Electronic Liquid Crystal Phases in Strongly Correlated Systems

Size: px
Start display at page:

Download "Electronic Liquid Crystal Phases in Strongly Correlated Systems"

Transcription

1 Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Materials and the Imagination, Aspen Center of Physics, January 4-8, 2011

2 Collaborators S. Kivelson, V. Emery, E. Berg, D. Barci, E.-A. Kim, M. Lawler, T. Lubensky, V. Oganesyan, K. Sun, C. Wu, S. C. Zhang, J. Eisenstein, A. Kapitulnik, A. Mackenzie, J. Tranquada S. Kivelson, E. Fradkin and V. J. Emery, Electronic Liquid Crystal Phases of a Doped Mott Insulator, Nature 393, 550 (1998) S. Kivelson, I. Bindloss, E. Fradkin, V. Oganesyan, J. Tranquada, A. Kapitulnik and C.Howald, How to detect fluctuating stripes in high tempertature superconductors, Rev. Mod. Phys. 75, 1201 (2003) E. Fradkin, S. Kivelson, M. Lawler, J. Eisenstein, and A. Mackenzie, Nematic Fermi Fluids in Condensed Matter Physics, Annu. Rev. Condens. Matter Phys. 1, 153 (2010) E. Berg, E. Fradkin, S. Kivelson, and J. Tranquada, Striped Superconductors: How the cuprates intertwine spin, charge, and superconducting orders, New. J. Phys. 11, (2009). E. Berg, E. Fradkin, and S. Kivelson, Charge 4e superconductivity from pair density wave order in certain high temperature superconductors, Nature Physics 5, 830 (2009). D. Barci and E. Fradkin, Phase Transitions in Superconducting Liquid Crystal Phases, arxiv:

3 Electronic Liquid Crystal phases in doped Mott insulators

4 Electronic Liquid Crystal phases in doped Mott insulators Doping a Mott insulator leads to a system with a tendency to phase separation frustrated by strong correlations

5 Electronic Liquid Crystal phases in doped Mott insulators Doping a Mott insulator leads to a system with a tendency to phase separation frustrated by strong correlations The result are electronic liquid crystal phases: crystals, stripes (smectic), nematic and fluids, with different degrees of breakdown of translation and rotational symmetry

6 Electronic Liquid Crystal phases in doped Mott insulators Doping a Mott insulator leads to a system with a tendency to phase separation frustrated by strong correlations The result are electronic liquid crystal phases: crystals, stripes (smectic), nematic and fluids, with different degrees of breakdown of translation and rotational symmetry In lattice systems these symmetries are discrete

7 Electronic Liquid Crystal phases in doped Mott insulators Doping a Mott insulator leads to a system with a tendency to phase separation frustrated by strong correlations The result are electronic liquid crystal phases: crystals, stripes (smectic), nematic and fluids, with different degrees of breakdown of translation and rotational symmetry In lattice systems these symmetries are discrete Examples: stripe phases in HTSC, nematic phase of the 2DEG in magnetic fields, in YBCO and BSCCO, and in iron pnictides and heavy fermions.

8 Electronic Liquid Crystal phases in doped Mott insulators Doping a Mott insulator leads to a system with a tendency to phase separation frustrated by strong correlations The result are electronic liquid crystal phases: crystals, stripes (smectic), nematic and fluids, with different degrees of breakdown of translation and rotational symmetry In lattice systems these symmetries are discrete Examples: stripe phases in HTSC, nematic phase of the 2DEG in magnetic fields, in YBCO and BSCCO, and in iron pnictides and heavy fermions. In addition to their charge and spin orders, these phases may also be superconducting

9 How Liquid Crystals got an ~ or Soft Quantum Matter

10 Conducting Liquid Crystal Phases and HTSC

11 Conducting Liquid Crystal Phases and HTSC Stripes: unidirectional charge ordered states

12 Conducting Liquid Crystal Phases and HTSC Stripes: unidirectional charge ordered states Nematic: a uniform metallic (or superconducting) state with anisotropic transport

13 Conducting Liquid Crystal Phases and HTSC Stripes: unidirectional charge ordered states Nematic: a uniform metallic (or superconducting) state with anisotropic transport Stripe and nematic ordered states in HTSC: static stripes in LBCO and LNSCO x~1/8, in LSCO and YBCO in magnetic fields. Nematic order in the pseudogap regime of YBCO: INS ~6.45 and anisotropy in Nernst measurements

14 Conducting Liquid Crystal Phases and HTSC Stripes: unidirectional charge ordered states Nematic: a uniform metallic (or superconducting) state with anisotropic transport Stripe and nematic ordered states in HTSC: static stripes in LBCO and LNSCO x~1/8, in LSCO and YBCO in magnetic fields. Nematic order in the pseudogap regime of YBCO: INS ~6.45 and anisotropy in Nernst measurements Fluctuating stripes, in superconducting LSCO, LBCO away from 1/8, and underdoped YBCO

15 Conducting Liquid Crystal Phases and HTSC Stripes: unidirectional charge ordered states Nematic: a uniform metallic (or superconducting) state with anisotropic transport Stripe and nematic ordered states in HTSC: static stripes in LBCO and LNSCO x~1/8, in LSCO and YBCO in magnetic fields. Nematic order in the pseudogap regime of YBCO: INS ~6.45 and anisotropy in Nernst measurements Fluctuating stripes, in superconducting LSCO, LBCO away from 1/8, and underdoped YBCO The high energy electronic states seen in BSCCO by STM/STS have local nematic order

