Magnetism and Superconductivity on Depleted Lattices

Size: px
Start display at page:

Download "Magnetism and Superconductivity on Depleted Lattices"

Transcription

1 Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted lattice model of CaV 4 O The 1/3 depleted lattice model of La 4 Ni 3 O 8 6. Superconductivity and Bose-Einstein condensation in Flat Bands 7. Summary (and Future Directions) Funding: DOE DE-SC14671

2 . Cast of Characters Natanael Tiago Ehsan Huaiming Costa Mendes Khatami Guo Warren Thereza Raimundo Rajiv Pickett Paiva Dos Santos Singh

3 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition Ĥ = t ij σ (c iσ c jσ +c jσ c iσ )+U i (n i 1 2 )(n i 1 2 ) µ iσ (n iσ +n iσ ) Two spin species σ =,. Kinetic energy t describes hopping between near-neighbor sites ij. Band structure : ǫ(k x,k y ) = 2t(cosk x +cosk y ) Chemical potential µ controls filling. Half-filling (ρ = 1) at µ =. On-site repulsion U sufficiently large Mott Insulator Antiferromagnetic exchange interaction J t 2 /U Antiferromagnetism Consider first 2D square lattice geometry (Cu atoms in CuO 2 sheets of cuprates).

4 Special Features of square lattice hopping Hamiltonian (U = ) N(E).2 k y (π,π) E k x Left: Van Hove singularity of density of states at E = (half-filling) Right: Nesting : At ρ = 1, wavevector (π, π) connects big sections of Fermi surface. (Favors ordering at (π, π) like antiferromagnetism.)

5 2. Quantum Monte Carlo Compute operator expectation values  = Z 1 Tr [Âe βĥ ] Z = Tr [e βĥ ] Discretize inverse temperature β = L τ. Express Z and A as path integrals. Hubbard-Stratonovich fields S iτ decouples interaction. Quadratic Form in fermion operators: Do trace analytically Z = detm ({S iτ })detm ({S iτ }) {S iτ } dim(m σ ) is the number of spatial sites/orbitals. Sample HS field stochastically. Algorithm is order N 3 L. N lattice sites/electrons Measurements: c iσ c jσ [M 1 σ ] ij = [G σ ] ij

6 QMC results- Fermi distribution n(k x,k y ) U = 2 Fermi function: ρ =.2 ρ =.4 ρ =.6 ρ =.8 ρ = 1. π π/2 -π/2 -π -π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π n(k) U = 2 Gradient of Fermi function: π 2.5 π/2 -π/ n(k) -π -π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π

7 Fermi surface is smeared further by increasing interaction strength. U = 4 Fermi function: π π/2 -π/2 -π ρ =.2 β = 8 -π -π/2 π/2 π ρ =.4 β = 8 -π/2 π/2 π ρ =.6 β = 6 -π/2 π/2 π ρ =.8 β = 4 -π/2 π/2 π ρ = 1. β = 8 -π/2 π/2 π n(k) U = 4 Gradient of Fermi function: π π/2 -π/ n(k) -π -π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π -π/2 π/2 π

8 Antiferromagnetic spin correlations c(l) = (n j+l n j+l )(n j n j ) βt = 2 T = t/2 = W/16 (bandwidth W = 8t).1.5 (a) 2 x 2 U = 2. C(lx,ly) -.5 (1,1) -.1 β = 32 β = 2 (,) (1,) β = (,) (1,) (1,1) (,) Hirsch: Proof of AFLRO in ground state of half-filled Hubbard Hamiltonian.

9 Density of States.4.3 U=2 U=4 U=6 N(ω=) T N(ω = ) vanishes Insulating Mott/Slater Gap.

10 3. The 1/4 depleted (Lieb) lattice and Flat Bands Divides into A and B sites All neighbors of A belong to B and vice-versa. Bipartite doesn t mean N A = N B! Lieb Lattice CuO 2 sheets of cuprate superconductors La 2 x Sr x CuO 4, Y 1 Ba 3 Cu 3 O 7+δ,

11 Theorem (Lieb) Near neighbor hopping Hamiltonian has spectrum N A - N B eigenvalues E = (Lieb: N A = 2N B.) Flat band! 2N B eigenvalues in ± pairs. Topologically localized states (Sutherland): Provide simple picture of E = modes. n 3 n n 4 2 ψ = n n 1 n 2 n 3 n 4 Getting Hψ: tψ n1 tψ n2 = t(1) t( 1) = Can do this construction around any missing site. These are the N A N B = N B states with E =!

