Vortex drag in a Thin-film Giaever transformer

Size: px
Start display at page:

Download "Vortex drag in a Thin-film Giaever transformer"

Transcription

1 Vortex drag in a Thin-film Giaever transformer Yue (Rick) Zou (Caltech) Gil Refael (Caltech) Jongsoo Yoon (UVA) Past collaboration: Victor Galitski (UMD) Matthew Fisher (station Q) T. Senthil (MIT)

2 Outline Experimental Motivation SC-metal-insulator in InO, TiN, Ta and MoGe. Two paradigms: - Vortex condensation: Vortex metal theory. - Percolation paradigm Thin film Giaever transformer amorphous thin-film bilayer. Predictions for the no-tunneling regime of a thin-film bilayer Conclusions

3 Quantum vortex physics SC-insulator transition Thin films: tunes a SC-Insulator transition. I InO Ins V SC (Hebard, Paalanen, PRL 1990)

4 Observation of Superconductor-insulator transition Thin amorphous films: tunes a SC-Insulator transition. InO: Saturation as T 0 (Sambandamurthy, (Steiner, Engel, Kapitulnik) Johansson, Shahar, PRL 004) Insulating peak different from sample to sample, scaling different log, activated.

5 Observation of a metallic phase MoGe: (Mason, Kapitulnik, PR 1999)

6 Observation of a metallic phase Ta: (Qin, Vicente, Yoon, 006) Saturation at ~100mK: New metalic phase? (or saturation of electrons temperature)

7 Vortex Paradigm

8 = X-Y model for superconducting film: Cooper pairs as osons When the superconducting order is strong ignore electronic excitations. Standard model for bosonic SF-Ins transition ose-hubbard model : H i j ρ cos( φ ) s j i + Unˆ i [ nˆ, φ] = i ρ S exp[ i ( φ i φ i+ + 1 )] Hopping: Charging energy: Unˆ j Large U - Mott insulator (no charge fluctuations) Large ρ s - Superfluid (intense charge fluctuations, no phase fluctuations) insulator superfluid ρ s /U

9 Vortex description of the SF-insulator transition Vortex hopping: (result of charging effects) tv cos( [ nˆ V, θ ] = i ˆ θ ) Vortex-vortex interactions: 1 r ρ s nv i nv j ln xi x r i, j Condensed vortices = insulating CP s j i j φˆ θˆ Cooper-pairs: Vortices: insulator Vortex: (Fisher, 1990) superfluid ρ s /U V-superfluid V- insulator ρs / t V

10 Universal (?) resistance at SF-insulator transition Assume that vortices and Cooper-pairs are self dual at transition point. Current due to CP hopping: EMF due to vortex hopping: h h π φ & = V V V V = e e τ I = e τ e I Resistance: V πh e h R = = = = 6. 5kΩ I eτ τ 4e In reality superconducting films are not self dual: vortices interact logarithmically, Cooper-pairs interact at most with power law. Samples are very disordered and the disorder is different for cooper-pairs and vortices.

11 Magnetically tuned Superconductor-insulator transition Net vortex density: h e n ˆV = Disorder pins vortices for small field superconducting phase. Large fields some free vortices appear and condense insulating phase. Larger fields superconductivity is destroyed normal (unpaired) phase. R Disorder pins vortices: Free vortices: Phase coherent SC Vortex SF insulator Disorder localized Electrons: Normal (unpaired)

12 Magnetically tuned Superconductor-insulator transition Net vortex density: h e n ˆV = Problems Saturation of the resistance metallic phase Non-universal insulating peak completely different depending on disorder. R Metallic phase? Disorder localized Electrons: Normal (unpaired)

13 Two-fluid model for the SC-Metal-Insulator transition (Galitski, Refael, Fisher, Senthil, 005) J CP Uncondensed vortices: Cooper-pair channel Finite conductivity: r r j V = σv FV r r E = zˆ j V = σ ˆ r ( z ) V J CP r J CP = 1 σ V r E Disorder inducedgapless QP s (electron channel) (delocalized core states?) r j E r = σ e e Two channels in parallel: r J CP = ( σ + σ e 1 V r ) E

14 Transport properties of the vortex-metal Effective conductivity: σ eff 1 = σ e + σv Assume: - grows from zero to. - grows from zero to infinity. σ e σ N σ V σ e σ V σ N e R eff Vortex metal V Weak insulators: 1 σ e Ta, MoGe Weak InO e < V σ V e V Normal (unpaired)