16 Conducting Liquid Crystal Phases and HTSC Stripes: unidirectional charge ordered states Nematic: a uniform metallic (or superconducting) state with anisotropic transport Stripe and nematic ordered states in HTSC: static stripes in LBCO and LNSCO x~1/8, in LSCO and YBCO in magnetic fields. Nematic order in the pseudogap regime of YBCO: INS ~6.45 and anisotropy in Nernst measurements Fluctuating stripes, in superconducting LSCO, LBCO away from 1/8, and underdoped YBCO The high energy electronic states seen in BSCCO by STM/STS have local nematic order Is charge order a friend or a foe of high T c superconductivity?

17 The case of La1-x Bax CuO4

18 The case of La1-x Bax CuO4 LBCO, the original HTSC, is known to exhibit low energy stripe fluctuations in its superconducting state

19 The case of La1-x Bax CuO4 LBCO, the original HTSC, is known to exhibit low energy stripe fluctuations in its superconducting state It has a very low Tc near x=1/8 where it shows static stripe order in the LTT crystal structure

20 The case of La1-x Bax CuO4 LBCO, the original HTSC, is known to exhibit low energy stripe fluctuations in its superconducting state It has a very low Tc near x=1/8 where it shows static stripe order in the LTT crystal structure Experimental evidence for superconducting layer decoupling in LBCO at x=1/8

21 The case of La1-x Bax CuO4 LBCO, the original HTSC, is known to exhibit low energy stripe fluctuations in its superconducting state It has a very low Tc near x=1/8 where it shows static stripe order in the LTT crystal structure Experimental evidence for superconducting layer decoupling in LBCO at x=1/8 Layer decoupling, long range charge and spin stripe order and superconductivity: a novel striped superconducting state, a Pair Density Wave, in which charge, spin, and superconducting orders are intertwined!

22 70 60 Phase Diagram of LBCO LTO LBCO Temperature (K) SC T LT LTT CO SO SC T c hole doping (x) M. Hücker et al (2009)

23 Li et al (2007): Dynamical Layer Decoupling in LBCO

24 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8

25 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K

26 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K Static Stripe Spin order T < T spin= 42K

27 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K Static Stripe Spin order T < T spin= 42K ρab drops rapidly to zero from Tspin to TKT

28 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K Static Stripe Spin order T < T spin= 42K ρab drops rapidly to zero from Tspin to TKT ρab shows KT behavior for Tspin > T > TKT

29 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K Static Stripe Spin order T < T spin= 42K ρab drops rapidly to zero from Tspin to TKT ρab shows KT behavior for Tspin > T > TKT ρc as T for T>T ** 35K

30 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K Static Stripe Spin order T < T spin= 42K ρab drops rapidly to zero from Tspin to TKT ρab shows KT behavior for Tspin > T > TKT ρc as T for T>T ** 35K ρc 0 as T T3D= 10K

31 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K Static Stripe Spin order T < T spin= 42K ρab drops rapidly to zero from Tspin to TKT ρab shows KT behavior for Tspin > T > TKT ρc as T for T>T ** 35K ρc 0 as T T3D= 10K ρc / ρab for TKT > T > T3D

32 Li et al (2007): Dynamical Layer Decoupling in LBCO ARPES: anti-nodal d-wave SC gap is large and unsuppressed at 1/8 Static charge stripe order for T< T charge=54 K Static Stripe Spin order T < T spin= 42K ρab drops rapidly to zero from Tspin to TKT ρab shows KT behavior for Tspin > T > TKT ρc as T for T>T ** 35K ρc 0 as T T3D= 10K ρc / ρab for TKT > T > T3D Meissner state only below T c= 4K

33

34 Anisotropic Transport Below the Charge Ordering transition Li et al, 2007

35 The 2D Resistive State and 2D Superconductivity Li et al, 2007

36 How Do We Understand This Remarkable Effects?

37 How Do We Understand This Remarkable Effects? Broad temperature range, T3D < T < T2D with 2D superconductivity but not in 3D, as if there is not interlayer Josephson coupling

38 How Do We Understand This Remarkable Effects? Broad temperature range, T3D < T < T2D with 2D superconductivity but not in 3D, as if there is not interlayer Josephson coupling In this regime there is both striped charge and spin order

39 How Do We Understand This Remarkable Effects? Broad temperature range, T3D < T < T2D with 2D superconductivity but not in 3D, as if there is not interlayer Josephson coupling In this regime there is both striped charge and spin order This can only happen if there is a special symmetry of the superconductor in the striped state that leads to an almost complete cancellation of the c-axis Josephson coupling.

40 A Striped Textured Superconducting Phase

41 A Striped Textured Superconducting Phase The stripe state in the LTT crystal structure has two planes in the unit cell.