12 Unlike previous delocalized plane wave states, these ψ have only four nonzero entries (at locations n 1,n 2,n 3,n 4 ). The electron is spread out over only four sites. BUT can form linear combinations of degenerate (all E = ) eigenvectors ψ. These states can be viewed as having momenta K. with the very curious property that E(K) = is completely independent of K. This is a flat band! What happens to Magnetism on the Lieb Lattice (flat band)? Lieb rigorously proved ferromagnetic order. (Ground state non-zero spin.) What happens to SC (pairing of K with K) if E(K) is independent of K? Other depleted lattices...

13 Magnetic correlations (resolved by orbital).2.1 c αβ (r) (a) U/t pd = 2 L = 8 T/t pd = (b) U/t pd = r

14 Ferromagnetic Structure Factor Nonzero extrapolation of S(q = ) to thermodynamic limit. Validates (and quantifies!) Lieb theorem.

15 Extending Lieb s result further. Ground state phase diagram U p U d. Ferromagnetic order parameter is not significantly reduced if U d =. Ferromagnetic is destroyed if U p = (metallic phase). Interpret this as excessive dilution of interactions.

16 4. The 1/5th depleted Square Lattice: Magnetism in CaV 4 O 9 CaV 2 O 5 : A one-fifth depleted lattice: t t Intra-plaquette t and inter-plaquette t hoppings differ.

17 t t 1 2 t t t >> t: singlets form on dimers and no long range AF order. t >> t : singlets form on plaquettes and no long range AF order. Troyer: Heisenberg limit determined region of AF order around J J. What about U > Hubbard?

18 Anisotropy of NN Spin Correlations σ i σ i+a t - σ i σ i+a t (a) β=2 U=1 U=2 U=3 U=4 U=5 U=6 U=7 U=8 U= t /t t/t Difference between near-neighbor spin correlations on intra-plaquette (t) and inter-plaquette (t ) bonds is small in region of AF ordering. High symmetry point (HSP): nn spin correlations on 2 types of bond are equal. (Alternate way of determining quantum critical point qualitatively.)

19 Antiferromagnetic Structure Factor S AF ( 12) U=6, β=2 64 sites 144 sites m(a t )-m(a t ) ( 12) 1 5 Plaquettes t /t t/t Dimers.2 Region with AFLRO in vicinity of t t for U = 6. (Blue bar is Heisenberg limit.)

20 Quantum Monte Carlo Phase Diagram (Half-Filling)

21 RPA Phase Diagram (general density) 1/5 depleted structure first seen in CaV 4 O 9 also observed in iron selenide family. Luo etal, PRB (211) Magnetic ground state of K.8 Fe 1.6 Se 2 π,π π 6 4 U c 2 1 DOS 2 1 t =t=1-2 2 ω.8.6 ρ.4 Q=(,) FM Q=(π,π) FM Q=(,) AF Q=(π,π) AF Q=(,) Stripe Q=(π,) Stripe.2

22 5. The 1/3 depleted lattice model of La 4 Ni 3 O 8 Layered Nickelates: analogs of cuprates if Ni 1+ can be stabilized like Cu 2+. Trilayer La 4 Ni 3 O 8 insulating transition at 15K, likely AF order. Real space ordering of charge to 1/3 depleted lattice: Zhang etal. PNAS 113, 8945 (216); Botana etal. PRB 94, 8115 (216) Begin by studying Heisenberg model for single layer. 1/5 depleted (CaV 4 O 9 ): decoupled clusters in J J and J J limits. Here: Extended linear chains remain when J J.

23 Strong coupling (Heisenberg) limit: (g = J /J) Presence of extended chain structure leads to AF down to small J. QMC for Hubbard model in progress.

24 6. Superconductivity and Bose-Einstein condensation in Flat Bands Ĥ = t ij σ (c iσ c jσ +c jσ c iσ ) U i (n i 1 2 )(n i 1 2 ) µ iσ (n iσ +n iσ ) (Partial) Particle-Hole Transformation c i c i c iσ c j n i 1/2 ( 1) i c i c i ( 1) i+j c i c j = c j c i 1 n i 1/2 = 1 2 n i n i 1/2 n i 1/2 Ĥ(U > ) Ĥ(U < ) (at µ = ) Repulsive (U > ) Hubbard model: antiferromagnetism. Attractive (U < ) Hubbard model: charge density wave (cdw) and pairing.