15 Transport properties of the vortex-metal Effective conductivity: σ eff 1 = σ e + σv Chargless spinons contribute to conductivity! Assume: - grows from zero to. - grows from zero to infinity. σ e σ N σ V σ e σ V σ N e R eff Vortex metal V Strong insulators: TiN, InO e > V σ V V Insulator e 1 σ e Normal (unpaired)

16 More physical properties of the vortex metal Cooper pair tunneling A superconducting STM can tunnel Cooper pairs to the film: G = G e + G CP (Naaman, Tyzer, Dynes, 001).

17 More physical properties of the vortex metal Cooper pair tunneling G CP A superconducting STM can tunnel Cooper pairs to the film: Vortex metal phase: 1 ~ exp( σ ln T ) V T CP G = G e + G CP Normal phase: G e ~ σ e CP Vortex metal R eff e e G G CP strongly T dependent σ V V Insulator e 1 σ e Normal (unpaired) G G ~ 1/ ln e T

18 Percolation Paradigm (Trivedi, Dubi, Meir, Avishai, Spivak, Kivelson, et al.)

19 Pardigm II: superconducting vs. Normal regions percolation Strong disorder breaks the film into superconducting and normal regions. SC NOR NOR R

20 Pardigm II: superconducting vs. Normal regions percolation Strong disorder breaks the film into superconducting and normal regions. NOR R Near percolation thin channels of the disorder-localized normal phase.

21 Pardigm II: superconducting vs. Normal regions percolation Strong disorder breaks the film into superconducting and normal regions. NOR R Near percolation thin channels of the disorder-localized normal phase. Far from percolation disordered localized normal electrons.

22 Magneto-resistance curves in the percolation picture Simulate film as a resistor network: (Dubi, Meir, Avishai, 006) NOR island Nor-SC links: SC island R 0 T E G / ~ R e Normal links: SC-SC links: R ~ R e 0 ( ε + ε + ε ε ) / kt 1 1 α R ~ T Reuslting MR:

23 Drag in a bilayer system

24 Giaever transformer Vortex drag Two type-ii bulk superconductors: V R D = I 1 (Giaever, 1965) V i D I 1 Vortices tightly bound: V 1 V1 V = V 1 R D = = R1 I 1

25 Two thin electron gases: DEG bilayers Coulomb drag V R D = I V 1 i D I 1 V 1 Coulomb force creates friction between the layers. Inversely proportional to density squared: Opposite sign to Giaever s vortex drag. R D n 1 e

26 Two thin electron gases: DEG bilayers Coulomb drag V R D = I V 1 i D I 1 Example: ν = 1 T V 1 Excitonic condensate (Kellogg, Eisenstein, Pfeiffer, West, 00)

27 Thin film Giaever transformer V D d Ins ~ 5nm Amorphous (SC) thin films Percolation paradigm d SC ~ 0nm I 1 Insulating layer, Josephson tunneling: J = 0 or J > 0 Vortex condensation paradigm Drag is due to coulomb interaction. Electron density: n ~ d 10 d SC ( QH bilayers: 0 n d cm 3 10 ~ 5 10 Drag suppressed cm cm )? Drag is due to inductive current interactions, and Josephson coupling. Vortex density: n V ~ φ 0 ~ (10 11 [ T ] Significant Drag ) cm

28 Vortex drag in thin films bilayers: interlayer interaction Vortex current suppressed. e.g., Pearl penetration length: λ = eff λ d L SC r Vortex attraction=interlayer induction. Also suppressed due to thinness. U inter qa ( φ0 e q) 1 qa πλ q[( q + λ ) e / λ eff d SC eff eff ] ~ φ0 4πλ ~ eff φ 4λ 0 eff ln( r), r a, r r > λ < a eff

29 Vortex drag in thin films within vortex metal theory R D = V I 1 I 1 V Perturbatively: R D = G drag V ~ [ j 1, j] A 1 U e j1 U e j A (Kamenev, Oreg) Expect: G drag V σσ σ σ V1V 1 V V n Vn 1V 1 nv n V R R 1 Drag generically proportional to MR slope. (Following von Oppen, Simon, Stern, PRL 001) Answer: R D = G drag V = e φ0 4 8π T R1 R dω dq q 3 U Im χ1 Im χ sinh ( ω / T ) U screened inter-layer potential. χ - Density response function (diffusive FL)