42 A Striped Textured Superconducting Phase The stripe state in the LTT crystal structure has two planes in the unit cell. Stripes in the 2nd neighbor planes are shifted by half a period to minimize the Coulomb interaction: 4 planes per unit cell

43 A Striped Textured Superconducting Phase The stripe state in the LTT crystal structure has two planes in the unit cell. Stripes in the 2nd neighbor planes are shifted by half a period to minimize the Coulomb interaction: 4 planes per unit cell The AFM spin order suffers a π phase shift accross the charge stripe which has period 4

44 A Striped Textured Superconducting Phase The stripe state in the LTT crystal structure has two planes in the unit cell. Stripes in the 2nd neighbor planes are shifted by half a period to minimize the Coulomb interaction: 4 planes per unit cell The AFM spin order suffers a π phase shift accross the charge stripe which has period 4 We propose that the superconducting order is also striped and also suffers a π phase shift.

45 A Striped Textured Superconducting Phase The stripe state in the LTT crystal structure has two planes in the unit cell. Stripes in the 2nd neighbor planes are shifted by half a period to minimize the Coulomb interaction: 4 planes per unit cell The AFM spin order suffers a π phase shift accross the charge stripe which has period 4 We propose that the superconducting order is also striped and also suffers a π phase shift. The superconductivity resides in the spin gap regions and there is a π phase shift in the SC order across the AFM regions

46 Period 4 Striped Superconducting State E. Berg et al, 2007 (x) x

47 Period 4 Striped Superconducting State E. Berg et al, 2007 (x) x This state has intertwined striped charge, spin and superconducting orders.

48 Period 4 Striped Superconducting State E. Berg et al, 2007 (x) x This state has intertwined striped charge, spin and superconducting orders. A state of this type was found in variational Monte Carlo (Ogata et al 2004) and MFT (Poilblanc et al 2007)

49 How does this state solve the puzzle?

50 How does this state solve the puzzle? If this order is perfect, the Josephson coupling between neighboring planes cancels exactly due to the symmetry of the periodic array of π textures

51 How does this state solve the puzzle? If this order is perfect, the Josephson coupling between neighboring planes cancels exactly due to the symmetry of the periodic array of π textures The Josephson couplings J1 and J2 between planes two and three layers apart also cancel by symmetry.

52 How does this state solve the puzzle? If this order is perfect, the Josephson coupling between neighboring planes cancels exactly due to the symmetry of the periodic array of π textures The Josephson couplings J1 and J2 between planes two and three layers apart also cancel by symmetry. The first non-vanishing coupling J3 occurs at four spacings. It is quite small and it is responsible for the non-zero but very low Tc

53 How does this state solve the puzzle? If this order is perfect, the Josephson coupling between neighboring planes cancels exactly due to the symmetry of the periodic array of π textures The Josephson couplings J1 and J2 between planes two and three layers apart also cancel by symmetry. The first non-vanishing coupling J3 occurs at four spacings. It is quite small and it is responsible for the non-zero but very low Tc Defects and/or discommensurations gives rise to small Josephson coupling J0 neighboring planes

54 Are there other interactions?

55 Are there other interactions? It is possible to have an inter-plane biquadratic coupling involving the product SC of the order parameters between neighboring planes Δ1 Δ2 and the product of spin stripe order parameters also on neighboring planes M1. M2

56 Are there other interactions? It is possible to have an inter-plane biquadratic coupling involving the product SC of the order parameters between neighboring planes Δ1 Δ2 and the product of spin stripe order parameters also on neighboring planes M1. M2 However in the LTT structure M1. M2=0 and there is no such coupling

57 Are there other interactions? It is possible to have an inter-plane biquadratic coupling involving the product SC of the order parameters between neighboring planes Δ1 Δ2 and the product of spin stripe order parameters also on neighboring planes M1. M2 However in the LTT structure M1. M2=0 and there is no such coupling In a large enough perpendicular magnetic field it is possible (spin flop transition) to induce such a term and hence an effective Josephson coupling.

58 Are there other interactions? It is possible to have an inter-plane biquadratic coupling involving the product SC of the order parameters between neighboring planes Δ1 Δ2 and the product of spin stripe order parameters also on neighboring planes M1. M2 However in the LTT structure M1. M2=0 and there is no such coupling In a large enough perpendicular magnetic field it is possible (spin flop transition) to induce such a term and hence an effective Josephson coupling. Thus in this state there should be a strong suppression of the 3D SC Tc but not of the 2D SC Tc

59 Away from x=1/8

60 Away from x=1/8 Away from x=1/8 there is no perfect commensuration

61 Away from x=1/8 Away from x=1/8 there is no perfect commensuration Discommensurations are defects that induce a finite Josephson coupling between neighboring planes J1 ~ x-1/8 2, leading to an increase of the 3D SC Tc away from 1/8

62 Away from x=1/8 Away from x=1/8 there is no perfect commensuration Discommensurations are defects that induce a finite Josephson coupling between neighboring planes J1 ~ x-1/8 2, leading to an increase of the 3D SC Tc away from 1/8 Similar effects arise from disorder which also lead to a rise in the 3D SC Tc

63 Landau-Ginzburg Theory of the striped SC: Order Parameters Striped SC: Δ(r)=ΔQ(r) e i Q.r + Δ-Q(r) e -iq.r, complex charge 2e singlet pair condensate with wave vector, (i.e. an FFLO type state at zero magnetic field) Nematic: detects breaking of rotational symmetry: N, a real neutral pseudo-scalar order parameter Charge stripe: ρk, unidirectional charge stripe with wave vector K Spin stripe order parameter: S Q, a neutral complex spin vector order parameter, K=2Q

64 Ginzburg-Landau Free Energy Functional

65 Ginzburg-Landau Free Energy Functional F=F2+ F3 + F4 +...

66 Ginzburg-Landau Free Energy Functional F=F2+ F3 + F The quadratic and quartic terms are standard

67 Ginzburg-Landau Free Energy Functional F=F2+ F3 + F The quadratic and quartic terms are standard F3= γs ρk * SQ. SQ + π/2 rotation + c.c.

