Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Size: px
Start display at page:

Download "Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs"

Transcription

1 Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ , cond-mat/ , and to appear Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Predrag Nikolic (Yale) Subir Sachdev (Yale) Krishnendu Sengupta (Toronto) MIT Chez Pierre December 13, 2004

2 Experiments on the cuprate superconductors show: Tendency to produce density wave order near wavevectors (2π/a)(1/4,0) and (2π/a)(0,1/4). Proximity to a Mott insulator at hole density δ =1/8 with long-range density wave order at wavevectors (2π/a)(1/4,0) and (2π/a)(0,1/4). Vortex/anti-vortex fluctuations for a wide temperature range in the normal state STM studies of Ca 2-x Na x CuO 2 Cl 2 at low T, T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature 430, 1001 (2004). Measurements of the Nernst effect, Y. Wang, S. Ono, Y. Onose, G. Gu, Y. Ando, Y. Tokura, S. Uchida, and N. P. Ong, Science 299, 86 (2003). STM studies of Bi 2 Sr 2 CaCu 2 O 8+δ above T c, M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science, 303, 1995 (2004).

3 Experiments on the cuprate superconductors show: Tendency to produce density wave order near wavevectors (2π/a)(1/4,0) and (2π/a)(0,1/4). Proximity to a Mott insulator at hole density δ =1/8 with long-range density wave order at wavevectors (2π/a)(1/4,0) and (2π/a)(0,1/4). Vortex/anti-vortex fluctuations for a wide temperature range in the normal state Needed: A quantum theory of transitions between superfluid/supersolid/insulating phases at fractional filling, and a deeper understanding of the role of vortices

4 Outline A. Superfluid-insulator transitions of bosons on the square lattice at fractional filling Quantum mechanics of vortices in a superfluid proximate to a commensurate Mott insulator at filling f B. Extension to electronic models for the cuprate superconductors Dual vortex theories of the doped (1) Quantum dimer model (2) Staggered flux spin liquid

5 A. Superfluid-insulator transitions of bosons on the square lattice at fractional filling Quantum mechanics of vortices in a superfluid proximate to a commensurate Mott insulator at filling f

6 Bosons at filling fraction f = 1 Weak interactions: superfluidity Strong interactions: Mott insulator which preserves all lattice symmetries M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

7 Excitations of the superfluid: Vortices Vortices proliferate as the superfluid approaches the insulator. In two dimensions, we can view the vortices as point particle excitations of the superfluid. What is the quantum mechanics of these particles?

8 In ordinary fluids, vortices experience the Magnus Force F M F = mass density of fluid i velocity i circulation M ( ) ( ) ( )

9 In a Galilean-invariant superfluid at T = 0, the Magnus force on a quantized vortex with vorticity m ( m integer) is dr FM = mhρ v zˆ dt where ρ is the number densit y of bosons, v is local superfluid velocity, and r is the position of the vortex.

10 In the presence of a lattice, we must distinguish two physically distinct situations, and write with () F = F + F ( E) ( B) M M M 1 A stationary vortex in a moving superfluid F = me where E = hρ v zˆ ( E) M (2) A moving vortex in a stationary superfluid ( B) dr FM = m B where B dt = - hρ zˆ. F ρ ρ ), ( E) The expression for M is basically correct (with F M not ( B) while that for is correct. The latter is modified by the periodic potential of the lattice close to a Mott insulator... s

11 F ( B) can be re-interpreted as a Lorentz force on M a vortex particle due to a magnetic field B=hρ So we need to consider the quantum mechanics of a particle moving in a magnetic field B and a periodic lattice potential --- the Hofstadter problem. At filling fraction f=1, the B field is such that there is exactly one flux quantum per unit cell. Such a B field is invisible, and the vortex particle moves in conventional ( B) Bloch waves ( ) 0 0 = At densities ρ close to the Mott insulator density ρ the effective B field is B= h ρ ρ zˆ MI F M f where ρ = 2 = 1 2, and a0 is the lattice spacing. MI a a 0. MI

12 Bosons at filling fraction f = 1/2 (equivalent to S=1/2 AFMs) ψ 0 Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

13 Bosons at filling fraction f = 1/2 (equivalent to S=1/2 AFMs) ψ 0 Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

14 Bosons at filling fraction f = 1/2 (equivalent to S=1/2 AFMs) ψ 0 Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

15 Bosons at filling fraction f = 1/2 (equivalent to S=1/2 AFMs) ψ 0 Weak interactions: superfluidity C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

16 Bosons at filling fraction f = 1/2 (equivalent to S=1/2 AFMs) ψ = 0 Strong interactions: insulator C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