25 cdw order at ρ = 2/3 and ρ = 4/3? Pairing (superconductivity) when doped away from these values? ρ = 1 is in between these favored cdw densities, right in middle of flat band. Will pairing occur at ρ = 1? Related (?) question: System of bosons in a flat band: no k which minimizes ǫ(k) Would Bose-Einstein condensation still occur? (Stamper-Kurn)

26 DQMC simulations of Attractive Hubbard Model on Lieb Lattice Occupations of minority ( copper ) and majority ( oxygen ) orbitals: 2. N =18, β =36 n i [t] n d,u = n px,u =..5 n d,u = 4 n px,u = 4 n d,u = 8 n px,u = ρ[t] As total ρ increases past ρ = 2/3 minority orbitals depopulate. (Strange?)

27 Near-neighbor density-density correlations. 4 N =18, β =36 n i n j [t] n d n px,u = n d n px,u = 4 n d n px,u = 8 n d n px,u = 1 n px n py,u = n px n py,u = 4 n px n py,u = 8 n px n py,u = ρ[t] Also show clear signature of flat band between ρ = 2/3 and ρ = 4/3.

28 Local moment.25.2 U = 4, β =36 N =27 N =48 N =75 N =18 m 2 [t] ρ[t] Constant within the flat band.

29 Pairing structure factor P s = (1/N 2 ) ij i j j = c i c i P s [t] U = mean field N =27 N =48 N =75 N =18 (a).8. (b).8 U = 4 U = P s [t].1.5 U = ρ[t] P s has minimum at ρ = 4/3 (and 2/3) where cdw competes strongly. U = 4 and half-filling, extrapolate to non-zero order parameter for N. U = 8 and half-filling: no LRO at β = 36. (LRO on square lattice at β = 12).

30 7. Summary (and Future Directions) Extension of QMC simulations to depleted lattices: Quantify nature of ferromagnetic order on Lieb lattice. Effect of strong correlations in a flat band. Regime of AF ground state in model of CaV 4 O 9. LRAFO stabilized in isotropic region between PM dimer and plaquette phases. Regime of AF ground state in model of La 4 Ni 3 O 8. Nature of superconducting order in a flat band. Whither do pairs condense if E(k) is k-independent? Tianxing Ma, Yueqi Li: Disordered Lieb Lattice Huaiming Guo, Chunhan Feng: Decorated Honeycomb Lattice

31 Lieb Construction: How to get localized states! [1] Begin with any bipartite lattice. [2] Select midpoints of all bonds. [3] Connect any two midpoints that share a vertex. Theorem: The resulting lattice has localized states [1] [2] [3] Square plaquette lattice! ˆT (c 1 c 2 +c 3 c 4) vac =.

32 Lieb Construction: How to get localized states (continued)! [1] Begin with any bipartite lattice. [2] Select midpoints of all bonds. [3] Connect any two midpoints that share a vertex. Theorem: The resulting lattice has localized states [1] [2] [3] Kagome Lattice! ˆT (c 1 c 2 +c 3 c 4 +c 5 c 6) vac =.

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems 1. Hubbard to Holstein 2. Peierls Picture of CDW Transition 3. Phonons with Dispersion 4. Holstein Model on Honeycomb Lattice 5. A New

More information

The Hubbard Model (HM): From Solids to Cold Atoms and Back Again

The Hubbard Model (HM): From Solids to Cold Atoms and Back Again The Hubbard Model (HM): From Solids to Cold Atoms and Back Again 1. Origin of Energy Bands in a Solid (noninteracting HM) 2. Some Examples (graphene, cuprates, flat bands) 3. Mott Insulators and Antiferromagnetism-

More information

The Hubbard Model In Condensed Matter and AMO systems

The Hubbard Model In Condensed Matter and AMO systems The Hubbard Model In Condensed Matter and AMO systems Transition Metal Oxides The Fermion Hubbard Model Transition Metal Oxides - The Whole Story High Temperature Superconductors Monte Carlo and Quantum

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

High Temperature Cuprate Superconductors

High Temperature Cuprate Superconductors High Temperature Cuprate Superconductors Theoretical Physics Year 4 Project T. K. Kingsman School of Physics and Astronomy University of Birmingham March 1, 2015 Outline 1 Introduction Cuprate Structure

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Correlatd electrons: the case of high T c cuprates

Correlatd electrons: the case of high T c cuprates Correlatd electrons: the case of high T c cuprates Introduction: Hubbard U - Mott transition, The cuprates: Band structure and phase diagram NMR as a local magnetic probe Magnetic susceptibilities NMR

More information

How to model holes doped into a cuprate layer

How to model holes doped into a cuprate layer How to model holes doped into a cuprate layer Mona Berciu University of British Columbia With: George Sawatzky and Bayo Lau Hadi Ebrahimnejad, Mirko Moller, and Clemens Adolphs Stewart Blusson Institute

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Quasiparticle dynamics and interactions in non uniformly polarizable solids

Quasiparticle dynamics and interactions in non uniformly polarizable solids Quasiparticle dynamics and interactions in non uniformly polarizable solids Mona Berciu University of British Columbia à beautiful physics that George Sawatzky has been pursuing for a long time à today,

More information

Numerical Studies of the 2D Hubbard Model

Numerical Studies of the 2D Hubbard Model arxiv:cond-mat/0610710v1 [cond-mat.str-el] 25 Oct 2006 Numerical Studies of the 2D Hubbard Model D.J. Scalapino Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA Abstract

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Supplementary Figures.