68 Ginzburg-Landau Free Energy Functional F=F2+ F3 + F The quadratic and quartic terms are standard F3= γs ρk * SQ. SQ + π/2 rotation + c.c. +γδ ρk * Δ-Q * ΔQ + π/2 rotation + c.c.

69 Ginzburg-Landau Free Energy Functional F=F2+ F3 + F The quadratic and quartic terms are standard F3= γs ρk * SQ. SQ + π/2 rotation + c.c. +γδ ρk * Δ-Q * ΔQ + π/2 rotation + c.c. +gδ N (ΔQ * ΔQ+ Δ-Q * Δ-Q -π/2 rotation) + c.c.

70 Ginzburg-Landau Free Energy Functional F=F2+ F3 + F The quadratic and quartic terms are standard F3= γs ρk * SQ. SQ + π/2 rotation + c.c. +γδ ρk * Δ-Q * ΔQ + π/2 rotation + c.c. +gδ N (ΔQ * ΔQ+ Δ-Q * Δ-Q -π/2 rotation) + c.c. +gs N (SQ *. SQ -π/2 rotation)

71 Ginzburg-Landau Free Energy Functional F=F2+ F3 + F The quadratic and quartic terms are standard F3= γs ρk * SQ. SQ + π/2 rotation + c.c. +γδ ρk * Δ-Q * ΔQ + π/2 rotation + c.c. +gδ N (ΔQ * ΔQ+ Δ-Q * Δ-Q -π/2 rotation) + c.c. +gs N (SQ *. SQ -π/2 rotation) +gc N (ρk * ρk -π/2 rotation)

72 Some Consequences of the GL theory

73 Some Consequences of the GL theory The symmetry of the term coupling charge and spin order parameters requires the condition K= 2Q

74 Some Consequences of the GL theory The symmetry of the term coupling charge and spin order parameters requires the condition K= 2Q Striped SC order implies charge stripe order with 1/2 the period, and of nematic order

75 Some Consequences of the GL theory The symmetry of the term coupling charge and spin order parameters requires the condition K= 2Q Striped SC order implies charge stripe order with 1/2 the period, and of nematic order Charge stripe order with wave vector 2Q and/or nematic order favors stripe superconducting order which may or may not occur depending on the coefficients in the quadratic part

76 Some Consequences of the GL theory The symmetry of the term coupling charge and spin order parameters requires the condition K= 2Q Striped SC order implies charge stripe order with 1/2 the period, and of nematic order Charge stripe order with wave vector 2Q and/or nematic order favors stripe superconducting order which may or may not occur depending on the coefficients in the quadratic part Coupling to a charge 4e SC order parameter Δ4

77 Some Consequences of the GL theory The symmetry of the term coupling charge and spin order parameters requires the condition K= 2Q Striped SC order implies charge stripe order with 1/2 the period, and of nematic order Charge stripe order with wave vector 2Q and/or nematic order favors stripe superconducting order which may or may not occur depending on the coefficients in the quadratic part Coupling to a charge 4e SC order parameter Δ4 F 3=g4 [Δ4 * (ΔQ Δ-Q+ rotation)+ c.c.]

78 Some Consequences of the GL theory The symmetry of the term coupling charge and spin order parameters requires the condition K= 2Q Striped SC order implies charge stripe order with 1/2 the period, and of nematic order Charge stripe order with wave vector 2Q and/or nematic order favors stripe superconducting order which may or may not occur depending on the coefficients in the quadratic part Coupling to a charge 4e SC order parameter Δ4 F 3=g4 [Δ4 * (ΔQ Δ-Q+ rotation)+ c.c.] Striped SC order (PDW) uniform charge 4e SC order

79 Coexisting uniform and striped SC order

80 Coexisting uniform and striped SC order PDW order ΔQ and uniform SC order Δ0

81 Coexisting uniform and striped SC order PDW order ΔQ and uniform SC order Δ0 F3,u=ϒΔ Δ0 * ρq Δ-Q+ρ-Q ΔQ+gρ ρ-2q ρq 2 +rotation +c.c.

82 Coexisting uniform and striped SC order PDW order ΔQ and uniform SC order Δ0 F3,u=ϒΔ Δ0 * ρq Δ-Q+ρ-Q ΔQ+gρ ρ-2q ρq 2 +rotation +c.c. If Δ0 0 and ΔQ 0 there is a ρq component of the charge order!