17 Bosons at filling fraction f = 1/2 (equivalent to S=1/2 AFMs) = 1 2 ( + ). ( r ) e i All insulating phases have "density" wave order ρ = ρ Qr with ρ 0 Strong interactions: insulator Q Q Q ψ = 0 C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

18 Vortices in a superfluid near a Mott insulator at filling f Quantum mechanics of the vortex particle in a periodic potential with f flux quanta per unit cell Space group symmetries of Hamiltonian: T, T : Translations by a lattice spacing in the x, y directions x y R : Rotation by 90 degrees. Magnetic space group: TT = e TT 2πif x y y x R T R= T ; R T R= T ; R = y x x y ;

19 Vortices in a superfluid near a Mott insulator at filling f=p/q Hofstadter spectrum of the quantum vortex particle with field operator ϕ At filling f = p/ q ( p, q relatively prime integers) there are q species of vortices, ϕ (with =1 q), associated with q gauge-equivalent regions of the Brillouin zone Magnetic space group: TT = e TT 2πif x y y x R T R= T ; R T R= T ; R = y x x y ;

20 Vortices in a superfluid near a Mott insulator at filling f=p/q Hofstadter spectrum of the quantum vortex particle with field operator ϕ At filling f = p/ q ( p, q relatively prime integers) there are q species of vortices, ϕ (with =1 q), associated with q gauge-equivalent regions of the Brillouin zone The q vortices form a projective representation of the space group T : ; T : e x 2πif ϕ ϕ + 1 y ϕ ϕ 1 R: ϕ q q m= 1 ϕ e m 2πimf See also X.-G. Wen, Phys. Rev. B 65, (2002)

21 Vortices in a superfluid near a Mott insulator at filling f=p/q The q vortices characterize ϕ both superconducting and density wave orders Superconductor insulator : ϕ = 0 ϕ 0

22 Vortices in a superfluid near a Mott insulator at filling f=p/q The q vortices characterize ϕ both superconducting and density wave orders Density wave order: Status of space group symmetry determined by 2π p density operators ρq at wavevectors Qmn = mn, q T x q iπmnf * 2πi mf ρmn = e ϕ ϕ + ne = 1 iqixˆ : ρq ρqe ; Ty : R: ρ Q ρ RQ ( ) ( ) ρ Q ρ e Q ( ) iqi yˆ

23 Vortices in a superfluid near a Mott insulator at filling f=p/q The q vortices characterize ϕ both superconducting and density wave orders Vorticity modulations: In the presence of an applied magnetic field, there are also modulations in the vorticity at the same 2π p wavevectors Qmn = mn, q ( ) ϕ ϕ q * iπmnf * + n 2πi mf Vmn = e ϕ ϕ + n e = 1 τ τ

24 Degrees of freedom: q Field theory with projective symmetry complex vortex fields ϕ 1 non-compact U(1) gauge field A which mediates F and F µ ( E) ( B) M M

25 Degrees of freedom: q Field theory with projective symmetry complex vortex fields ϕ 1 non-compact U(1) gauge field A which mediates F and F µ ( E) ( B) M M

26 Field theory with projective symmetry Spatial structure of insulators for q=2 (f=1/2) = 1 ( + ) 2 ( r ) e i. All insulating phases have density-wave order ρ = ρ Qr with ρ 0 Q Q Q

27 Field theory with projective symmetry Spatial structure of insulators for q=4 (f=1/4 or 3/4) a b unit cells; q, q, ab, a b q all integers

28 Field theory with projective symmetry Pinned vortices in the superfluid Any pinned vortex must chose an orientation in flavor space. This necessarily leads to modulations in the local density of states over the spatial region where the vortex executes its quantum zero point motion. MI 2π p Density operators ρq at wavevectors Qmn = mn, q q iπmnf * 2πi mf ρmn = e ϕ ϕ + ne = 1 ( ) In the cuprates, assuming boson density=density of Cooper pairs we have ρ = 7/16, and q= 16 (both models in part B yield this value of q). So modulation must have period a b with 16/ a, 16/ b, and ab/16 all integers.

29 Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+δ integrated from 1meV to 12meV at 4K 7 pa b Vortices have halos with LDOS modulations at a period 4 lattice spacings 0 pa 100Å J. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Prediction of VBS order near vortices: K. Park and S. Sachdev, Phys. Rev. B 64, (2001).