Supplementary Figures. Supplementary Figures. E -µ (e V ) 1 0-1 - (π,0 ) (0,π) (0,0 ) (π,0 ) (π,π) (0,0 ) a b c E -µ (e V ) 1 0-1 k y /π -0.5 - -1.0 (π,0 ) (0,π) (0,0 ) (π,0 ) (π,π) (0,0 ) -1.0-0.5 0.0 k x /π 0.5 1.0 1.0 0.5

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

COMPETITION BETWEEN FILLED AND HALF-FILLED STRIPES IN CUPRATES AND NICKELATES

COMPETITION BETWEEN FILLED AND HALF-FILLED STRIPES IN CUPRATES AND NICKELATES COMPETITION BETWEEN FILLED AND HALF-FILLED STRIPES IN CUPRATES AND NICKELATES Raymond Frésard Andrzej M. Oleś and Marcin Raczkowski Laboratoire Crismat UMR CNRS-ENSICAEN (ISMRA) 6508 Caen France Marian

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model PRAMANA c Indian Academy of Sciences Vol. 74, No. 1 journal of January 2010 physics pp. 115 121 Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model N S MONDAL

More information

Spontaneous symmetry breaking in fermion systems with functional RG

Spontaneous symmetry breaking in fermion systems with functional RG Spontaneous symmetry breaking in fermion systems with functional RG Andreas Eberlein and Walter Metzner MPI for Solid State Research, Stuttgart Lefkada, September 24 A. Eberlein and W. Metzner Spontaneous

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms Paramagnetic Susceptibility A) Bound Electrons in Atoms m s probability B +½ p ½e x Curie Law: 1/T s=½ + B ½ p + ½e +x With increasing temperature T the alignment of the magnetic moments in a B field is

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Tuning the Quantum Phase Transition of Bosons in Optical Lattices

Tuning the Quantum Phase Transition of Bosons in Optical Lattices Tuning the Quantum Phase Transition of Bosons in Optical Lattices Axel Pelster 1. Introduction 2. Spinor Bose Gases 3. Periodically Modulated Interaction 4. Kagome Superlattice 1 1.1 Quantum Phase Transition

More information

Numerical Studies of Disordered Tight-Binding Hamiltonians

Numerical Studies of Disordered Tight-Binding Hamiltonians Numerical Studies of Disordered Tight-Binding Hamiltonians R.T. Scalettar Physics Department, University of California, Davis, CA 95616 Abstract. These are notes used for a set of lectures delivered at

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Testing the Monte Carlo - Mean Field approximation in the one-band Hubbard model

Testing the Monte Carlo - Mean Field approximation in the one-band Hubbard model Testing the Monte Carlo - Mean Field approximation in the one-band Hubbard model Anamitra Mukherjee 1, Niravkumar D. Patel 1, Shuai Dong 2, Steve Johnston 1, Adriana Moreo 1,3, and Elbio Dagotto 1,3 1

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Quantum Monte Carlo Simulations of the Half-filled Hubbard Model. Anders F. J. Gabrielsson

Quantum Monte Carlo Simulations of the Half-filled Hubbard Model. Anders F. J. Gabrielsson Quantum Monte Carlo Simulations of the Half-filled Hubbard Model Anders F. J. Gabrielsson June 2011 Abstract A Quantum Monte Carlo method of calculating operator expectation values for the ground state

More information

Introduction. Chapter 1. Conventional (low-temperature) superconductors

Introduction. Chapter 1. Conventional (low-temperature) superconductors Chapter 1 Introduction Conventional (low-temperature) superconductors The phenomenon of superconductivity was discovered in 1911 by the Dutch physicist Heike Kamerlingh Onnes [1]. He observed that the

More information

Magnetism in ultracold gases

Magnetism in ultracold gases Magnetism in ultracold gases Austen Lamacraft Theoretical condensed matter and atomic physics April 10th, 2009 faculty.virginia.edu/austen/ Outline Magnetism in condensed matter Ultracold atomic physics

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Insulator, Metal, or Superconductor: The Criteria

Insulator, Metal, or Superconductor: The Criteria Insulator, Metal, or Superconductor: The Criteria 1. Introduction to Tight-Binding Hamiltonians: Metals and Band Insulators 2. Antiferromagnetic and Charge Density Wave Insulators: Mean Field Theory 3.