30 Vortex drag in thin films: Results R D = G drag V = e φ0 4 8π T R1 R dω dq q 3 U Im χ1 Im χ sinh ( ω / T ) Our best chance (with no J tunneling) is the highly insulating InO: maximum drag: max R D ~ 0. 1mΩ Note: similar analysis for SC-metal bilayer using a ground plane. Experiment: Mason, Kapitulnik (001) Theory: Michaeli, Finkel stein, (006)

31 Percolation picture: Coulomb drag Solve a -layer resistor network with drag. - Normal - SC Can neglect drag with the SC islands: D D R SC, R 0 SC SC NOR Normal-Normal drag use results for disorder localized electron glass: R D NOR NOR = 1 96π R1R h / e ( e n e T a d film ) 1 ln x 0 (Shimshoni, PRL 1987)

32 Drag resistances: Percolation picture: Results D D R SC, R 0 SC SC NOR R D NOR NOR = 1 96π R1R h / e ( e n e T a d film ) ln 1 x 0 Solution of the random resistor network: Compare to vortex drag:?

33 Conclusions Vortex picture and the puddle picture: similar single layer predictions. Giaever transformer bilayer geometry may qualitatively distinguish: Large drag for vortices, small drag for electrons, with opposite signs. Drag in the limit of zero interlayer tunneling: R vortex D 1 percolation R D 11 ~ 0. mω vs. ~ 10 Ω Intelayer Josephson should increase both values, and enhance the effect. (future theoretical work) Amorphous thin-film bilayers will yield interesting complementary information about the SIT.

34 Conclusions What induces the gigantic resistance and the SC-insulating transition? What is the nature of the insulating state? Exotic vortex physics? Phenomenology: Vortex picture and the puddle picture: similar single layer predictions. Experimental suggestion: Giaever transformer bilayer geometry may qualitatively distinguish: Large drag for vortices, small drag for electrons.

Magnetically Induced Electronic States in 2D Superconductors

Magnetically Induced Electronic States in 2D Superconductors Magnetically Induced Electronic States in D Superconductors Jongsoo Yoon University of Virginia B Insulator normal metal (linear I-V) Carlos Vicente Yongho Seo Yongguang Qin Yize Li Metal (U) SC T Christine

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani Superconductor to insulator transition: a short overview on recent ideas C.Castellani Collaborations L.Benfatto and J.Lorenzana (Roma), G.Seibold (Cottbus) G.Lemarié (Toulouse),D.Bucheli(PhD,Roma) References

More information

Cooper pair islanding model of insulating nanohoneycomb films

Cooper pair islanding model of insulating nanohoneycomb films University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 2002 Cooper pair islanding model of insulating nanohoneycomb films Shawna M. Hollen University of

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-10 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Phase transitions in strongly disordered magnets and superconductors on Bethe lattice L. Ioffe Rutgers, the State University of

More information

Anomalous Metals and Failed Superconductors. With B. Spivak and A. Kapitulnik (also P. Oreto)

Anomalous Metals and Failed Superconductors. With B. Spivak and A. Kapitulnik (also P. Oreto) Anomalous Metals and Failed Superconductors With B. Spivak and A. Kapitulnik (also P. Oreto) Tallahassee 2018 Pillars the Theory of Quantum Mater From B Spivak Α proof of the Fermi liquid theory is based

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

arxiv: v1 [cond-mat.supr-con] 13 Oct 2008

arxiv: v1 [cond-mat.supr-con] 13 Oct 2008 APS/123-QED Thickness-tuned Superconductor-to-Insulator Transitions under magnetic field in a-nbsi C.A. Marrache-Kikuchi CSNSM (CNRS-UMR8609), Université Paris Sud, Bat. 108, 91405 Orsay Campus, France

More information

Transport Properties of Disordered Superconducting Thin Films. and Superconducting Islands

Transport Properties of Disordered Superconducting Thin Films. and Superconducting Islands Transport Properties of Disordered Superconducting Thin Films and Superconducting Islands A proposal for a PhD thesis submitted by Yonatan Dubi Physics department, Ben Guiron University Contents Abstract

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Impact of disorder and topology in two dimensional systems at low carrier densities

Impact of disorder and topology in two dimensional systems at low carrier densities Impact of disorder and topology in two dimensional systems at low carrier densities A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by Mohammed Ali Aamir Department