30 Measuring the inertial mass of a vortex

31 Measuring the inertial mass of a vortex Preliminary estimates for the BSCCO experiment: Inertial vortex mass 10m Vortex magnetoplasmon frequency ν m v e p 1 THz = 4 mev Large uncertainty due to uncertainty in value o f u rms Note: With nodal fermionic quasiparticles, m v is expected to be dependent on the magnetic field i.e. vortex density G. E. Volovik, JETP Lett. 65, 217 (1997); N. B. Kopnin, Phys. Rev. B 57, (1998).

32 B. Extension to electronic models for the cuprate superconductors Dual vortex theories of the doped (1) Quantum dimer model (2) Staggered flux spin liquid

33 (B.1) Phase diagram of doped antiferromagnets g = parameter controlling strength of quantum fluctuations in a semiclassical theory of the destruction of Neel order La 2 CuO 4 Neel order

34 (B.1) Phase diagram of doped antiferromagnets g or VBS order La 2 CuO 4 Neel order N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

35 (B.1) Phase diagram of doped antiferromagnets g or VBS order Dual vortex theory of of doped dimer model for interplay between VBS order and d-wave superconductivity La 2 CuO 4 Neel order Hole density δ

36 (B.1) Doped quantum dimer model H dqd ( ) = J + ( ) t + Density of holes = δ E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).

37 (B.1) Duality mapping of doped quantum dimer model shows: Vortices in the superconducting state obey the magnetic translation algebra with TT = e TT 2πif x y y x f p = = q 1 δ 2 where δ is the density of holes in the proximate MI Mott insulator (for δ = 1/ 8, f = 7 /16 q = 16) MI Note: f = density of Cooper pairs Most results of Part A on bosons can be applied unchanged with q as determined above MI

38 (B.1) Phase diagram of doped antiferromagnets g VBS order δ = 1 32 La 2 CuO 4 Neel order Hole density δ

39 (B.1) Phase diagram of doped antiferromagnets g VBS order δ = 1 16 La 2 CuO 4 Neel order Hole density δ

40 (B.1) Phase diagram of doped antiferromagnets g VBS order δ = 1 8 La 2 CuO 4 Neel order Hole density δ

41 (B.1) Phase diagram of doped antiferromagnets VBS order g d-wave superconductivity above a critical δ La 2 CuO 4 Neel order Hole density δ

42 (B.2) Dual vortex theory of doped staggered flux spin liquid

43 (B.2) Dual vortex theory of doped staggered flux spin liquid

44 (B.2) Dual vortex theory of doped staggered flux spin liquid

45 (B.2) Dual vortex theory of doped staggered flux spin liquid

46 Superfluids near Mott insulators The Mott insulator has average Cooper pair density, f = p/q per site, while the density of the superfluid is close (but need not be identical) to this value Vortices with flux h/(2e) come in in multiple (usually q) q) flavors The lattice space group acts in in a projective representation on on the vortex flavor space. These flavor quantum numbers provide a distinction between superfluids: they constitute a quantum order Any pinned vortex must chose an an orientation in in flavor space. This necessarily leads to to modulations in in the local density of of states over the spatial region where the vortex executes its its quantum zero point motion.

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University Course at Harvard University: Physics 268r Classical and Quantum Phase Transitions. MWF 10 in Jefferson 256

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Quantum vortices and competing orders

Quantum vortices and competing orders Talk online: Google Sachdev Quantum votices and competing odes cond-mat/0408329 and cond-mat/0409470 Leon Balents (UCSB) Loenz Batosch (Yale) Anton Bukov (UCSB) Subi Sachdev (Yale) Kishnendu Sengupta (Toonto)

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

arxiv:cond-mat/ v3 3 Jan 2006

arxiv:cond-mat/ v3 3 Jan 2006 Estimating the mass of vortices in the cuprate superconductors Lorenz Bartosch a,b, Leon Balents c, and Subir Sachdev a arxiv:cond-mat/0502002 v3 3 Jan 2006 a Department of Physics, Harvard University,

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Competing orders: beyond Landau-Ginzburg-Wilson theory

Competing orders: beyond Landau-Ginzburg-Wilson theory Talk online: Google Sachdev Competing odes: beyond Landau-Ginzbug-Wilson theoy Colloquium aticle in Reviews of Moden Physics 75, 913 (2003) Leon Balents (UCSB) Loenz Batoh (Yale) Anton Bukov (UCSB) Eugene

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

Quantum critical transport and AdS/CFT

Quantum critical transport and AdS/CFT Quantum critical transport and AdS/CFT Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller, Trieste Joerg Schmalian, Iowa Dam Son, Washington

