The Superfluid-Insulator transition

Size: px
Start display at page:

Download "The Superfluid-Insulator transition"

Transcription

1 The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).

2 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

3 Insulator (the vacuum) at large U

4 Excitations:

5 Excitations:

6 Excitations of the insulator: S = d 2 rdτ τ ψ 2 + v 2 ψ 2 +(g g c ) ψ 2 + u 2 ψ 4

7 T S = d 2 rdτ τ ψ 2 + v 2 ψ 2 +(g g c ) ψ 2 + u 2 ψ 4 T KT Quantum critical ψ =0 ψ =0 Superfluid Insulator 0 g c CFT3 g

8 T Quantum critical T KT Superfluid Insulator 0 g c g

9 Classical vortices and wave oscillations of the condensate Dilute Boltzmann/Landau gas of particle and holes T T KT Quantum critical Superfluid Insulator 0 g c g

10 CFT at T>0 T Quantum critical T KT Superfluid Insulator 0 g c g

11 C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)

12 C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)

13 Outline 1. Introduction to the Hubbard model Superexchange and antiferromagnetism 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism CFT3: Dirac fermions and the Gross-Neveu model 4. Quantum critical dynamics AdS/CFT and the collisionless-hydrodynamic crossover 5. Hubbard model as a SU(2) gauge theory Spin liquids, valence bond solids: analogies with SQED and SYM

14 Outline 1. Introduction to the Hubbard model Superexchange and antiferromagnetism 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism CFT3: Dirac fermions and the Gross-Neveu model 4. Quantum critical dynamics AdS/CFT and the collisionless-hydrodynamic crossover 5. Hubbard model as a SU(2) gauge theory Spin liquids, valence bond solids: analogies with SQED and SYM

15 Quantum critical transport Quantum perfect fluid with shortest possible relaxation time, τ R τ R k B T S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

16 Quantum critical transport Transport co-oefficients not determined by collision rate, but by universal constants of nature Electrical conductivity σ = e2 h [Universal constant O(1) ] K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

17 Quantum critical transport Transport co-oefficients not determined by collision rate, but by universal constants of nature Momentum transport η s viscosity entropy density = k B [Universal constant O(1) ] P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, (2005)

18 Quantum critical transport Euclidean field theory: Compute current correlations on R 2 S 1 with circumference 1/T 1/T R 2

19 Quantum critical transport Euclidean field theory: Compute current correlations on R 2 S 1 with circumference 1/T 4πT Complex ω plane 2πT 2πT Direct 1/N or expansions for correlators at the Euclidean frequencies ω n =2πnT i ( n integer) or in the conformal collisionless regime, ω k B T.

20 Quantum critical transport Euclidean field theory: Compute current correlations on R 2 S 1 with circumference 1/T 4πT Complex ω plane 2πT 2πT Direct 1/N or expansions for correlators at the Euclidean frequencies ω n =2πnT i ( n integer) or in the conformal collisionless regime, ω k B T.

21 Density correlations in CFTs at T >0 Two-point density correlator, χ(k, ω) Kubo formula for conductivity σ(ω) = lim k 0 iω χ(k, ω) k2 For all CFT3s, at ω k B T χ(k, ω) = 4e2 h K k 2 v2 k 2 ω 2 ; σ(ω) = 4e2 h K where K is a universal number characterizing the CFT3, and v is the velocity of light.

22 Quantum critical transport Euclidean field theory: Compute current correlations on R 2 S 1 with circumference 1/T 4πT Complex ω plane 2πT 2πT Direct 1/N or expansions for correlators at the Euclidean frequencies ω n =2πnT i ( n integer) or in the conformal collisionless regime, ω k B T.

23 Quantum critical transport Euclidean field theory: Compute current correlations on R 2 S 1 with circumference 1/T 4πT Complex ω plane 2πT 2πT Strong coupling problem: Correlators at ω k B T, along the real axis, in the collision-dominated hydrodynamic regime.

24 Quantum critical transport Euclidean field theory: Compute current correlations on R 2 S 1 with circumference 1/T 4πT Complex ω plane 2πT 2πT Strong coupling problem: Correlators at ω k B T, along the real axis, in the collision-dominated hydrodynamic regime.

25 Density correlations in CFTs at T >0 Two-point density correlator, χ(k, ω) Kubo formula for conductivity σ(ω) = lim k 0 iω χ(k, ω) k2 For all CFT3s, at ω k B T, we have the Einstein relation χ(k, ω) = e 2 χ c Dk 2 Dk 2 iω ; σ(ω) =e2 Dχ c = e2 h Θ 1Θ 2 where the compressibility, χ c, and the diffusion constant D obey χ = k BT (hv) 2 Θ 1 ; D = hv2 k B T Θ 2 with Θ 1 and Θ 2 universal numbers characteristic of the CFT3 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

26 Density correlations in CFTs at T >0 In CFT3s collisions are phase randomizing, and lead to relaxation to local thermodynamic equilibrium. So there is a crossover from collisionless behavior for ω k B T,to hydrodynamic behavior for ω k B T. σ(ω) = e 2 e 2 h K, ω k BT h Θ 1Θ 2 σ Q, ω k B T and in general we expect K = Θ 1 Θ 2 (verified for Wilson- Fisher fixed point). K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

27 SU(N) SYM3 with N = 8 supersymmetry Has a single dimensionful coupling constant, e 0, which flows to a strong-coupling fixed point e 0 = e 0 in the infrared. The CFT3 describing this fixed point resembles critical spin liquid theories. This CFT3 is the low energy limit of string theory on an M2 brane. The AdS/CFT correspondence provides a dual description using 11-dimensional supergravity on AdS 4 S 7. The CFT3 has a global SO(8) R symmetry, and correlators of the SO(8) charge density can be computed exactly in the large N limit, even at T>0.