83 Coexisting uniform and striped SC order PDW order ΔQ and uniform SC order Δ0 F3,u=ϒΔ Δ0 * ρq Δ-Q+ρ-Q ΔQ+gρ ρ-2q ρq 2 +rotation +c.c. If Δ0 0 and ΔQ 0 there is a ρq component of the charge order! The small uniform component Δ0 removes the sensitivity to quenched disorder of the PDW state

84 Topological Excitations of the Striped SC

85 Topological Excitations of the Striped SC ρ(r)= ρk cos [K r+ Φ(r)]

86 Topological Excitations of the Striped SC ρ(r)= ρk cos [K r+ Φ(r)] Δ(r)= ΔQ exp[i Q r + i θq(r)]+ Δ-Q exp[-i Q r + i θ-q(r)]

87 Topological Excitations of the Striped SC ρ(r)= ρk cos [K r+ Φ(r)] Δ(r)= ΔQ exp[i Q r + i θq(r)]+ Δ-Q exp[-i Q r + i θ-q(r)] F3,ϒ=2ϒΔ ρk ΔQ Δ-Q cos[2 θ-(r)-φ(r)]

88 Topological Excitations of the Striped SC ρ(r)= ρk cos [K r+ Φ(r)] Δ(r)= ΔQ exp[i Q r + i θq(r)]+ Δ-Q exp[-i Q r + i θ-q(r)] F3,ϒ=2ϒΔ ρk ΔQ Δ-Q cos[2 θ-(r)-φ(r)] θ±q(r)=[θ+(r) ± θ-(r)]/2

89 Topological Excitations of the Striped SC ρ(r)= ρk cos [K r+ Φ(r)] Δ(r)= ΔQ exp[i Q r + i θq(r)]+ Δ-Q exp[-i Q r + i θ-q(r)] F3,ϒ=2ϒΔ ρk ΔQ Δ-Q cos[2 θ-(r)-φ(r)] θ±q(r)=[θ+(r) ± θ-(r)]/2 θ±q single valued mod 2π θ± defined mod π

90 Topological Excitations of the Striped SC ρ(r)= ρk cos [K r+ Φ(r)] Δ(r)= ΔQ exp[i Q r + i θq(r)]+ Δ-Q exp[-i Q r + i θ-q(r)] F3,ϒ=2ϒΔ ρk ΔQ Δ-Q cos[2 θ-(r)-φ(r)] θ±q(r)=[θ+(r) ± θ-(r)]/2 θ±q single valued mod 2π θ± defined mod π ϕ and θ- are locked topological defects of ϕ and θ+

91

92 Topological Excitations of the Striped SC

93 Topological Excitations of the Striped SC SC vortex with Δθ+ = 2π and Δϕ=0

94 Topological Excitations of the Striped SC SC vortex with Δθ+ = 2π and Δϕ=0 Bound state of a 1/2 vortex and a dislocation

95 Topological Excitations of the Striped SC SC vortex with Δθ+ = 2π and Δϕ=0 Bound state of a 1/2 vortex and a dislocation Δθ+ = π, Δϕ= 2π

96 Topological Excitations of the Striped SC SC vortex with Δθ+ = 2π and Δϕ=0 Bound state of a 1/2 vortex and a dislocation Δθ+ = π, Δϕ= 2π Double dislocation, Δθ+ = 0, Δϕ= 4π

97 Topological Excitations of the Striped SC SC vortex with Δθ+ = 2π and Δϕ=0 Bound state of a 1/2 vortex and a dislocation Δθ+ = π, Δϕ= 2π Double dislocation, Δθ+ = 0, Δϕ= 4π All three topological defects have logarithmic interactions

98 Half-vortex and a Dislocation

99 Double Dislocation

100

101 Thermal melting of the PDW state

102 Thermal melting of the PDW state Three paths for thermal melting of the PDW state

103 Thermal melting of the PDW state Three paths for thermal melting of the PDW state Three types of topological excitations: (1,0) (SC vortex), (0,1) (double dislocation), (±1/2, ±1/2) (1/2 vortex, single dislocation bound pair)

104 Thermal melting of the PDW state Three paths for thermal melting of the PDW state Three types of topological excitations: (1,0) (SC vortex), (0,1) (double dislocation), (±1/2, ±1/2) (1/2 vortex, single dislocation bound pair) Scaling dimensions: p,q=π(ρsc p 2 +κcdw q 2 )/T=2 (for marginality)

105 Thermal melting of the PDW state Three paths for thermal melting of the PDW state Three types of topological excitations: (1,0) (SC vortex), (0,1) (double dislocation), (±1/2, ±1/2) (1/2 vortex, single dislocation bound pair) Scaling dimensions: p,q=π(ρsc p 2 +κcdw q 2 )/T=2 (for marginality) Phases: PDW, Charge 4e SC, CDW, and normal (Ising nematic)

106 Schematic Phase Diagram

107

108 Effects of Disorder

109 Effects of Disorder The striped SC order is very sensitive to disorder: disorder pinned charge density wave coupling to the phase of the striped SC SC gauge glass with zero resistance but no Meissner effect in 3D

110 Effects of Disorder The striped SC order is very sensitive to disorder: disorder pinned charge density wave coupling to the phase of the striped SC SC gauge glass with zero resistance but no Meissner effect in 3D Disorder induces dislocation defects in the stripe order

111 Effects of Disorder The striped SC order is very sensitive to disorder: disorder pinned charge density wave coupling to the phase of the striped SC SC gauge glass with zero resistance but no Meissner effect in 3D Disorder induces dislocation defects in the stripe order Due to the coupling between stripe order and SC, ±π flux vortices are induced at the dislocation core.