More information

arxiv:cond-mat/ v4 7 Mar 2005

arxiv:cond-mat/ v4 7 Mar 2005 Putting competing orders in their place near the Mott transition arxiv:cond-mat/040839 v4 7 Mar 005 Leon Balents, 1 Lorenz Bartosch,, 3 Anton Burkov, 1 Subir Sachdev, and Krishnendu Sengupta 1 Department

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Nernst effect in vortex-liquid state of cuprates

Nernst effect in vortex-liquid state of cuprates Boulder School for Condensed Matter and Materials Physics 2008 Talk 2 Nernst effect in vortex-liquid state of cuprates 1. Introduction to the Nernst effect 2. Vortex signal above Tc 3. Loss of long-range

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Large Fluctuations and Collective Phenomena in Disordered

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Materials and the Imagination, Aspen Center of Physics, January

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain Damping of collective modes and quasiparticles in d-wave superconductors C. Buragohain Y. Zhang Subir Sachdev M. Vojta Transparencies on-line at http://pantheon.yale.edu/~subir Review article: cond-mat/000550

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless

More information

Signatures of the precursor superconductivity above T c

Signatures of the precursor superconductivity above T c Dresden, 18 April 2007 Signatures of the precursor superconductivity above T c T. DOMANSKI M. Curie-Skłodowska University, 20-031 Lublin, Poland http://kft.umcs.lublin.pl/doman Outline Outline Introduction

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Inhomogeneous spin and charge densities in d-wave superconductors

Inhomogeneous spin and charge densities in d-wave superconductors Inhomogeneous spin and charge densities in d-wave superconductors Arno P. Kampf Paris, June 2009 Collaborative Research Center SFB 484 Cooperative Phenomena in Solids: Metal-Insulator-Transitions and Ordering

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Cuprate high-t c superconductors

Cuprate high-t c superconductors Cuprate high-t c superconductors In solid-state physics two different paradigms are typically applied. The first is a local picture, in which one visualizes the quantum states of electrons in atomic orbitals

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Impurity Resonances and the Origin of the Pseudo-Gap

Impurity Resonances and the Origin of the Pseudo-Gap Brazilian Journal of Physics, vol. 33, no. 4, December, 2003 659 Impurity Resonances and the Origin of the Pseudo-Gap Brian Møller Andersen Ørsted Laboratory, Niels Bohr Institute, Universitetsparken 5,

More information

Symmetry Protected Topological Phases of Matter

Symmetry Protected Topological Phases of Matter Symmetry Protected Topological Phases of Matter T. Senthil (MIT) Review: T. Senthil, Annual Reviews of Condensed Matter Physics, 2015 Topological insulators 1.0 Free electron band theory: distinct insulating

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Competing orders and quantum criticality in the cuprate superconductors

Competing orders and quantum criticality in the cuprate superconductors Competing orders and quantum criticality in the cuprate superconductors Subir Sachdev Science 286, 2479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies online at http://pantheon.yale.edu/~subir

More information

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Particle theorists Sean Hartnoll, KITP Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Condensed matter theorists

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems

Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems Hidden Symmetry and Quantum Phases in Spin / Cold Atomic Systems Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref: C. Wu, Mod. Phys. Lett. B 0, 707, (006); C. Wu, J. P. Hu, and S. C. Zhang,

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University Polaronic Effects in the Lightly Doped Cuprates Kyle M. Shen Stanford University April 6, 2005 ARPES Studies of the Cuprates Temperature (K) AFI Bi 2 Sr 2 CaCu 2 O 8+δ Bi 2 Sr 2 CuO 6+δ YBa 2 Cu 3 O 7-δ

More information

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 Eduardo Fradkin University of Illinois at Urbana-Champaign Seminar at the Department of Physics Harvard

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

arxiv:cond-mat/ v6 [cond-mat.supr-con] 30 Jun 2003

arxiv:cond-mat/ v6 [cond-mat.supr-con] 30 Jun 2003 Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 arxiv:cond-mat/0211005v6 [cond-mat.supr-con]

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology 63 Chapter 4 Vortex Checkerboard There is no need to invoke alternative order parameters to explain observed DOS modulations in optimally doped Bi 2 Sr 2 CaCu 2 O 8+δ. To continue the search for interesting

More information

Quantum phase transitions in antiferromagnets and d-wave superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors Quantum phase transitions in antiferromagnets and d-wave superconductors Chiranjeeb Buragohain Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

The Half-Filled Landau Level

The Half-Filled Landau Level Nigel Cooper Department of Physics, University of Cambridge Celebration for Bert Halperin s 75th January 31, 2017 Chong Wang, Bert Halperin & Ady Stern. [C. Wang, NRC, B. I. Halperin & A. Stern, arxiv:1701.00007].

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information