More information

Coulomb Drag in Graphene

Coulomb Drag in Graphene Graphene 2017 Coulomb Drag in Graphene -Toward Exciton Condensation Philip Kim Department of Physics, Harvard University Coulomb Drag Drag Resistance: R D = V 2 / I 1 Onsager Reciprocity V 2 (B)/ I 1 =

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-7 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Tunneling studies in a disordered s-wave superconductor close to the Fermi glass regime P. Raychaudhuri Tata Institute of Fundamental

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

crystalline superconductor

crystalline superconductor Nature of the quantum metal in a twodimensional crystalline superconductor The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 17 Jun 1998

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 17 Jun 1998 Evidence of Vortices on the Insulating Side of the Superconductor-Insulator Transition N. Marković, A. M. Mack, G. Martinez-Arizala,C. Christiansen and A. M. Goldman School of Physics and Astronomy, University

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Materials and the Imagination, Aspen Center of Physics, January

More information

arxiv: v1 [cond-mat.supr-con] 28 Sep 2012

arxiv: v1 [cond-mat.supr-con] 28 Sep 2012 Multiple Quantum Phase Transitions at the superconducting LaTiO 3 /SrTiO 3 interface J. Biscaras 1, N. Bergeal 1, S. Hurand 1, C. Feuillet-Palma 1, A. Rastogi 2, R. C. Budhani 2,3, M. Grilli 4, S. Caprara

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Beyond the Quantum Hall Effect

Beyond the Quantum Hall Effect Beyond the Quantum Hall Effect Jim Eisenstein California Institute of Technology School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January February 2008 Outline of the Lectures

More information

Scaling Analysis of the Magnetic Field Tuned Quantum Transition in Superconducting Amorphous In O Films 1

Scaling Analysis of the Magnetic Field Tuned Quantum Transition in Superconducting Amorphous In O Films 1 JETP Letters, Vol., No. 4, 2, pp. 4. From Pis ma v Zhurnal Éksperimental noœ i Teoreticheskoœ Fiziki, Vol., No. 4, 2, pp. 2 2. Original English Text Copyright 2 by Gantmakher, Golubkov, Dolgopolov, Tsydynzhapov,

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Large Fluctuations and Collective Phenomena in Disordered

More information

arxiv: v1 [cond-mat.mes-hall] 14 Mar 2012

arxiv: v1 [cond-mat.mes-hall] 14 Mar 2012 Exciton Condensation and Perfect Coulomb Drag D. Nandi 1, A.D.K. Finck 1, J.P. Eisenstein 1, L.N. Pfeiffer 2, and K.W. West 2 1 Condensed Matter Physics, California Institute of Technology, Pasadena, CA

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Conductor Insulator Quantum

Conductor Insulator Quantum Conductor Insulator Quantum Phase Transitions Edited by Vladimir Dobrosavljevic, Nandini Trivedi, James M. Valles, Jr. OXPORD UNIVERSITY PRESS Contents List of abbreviations List of contributors xiv xvi

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota Electrostatic Tuning of Superconductivity Allen M. Goldman School of Physics and Astronomy University of Minnesota Paarticipating Graduate Students Yen-Hsiang Lin Kevin Parendo (US Patent Office) Sarwa

More information

The Anderson-Higgs Mechanism in Superconductors

The Anderson-Higgs Mechanism in Superconductors The Anderson-Higgs Mechanism in Superconductors Department of Physics, Norwegian University of Science and Technology Summer School "Symmetries and Phase Transitions from Crystals and Superconductors to

More information

Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films

Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films Figure depicts a set of resistive transitions at increasing magnetic fields measured

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 28 Oct 2007

arxiv:cond-mat/ v3 [cond-mat.supr-con] 28 Oct 2007 Vortex matter and generalizations of dipolar superfluidity concept in layered systems Egor Babaev The Royal Institute of Technology, Stockholm, SE-10691 Sweden Centre for Advanced Study, Norwegian Academy

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

arxiv: v1 [cond-mat.supr-con] 20 Jul 2015

arxiv: v1 [cond-mat.supr-con] 20 Jul 2015 Superconductor-Insulator Transition and Fermi-Bose Crossovers arxiv:57.564v [cond-mat.supr-con] Jul 5 Yen Lee Loh, Mohit Randeria, Nandini Trivedi, Chia-Chen Chang, 3 and Richard Scalettar 3 Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Talk at the Oak Ridge National Laboratory, March 28, 2008 Eduardo Fradkin Department of Physics University of Illinois at