112 Effects of Disorder The striped SC order is very sensitive to disorder: disorder pinned charge density wave coupling to the phase of the striped SC SC gauge glass with zero resistance but no Meissner effect in 3D Disorder induces dislocation defects in the stripe order Due to the coupling between stripe order and SC, ±π flux vortices are induced at the dislocation core. Strict layer decoupling only allows for a magnetic coupling between randomly distributed ±π flux vortices

113 Effects of Disorder The striped SC order is very sensitive to disorder: disorder pinned charge density wave coupling to the phase of the striped SC SC gauge glass with zero resistance but no Meissner effect in 3D Disorder induces dislocation defects in the stripe order Due to the coupling between stripe order and SC, ±π flux vortices are induced at the dislocation core. Strict layer decoupling only allows for a magnetic coupling between randomly distributed ±π flux vortices Novel glassy physics and fractional flux

114 Effects of Disorder The striped SC order is very sensitive to disorder: disorder pinned charge density wave coupling to the phase of the striped SC SC gauge glass with zero resistance but no Meissner effect in 3D Disorder induces dislocation defects in the stripe order Due to the coupling between stripe order and SC, ±π flux vortices are induced at the dislocation core. Strict layer decoupling only allows for a magnetic coupling between randomly distributed ±π flux vortices Novel glassy physics and fractional flux the charge 4e SC order is unaffected by the Bragg glass of the pinned CDW

115 Phase Sensitive Experiments I=J2 sin(2δθ)

116 Role of Nematic Fluctuations in PDW Melting?

117 Role of Nematic Fluctuations in PDW Melting? If nematic fluctuations become strong, orders that break translational symmetry become progressively suppressed

118 Role of Nematic Fluctuations in PDW Melting? If nematic fluctuations become strong, orders that break translational symmetry become progressively suppressed In the absence of a lattice in 2D smectic order is not possible (at T>0) (Toner & Nelson, 1980)

119 Role of Nematic Fluctuations in PDW Melting? If nematic fluctuations become strong, orders that break translational symmetry become progressively suppressed In the absence of a lattice in 2D smectic order is not possible (at T>0) (Toner & Nelson, 1980) Coupling to the lattice breaks continuous rotational invariance to the point group of the lattice

120 Role of Nematic Fluctuations in PDW Melting? If nematic fluctuations become strong, orders that break translational symmetry become progressively suppressed In the absence of a lattice in 2D smectic order is not possible (at T>0) (Toner & Nelson, 1980) Coupling to the lattice breaks continuous rotational invariance to the point group of the lattice For a square lattice the point group is C4 and the nematicisotropic transition is 2D Ising

121 Role of Nematic Fluctuations in PDW Melting? If nematic fluctuations become strong, orders that break translational symmetry become progressively suppressed In the absence of a lattice in 2D smectic order is not possible (at T>0) (Toner & Nelson, 1980) Coupling to the lattice breaks continuous rotational invariance to the point group of the lattice For a square lattice the point group is C4 and the nematicisotropic transition is 2D Ising As the coupling to the lattice is weakened the structure of the phase diagram changes and the nematic transition is pushed to lower temperatures

122

123 PDW melting as a McMillan-de Gennes theory The electronic nematic order parameter is an antisymmetric traceless tensor N ij = N(ˆn iˆn j ij /2) Its presence amounts to a local change of the geometry, the local metric, seen by the charge 4e SC order parameter 4e the CDW order parameter and the PDW order K ±Q Metric tensor: g ij = ij + N ij Novel derivative couplings in the free energy F d = Z dx 2 p detg g ij n D cdw i K D cdw j K + +(Di sc ±Q) Dj sc ±Q + Di 4e 4e Dj 4e 4e o D sc i = i i2ea i ± iq n i D cdw i = i + i2q n i D 4e i = i i4ea i

124 Deep in the PDW phase the amplitude of the SC, CDW and nematic order parameters are fixed but their phases are not Z n F = d 2 s x 2 gij ( i 2eA i )( j 2eA j ) + 2 gij ( i + Q n i )( j + Q n j ) + K 1 ( n) 2 + K 3 ( n) 2 + h n 2o s = ±Q 2 + 4e 2 apple = ±Q 2 + K 2 Effective CDW stiffness reduced by gapped nematic fluctuations e = 1+ Q2 /h

125 Deep in the charge 4e nematic superconducting phase F = Z d 2 x K 2 + s 2 + sn 2 (n )2 and are the orientational nematic fluctuations and SC phase fluctuations in the absence of orientational pinning SC (half) vortices and nematic disclinations attract each other due to the fluctuations of the local geometry (nematic fluctuations): the only topological excitations are disclinations bound to half vortices If the nematic fluctuations are gapped by lattice effects there is a crossover to the pinned case discussed before Fermionic SC quasiparticles couple to the pair field which is uncondensed in the charge 4e SC. This leads to a pseudogap in the quasiparticle spectrum

126 Conclusions The static stripe order seen in LBCO and other LSCO related materials can be understood in terms of the PDW, a state in which charge, spin and superconducting orders are intertwined rather than competing This state competes with the uniform d-wave state Several predictions can be tested experimentally The observed nematic order is a state with fluctuating stripe order, i.e. it is a state with melted stripe order. Is the nematic state a melted PDW? Is the PDW peculiar to LBCO? If so why? If it is generic, why? A microscopic theory of the PDW is needed. This state is not accessible by a weak coupling BCS approach. Strong evidence in 1d Kondo-Heisenberg chain.

