How many times will the wheel rotate in this time? 2. A saw blade is spinning at 2000.
More information3.The wrecking crane shown is moving toward a brick wall that is to be torn down.
Test Name: Physics Practice Test Section 1 1.Which of the following best classifies a material that has extremely low conductivity? 1. A. semiconductor B. insulator C. metalloid D. conductor 2.Which of
More informationNAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.
(1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are
More informationName Period Date A) B) C) D)
Example Problems 9.2 E1. A car rounds a curve of constant radius at a constant speed. Which diagram best represents the directions of both the car s velocity and acceleration? Explain: A) B) C) D) E2.
More informationCutnell/Johnson Physics
Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn
More informationTYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB
TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB 1. A car traveling at 20 m/s rounds a curve so that its centripetal acceleration
More information2. To study circular motion, two students use the handheld device shown above, which consists of a rod on which a spring scale is attached.
1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At
More informationPractice Test for Midterm Exam
A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it
More informationPhysics Midterm Review KEY
Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.kilogram space vehicle is traveling along a straight line
More informationRolling, Torque & Angular Momentum
PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the
More informationRegents Physics. Physics Midterm Review  Multiple Choice Problems
Name Physics Midterm Review  Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0
More informationPHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion
More informationEndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a
More informationv (m/s) 10 d. displacement from 04 s 28 m e. time interval during which the net force is zero 02 s f. average velocity from 04 s 7 m/s x (m) 20
Physics Final Exam Mechanics Review Answers 1. Use the velocitytime graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from 2 s 6 c. acceleration from 24 s 2 m/s 2 2 4 t (s)
More informationPhysics Test Review: Mechanics Session: Name:
Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below
More informationDynamics Test K/U 28 T/I 16 C 26 A 30
Name: Dynamics Test K/U 28 T/I 16 C 26 A 30 A. True/False Indicate whether the sentence or statement is true or false. 1. The normal force that acts on an object is always equal in magnitude and opposite
More informationWebreview Torque and Rotation Practice Test
Please do not write on test. ID A Webreview  8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30mradius automobile
More informationPhysics 101: Lecture 08 Centripetal Acceleration and Circular Motion
Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More informationCircular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed.
Circular Motion What does it mean to accelerate Centripetal Force and Acceleration Constant Velocity vs. Constant Speed. 2 types of Acceleration In a circle Direction of acceleration / velocity top view
More informationAP Physics C  Problem Drill 18: Gravitation and Circular Motion
AP Physics C  Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationReview  Chapter 1. Ans: 2.12m
Review  Chapter 1 The distance d that a certain particle moves may be calculated from the expression d = at + bt 2 where a and b are constants; and t is the elapsed time. The dimensions of the quantities
More information1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?
PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear
More informationMultiple Choice Portion
Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration
More information5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.
Name: Hour: 1. The slope of the tangent on a positiontime graph equals the: Sem 1 Exam Review Advanced Physics 20152016 2. The area under the curve on a velocitytime graph equals the: 3. The graph below
More informationCircular Motion & Gravitation MC Question Database
(Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin
More informationPhysics 8, Fall 2017, Homework #6. Due at start of class on Friday, October 20, 2017
Physics 8, Fall 2017, Homework #6. Due at start of class on Friday, October 20, 2017 Problems marked with (*) must include your own drawing or graph representing the problem and at least one complete sentence
More informationPSI AP Physics B Dynamics
PSI AP Physics B Dynamics MultipleChoice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second
More informationCircular Motion CENTRIPETAL ACCELERATION. tft,
Circular Motion Ill SECTION OBJECTIVES Solve problems involving centripetal acceleration. Solve problems involving centripetal force. Explain how the apparent existence of an outward force in circular
More informationProblem Solving Circular Motion Dynamics Challenge Problems
Problem 1: Double Star System Problem Solving Circular Motion Dynamics Challenge Problems Consider a double star system under the influence of gravitational force between the stars. Star 1 has mass m 1
More informationUniform Circular Motion. Uniform Circular Motion
Uniform Circular Motion Uniform Circular Motion Uniform Circular Motion An object that moves at uniform speed in a circle of constant radius is said to be in uniform circular motion. Question: Why is uniform
More informationChapter 8: Newton s Laws Applied to Circular Motion
Chapter 8: Newton s Laws Applied to Circular Motion Centrifugal Force is Fictitious? F actual = Centripetal Force F fictitious = Centrifugal Force Center FLEEing Centrifugal Force is Fictitious? Center
More informationConservation of Energy Challenge Problems Problem 1
Conservation of Energy Challenge Problems Problem 1 An object of mass m is released from rest at a height h above the surface of a table. The object slides along the inside of the looptheloop track consisting
More informationPSI AP Physics I Work and Energy
PSI AP Physics I Work and Energy MultipleChoice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate
More information