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Overview Lecture Derek Lee Imperial College London January 2007 Outline 1 Course content Introduction Superfluids Superconductors 2 Course Plan Resources Outline 1 Course content

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Outline: I. Introduction: materials, transport, Hall effects II. III. IV. Composite particles FQHE, statistical transformations Quasiparticle charge

More information

Thermal transport in the disordered electron liquid

Thermal transport in the disordered electron liquid Thermal transport in the disordered electron liquid Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau Institute

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions Shizhong Zhang The University of Hong Kong Institute for Advanced Study, Tsinghua 24 October 2012 The plan 1. Introduction to Bose-Hubbard

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Pattern Formation in the Fractional Quantum Hall Effect

Pattern Formation in the Fractional Quantum Hall Effect Journal of the Physical Society of Japan 72, Supplement C (2003) 18-23 Pattern Formation in the Fractional Quantum Hall Effect Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems, Université

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

Probing Wigner Crystals in the 2DEG using Microwaves

Probing Wigner Crystals in the 2DEG using Microwaves Probing Wigner Crystals in the 2DEG using Microwaves G. Steele CMX Journal Club Talk 9 September 2003 Based on work from the groups of: L. W. Engel (NHMFL), D. C. Tsui (Princeton), and collaborators. CMX

More information

Superconducting-Insulating Quantum Phase Transition in Homogenous Thin Films

Superconducting-Insulating Quantum Phase Transition in Homogenous Thin Films Superconducting-Insulating Quantum Phase Transition in Homogenous Thin Films Jonathan K. Whitmer Department of Physics, University of Illinois at Urbana-Champaign 1110 West Green Street, Urbana, IL 61801,

More information

SHANGHAI JIAO TONG UNIVERSITY LECTURE

SHANGHAI JIAO TONG UNIVERSITY LECTURE Lecture 4 SHANGHAI JIAO TONG UNIVERSITY LECTURE 4 017 Anthony J. Leggett Department of Physics University of Illinois at Urbana-Champaign, USA and Director, Center for Complex Physics Shanghai Jiao Tong

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique - Master Concepts Fondamentaux de la Physique 2013-2014 Théorie de la Matière Condensée Cours 1-2 09 & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique " - Antoine Georges

More information

Superfluidity and Supersolidity in 4 He

Superfluidity and Supersolidity in 4 He Superfluidity and Supersolidity in 4 He Author: Lars Bonnes Supervisor: Lode Pollet Proseminar Theoretische Physik: Phase Transitions SS 07 18.06.2007 Superfluid Liquid Helium Motivation Two-fluid Model

More information

Spontaneous currents in ferromagnet-superconductor heterostructures

Spontaneous currents in ferromagnet-superconductor heterostructures Institute of Physics and Nanotechnology Center UMCS Spontaneous currents in ferromagnet-superconductor heterostructures Mariusz Krawiec Collaboration: B. L. Györffy & J. F. Annett Bristol Kazimierz 2005

More information

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

The solution of the dirty bosons problem

The solution of the dirty bosons problem The solution of the dirty bosons problem Nikolay Prokof ev (UMass, Amherst) Boris Svistunov (UMass, Amherst) Lode Pollet (Harvard, ETH) Matthias Troyer (ETH) Victor Gurarie (U. Colorado, Boulder) Frontiers

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Superconductivity: approaching the century jubilee

Superconductivity: approaching the century jubilee SIMTECH KICK-OFF MEETING, March, 18, 2011 Superconductivity: approaching the century jubilee Andrey Varlamov Institute of Superconductivity & Innovative Materials (SPIN), Consiglio Nazionale delle Ricerche,

More information

Superconductivity in low-dimensional systems

Superconductivity in low-dimensional systems Superconductivity in low-dimensional systems Marco Grilli Dipar,mento di Fisica Lecture 2: SC in low (actually 2) dimensions. What s up with SC? Breaking news and old revisited stuff Aim: show how the

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler Dresden 005 Nonlinear screening and percolation transition in D electron liquid Michael Fogler UC San Diego, USA Support: A.P. Sloan Foundation; C. & W. Hellman Fund Tunable D electron systems MOSFET Heterostructure

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information