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Large Fluctuations and Collective Phenomena in Disordered

More information

How spin, charge and superconducting orders intertwine in the cuprates

How spin, charge and superconducting orders intertwine in the cuprates How spin, charge and superconducting orders intertwine in the cuprates Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the Kavli Institute for Theoretical Physics Program on Higher temperature

More information

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 Eduardo Fradkin University of Illinois at Urbana-Champaign Seminar at the Department of Physics Harvard

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors Eduardo Fradkin University of Illinois at Urbana-Champaign Lectures at the CIFAR Summer School 2015 May 5, 2015 Vancouver, British Columbia, Canada

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Talk at the Oak Ridge National Laboratory, March 28, 2008 Eduardo Fradkin Department of Physics University of Illinois at

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

arxiv: v4 [cond-mat.supr-con] 19 May 2009

arxiv: v4 [cond-mat.supr-con] 19 May 2009 arxiv:0901.4826v4 [cond-mat.supr-con] 19 May 2009 Striped superconductors: How the cuprates intertwine spin, charge and superconducting orders Erez Berg, 1 Eduardo Fradkin, 2 Steven A. Kivelson, 1 and

More information

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee Striping in Cuprates Michael Bertolli Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee Outline Introduction Basics of Striping Implications to Superconductivity Experimental

More information

Nematic Order and Geometry in Fractional Quantum Hall Fluids

Nematic Order and Geometry in Fractional Quantum Hall Fluids Nematic Order and Geometry in Fractional Quantum Hall Fluids Eduardo Fradkin Department of Physics and Institute for Condensed Matter Theory University of Illinois, Urbana, Illinois, USA Joint Condensed

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Quantum liquid crystals in strongly correlated materials and ultracold gases

Quantum liquid crystals in strongly correlated materials and ultracold gases Quantum liquid crystals in strongly correlated materials and ultracold gases Nathaniel Burdick December 13, 2010 Abstract Classical liquid crystal phases are characterized by broken symmetries. Phases

More information

Chapter 2 Electronic Liquid Crystal Phases in Strongly Correlated Systems

Chapter 2 Electronic Liquid Crystal Phases in Strongly Correlated Systems Chapter 2 Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin Abstract I discuss the electronic liquid crystal (ELC) phases in correlated electronic systems, what these phases

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Electronic Noise Due to Thermal Stripe Switching

Electronic Noise Due to Thermal Stripe Switching Electronic Noise Due to Thermal Stripe Switching E. W. Carlson B. Phillabaum Y. L. Loh D. X. Yao Research Corporation Solid Liquid Gas www.stonecropgallery.com/artists/caleb/01-solidliquidgas.jpg Crystals

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin Department of Physics University of Illinois Collaborators Steven Kivelson (UCLA) Vadim Oganesyan (Princeton) In memory of Victor J.

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates Lecture # 2 1 Phenomenology of High Tc Cuprates II Pseudogap in Underdoped Cuprates Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity T T* Strange metal Mott

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

The intertwined order of underdoped cuprates. Jan Zaanen

The intertwined order of underdoped cuprates. Jan Zaanen The intertwined order of underdoped cuprates. Jan Zaanen 1 Stripy charge order in cuprate superconductors. B. Keimer et al., Nature 518, 179 (2015) STS images, last word: A. Mesaros et al., PNAS 113, 12661

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Erica Carlson Karin Dahmen Eduardo Fradkin Steven Kivelson Dale Van Harlingen Michael

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

High temperature superconductivity

High temperature superconductivity High temperature superconductivity Applications to the maglev industry Elsa Abreu April 30, 2009 Outline Historical overview of superconductivity Copper oxide high temperature superconductors Angle Resolved

More information

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning. Department of Physics and Astronomy 14.6.2011 Contents Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Type II superconductors and vortices Type I ξ < λ S/N

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor 1 Chapter 1 Introduction Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor La 2 x Ba x CuO 4 in 1986, and the intriguing physics of cuprate superconductors

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Lectures at the Les Houches Summer School, May 2009 Eduardo Fradkin Department of Physics University of Illinois at Urbana Champaign May

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Vortex Liquid Crystals in Anisotropic Type II Superconductors

Vortex Liquid Crystals in Anisotropic Type II Superconductors Vortex Liquid Crystals in Anisotropic Type II Superconductors E. W. Carlson A. H. Castro Netro D. K. Campbell Boston University cond-mat/0209175 Vortex B λ Ψ r ξ In the high temperature superconductors,

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Vortex lattice pinning in high-temperature superconductors.