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Ferromagnetism in an orbitally degenerate Hubbard model

Ferromagnetism in an orbitally degenerate Hubbard model PHYSICAL REVIEW B VOLUME 55, NUMBER 22 Ferromagnetism in an orbitally degenerate Hubbard model J. Kuei * and R. T. Scalettar Department of Physics, University of California, Davis, California 95616 Received

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Spin-charge separation in doped 2D frustrated quantum magnets p.

Spin-charge separation in doped 2D frustrated quantum magnets p. 0.5 setgray0 0.5 setgray1 Spin-charge separation in doped 2D frustrated quantum magnets Didier Poilblanc Laboratoire de Physique Théorique, UMR5152-CNRS, Toulouse, France Spin-charge separation in doped

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids

Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids Understanding the complete temperature-pressure phase diagrams of organic charge-transfer solids Collaborators: R. Torsten Clay Department of Physics & Astronomy HPC 2 Center for Computational Sciences

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Outline 1. Organic Conductors basics and development 2.

More information

Electronic Noise Due to Thermal Stripe Switching

Electronic Noise Due to Thermal Stripe Switching Electronic Noise Due to Thermal Stripe Switching E. W. Carlson B. Phillabaum Y. L. Loh D. X. Yao Research Corporation Solid Liquid Gas www.stonecropgallery.com/artists/caleb/01-solidliquidgas.jpg Crystals

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Superconductivity in Fe-based ladder compound BaFe 2 S 3 02/24/16 QMS2016 @ Incheon Superconductivity in Fe-based ladder compound BaFe 2 S 3 Tohoku University Kenya OHGUSHI Outline Introduction Fe-based ladder material BaFe 2 S 3 Basic physical properties High-pressure

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions What can we learn from electronic structure calculations? Mike Towler mdt26@phy.cam.ac.uk www.tcm.phy.cam.ac.uk/ mdt26 Theory of Condensed Matter Group Cavendish Laboratory

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Numerical Studies of Correlated Lattice Systems in One and Two Dimensions

Numerical Studies of Correlated Lattice Systems in One and Two Dimensions Numerical Studies of Correlated Lattice Systems in One and Two Dimensions A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Umesh Kumar Yadav Centre for Condensed Matter Theory Department of Physics Indian Institute of Science August

More information

Critical Values for Electron Pairing in t U J V and t J V Models

Critical Values for Electron Pairing in t U J V and t J V Models Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Critical Values for Electron Pairing in t U J V and t J V Models M. Bak Institute

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice

Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice Thereza Paiva, 1 R. T. Scalettar, 2 W. Zheng, 3 R. R. P. Singh, 2 and

More information

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov 1. Introduction Excitations and broken symmetry 2. Spin waves in the Heisenberg model

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Introduction to Heisenberg model. Javier Junquera

Introduction to Heisenberg model. Javier Junquera Introduction to Heisenberg model Javier Junquera Most important reference followed in this lecture Magnetism in Condensed Matter Physics Stephen Blundell Oxford Master Series in Condensed Matter Physics

More information

Nodal and nodeless superconductivity in Iron-based superconductors

Nodal and nodeless superconductivity in Iron-based superconductors Nodal and nodeless superconductivity in Iron-based superconductors B. Andrei Bernevig Department of Physics Princeton University Minneapolis, 2011 Collaborators: R. Thomale, Yangle Wu (Princeton) J. Hu

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

Excitonic Condensation of Strongly Correlated Electrons. Jan Kuneš DFG FOR1346

Excitonic Condensation of Strongly Correlated Electrons. Jan Kuneš DFG FOR1346 Excitonic Condensation of Strongly Correlated Electrons Jan Kuneš DFG FOR1346 Outline Excitonic condensation in fermion systems EC phase in the two-band Hubbard model (DMFT results) (PrxLn1-x)yCa1-yCoO3

More information

February 15, Kalani Hettiarachchi. Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell

February 15, Kalani Hettiarachchi. Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell February 15, 2015 Kalani Hettiarachchi Collaborators: Valy Rousseau Ka-Ming Tam Juana Moreno Mark Jarrell Cold Atoms Ø On Surface of Sun: Miss many aspects of nature Ø Surface of Earth: Different states

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information