Vortex lattice pinning in high-temperature superconductors. Vortex lattice ning in high-temperature superconductors. Victor Vakaryuk. Abstract. Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex lattice,

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

SU(N) magnets: from a theoretical abstraction to reality

SU(N) magnets: from a theoretical abstraction to reality 1 SU(N) magnets: from a theoretical abstraction to reality Victor Gurarie University of Colorado, Boulder collaboration with M. Hermele, A.M. Rey Aspen, May 2009 In this talk 2 SU(N) spin models are more

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Introduction. Chapter 1. Conventional (low-temperature) superconductors

Introduction. Chapter 1. Conventional (low-temperature) superconductors Chapter 1 Introduction Conventional (low-temperature) superconductors The phenomenon of superconductivity was discovered in 1911 by the Dutch physicist Heike Kamerlingh Onnes [1]. He observed that the

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Dao-Xin Yao and Chun Loong

Dao-Xin Yao and Chun Loong Magnetism and multi-orbital l models in the iron-based superconductors Dao-Xin Yao and Chun Loong Sun Yat-sen University Guangzhou China City of Guangzhou Indiana Guangzhou Hong Kong Sun Yat-sen University

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

Emergent Frontiers in Quantum Materials:

Emergent Frontiers in Quantum Materials: Emergent Frontiers in Quantum Materials: High Temperature superconductivity and Topological Phases Jiun-Haw Chu University of Washington The nature of the problem in Condensed Matter Physics Consider a

More information

V.3. SUPERCONDUCTIVITY VERSUS ANTIFERERROMAGNETIC SDW ORDER IN THE CUPRATES AND RELATED SYSTEMS Inhomogeneities and Electron Correlation

V.3. SUPERCONDUCTIVITY VERSUS ANTIFERERROMAGNETIC SDW ORDER IN THE CUPRATES AND RELATED SYSTEMS Inhomogeneities and Electron Correlation A. Bianconi (ed.) Symmetry and Heterogeneity in High Temperature Superconductors, 217-228 NATO Science Series II Mathematics,Physics and Chemistry Vol. 214 2006 Springer, Dordrecht, The Netherlands V.3

More information

Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials

Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials T. Nattermann and S. Scheidl Insitut für Theoretische Physik Universität zu öln Introduction motivation: central

More information

Ginzburg-Landau theory of supercondutivity

Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of superconductivity Let us apply the above to superconductivity. Our starting point is the free energy functional Z F[Ψ] = d d x [F(Ψ)

More information

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Umesh Kumar Yadav Centre for Condensed Matter Theory Department of Physics Indian Institute of Science August

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

arxiv: v2 [cond-mat.supr-con] 19 Jun 2009

arxiv: v2 [cond-mat.supr-con] 19 Jun 2009 Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity Matthias Vojta Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Kai Sun Collaborator: Eduardo Fradkin Spontaneous Time-Reversal Symmetry Breaking Ferromagnetic T Non-ferromagnetic?

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Marc-Henri Julien Laboratoire de Spectrométrie Physique Université J. Fourier Grenoble I Acknowledgments

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

Magnetic relaxation of superconducting YBCO samples in weak magnetic fields

Magnetic relaxation of superconducting YBCO samples in weak magnetic fields Magnetic relaxation of superconducting YBCO samples in weak magnetic fields V.P. Timofeev, A.N. Omelyanchouk B.Verkin Institute for Low Temperature Physics & Engineering National Academy of Sciences of

More information

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim (Cornell) Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Point-contact spectra of a Pt-Ir tip/lto film junction. The main panel shows differential conductance at 2, 12, 13, 16 K (0 T), and 10 K (2 T) to demonstrate

More information

Thermodynamic phase diagram of static charge order in underdoped YBa 2 Cu 3 O y

Thermodynamic phase diagram of static charge order in underdoped YBa 2 Cu 3 O y 1 Thermodynamic phase diagram of static charge order in underdoped YBa Cu 3 O y David LeBoeuf 1, S. Krämer, W.N. Hardy 3,4, Ruixing Liang 3,4, D.A. Bonn 3,4, and Cyril Proust 1,4 1 Laboratoire National

More information

Vortex glass scaling in Pb-doped Bi2223 single crystal

Vortex glass scaling in Pb-doped Bi2223 single crystal Vortex glass scaling in Pb-doped Bi2223 single crystal Yu. Eltsev a, S. Lee b, K. Nakao b, S. Tajima c a P. N. Lebedev Physical Institute, RAS, Moscow, 119991, Russia b Superconductivity Research Laboratory,

More information

The Misfit Strain Critical Point in the 3D Phase Diagrams of Cuprates. Abstract

The Misfit Strain Critical Point in the 3D Phase Diagrams of Cuprates. Abstract The Misfit Strain Critical Point in the 3D Phase Diagrams of Cuprates Nicola Poccia, Michela Fratini Department of Physics, Sapienza University of Rome, P. Aldo Moro 2, 00185 Roma, Italy E-mail: nicola.poccia@roma1.infn.it

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

Recent Advances in High-Temperature Superconductivity

Recent Advances in High-Temperature Superconductivity Recent Advances in High-Temperature Superconductivity Nai-Chang Yeh After more than 15 years of intense research since the discovery of high-temperature superconductivity [1], many interesting physical

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

The two-component physics in cuprates in the real space and in the momentum representation

The two-component physics in cuprates in the real space and in the momentum representation The two-component physics in cuprates in the real space and in the momentum representation Lev P. Gor kov 1,3 and Gregory B. Teitel baum 2 1 NHMFL, Florida State University, 1800 E P. Dirac Dr., Tallahassee

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information