28 SU(N) SYM3 with N = 8 supersymmetry The SO(8) charge correlators of the CFT3 are given by the usual AdS/CFT prescription applied to the following gauge theory on AdS4: S = 1 4g 2 4D d 4 x gg MA g NB F a MNF a AB where a = labels the generators of SO(8). Note that in large N theory, this looks like 28 copies of an Abelian gauge theory.

29 Collisionless to hydrodynamic crossover of SYM3 Imχ(k, ω)/k 2 Im K k2 ω 2 P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007)

30 Collisionless to hydrodynamic crossover of SYM3 Imχ(k, ω)/k 2 Im Dχ c Dk 2 iω P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007)

31 Universal constants of SYM3 χ c = k BT (hv) 2 Θ 1 D = hv2 k B T Θ 2 σ(ω) = 2N 3/2 K, ω k B T Θ 1 Θ 2, ω k B T K = 3 Θ 1 = 8π2 2N 3/2 9 Θ 2 = 3 8π 2 C. Herzog, JHEP 0212, 026 (2002) P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007)

32 Electromagnetic self-duality Unexpected result, K =Θ 1 Θ 2, and σ(ω)isfrequency independent. This is traced to a four-dimensional electromagnetic self-duality of the theory on AdS 4. In the large N limit, the SO(8) currents decouple into 28 U(1) currents with a Maxwell action for the U(1) gauge fields on AdS 4. The conductivity takes the self-dual value σ(ω) = 1/g4D 2.

33 Electromagnetic self-duality Unexpected result, K =Θ 1 Θ 2, and σ(ω)isfrequency independent. This is traced to a four-dimensional electromagnetic self-duality of the theory on AdS 4. In the large N limit, the SO(8) currents decouple into 28 U(1) currents with a Maxwell action for the U(1) gauge fields on AdS 4. The conductivity takes the self-dual value σ(ω) = 1/g4D 2. S = 1 4g 2 4D d 4 x gg MA g NB F a MNF a AB

34 Electromagnetic self-duality Unexpected result, K =Θ 1 Θ 2, and σ(ω)isfrequency independent. This is traced to a four-dimensional electromagnetic self-duality of the theory on AdS 4. In the large N limit, the SO(8) currents decouple into 28 U(1) currents with a Maxwell action for the U(1) gauge fields on AdS 4. The conductivity takes the self-dual value σ(ω) = 1/g4D 2. S = 1 4g 2 4D d 4 x gg MA g NB F a MNF a AB

35 Electromagnetic self-duality Unexpected result, K =Θ 1 Θ 2, and σ(ω)isfrequency independent. This is traced to a four-dimensional electromagnetic self-duality of the theory on AdS 4. In the large N limit, the SO(8) currents decouple into 28 U(1) currents with a Maxwell action for the U(1) gauge fields on AdS 4. The conductivity takes the self-dual value σ(ω) = 1/g4D 2. All these special features are generic to theories with a Maxwell-Einstein gravity dual. They are not expected to survive stringy 1/N 2 corrections

36 Lessons from AdS/CFT Strongly interacting quantum-critical systems are nearly perfect fluids. The AdS description of such perfect fluids suggests that All continuous global symmetries are (approximately) self dual. We can define a conductivity σ(ω) for each global symmetry: σ(ω) is (nearly) ω independent The value of σ(ω) is close to the self dual value

37 Lessons from AdS/CFT Strongly interacting quantum-critical systems are nearly perfect fluids. The AdS description of such perfect fluids suggests that All continuous global symmetries are (approximately) self dual. We can define a conductivity σ(ω) for each global symmetry: σ(ω) is (nearly) ω independent The value of σ(ω) is close to the self dual value These features are found in experimental and numerical studies

38 Resistivity of Bi films Conductivity σ σ Superconductor (T 0) = σ Insulator (T 0) = 0 σ Quantum critical point (T 0) 4e2 h Self-dual value = 4e 2 /h D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989) M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

39 Quantum critical transport in graphene σ(ω) = e 2 h e 2 hα 2 (T ) π 2 + O O 1 ln(λ/ω) 1 ln(α(t )), ω k B T, ω k B T α 2 (T ) η s = k B α 2 (T ) where the fine structure constant is α(t )= α 1+(α/4) ln(λ/t ) T 0 4 ln(λ/t ) L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Physical Review B 78, (2008) M. Müller, J. Schmalian, and L. Fritz, Physical Review Letters 103, (2009)

40 Outline 1. Introduction to the Hubbard model Superexchange and antiferromagnetism 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism CFT3: Dirac fermions and the Gross-Neveu model 4. Quantum critical dynamics AdS/CFT and the collisionless-hydrodynamic crossover 5. Hubbard model as a SU(2) gauge theory Spin liquids, valence bond solids: analogies with SQED and SYM

41 Outline 1. Introduction to the Hubbard model Superexchange and antiferromagnetism 2. Coupled dimer antiferromagnet CFT3: the Wilson-Fisher fixed point 3. Honeycomb lattice: semi-metal and antiferromagnetism CFT3: Dirac fermions and the Gross-Neveu model 4. Quantum critical dynamics AdS/CFT and the collisionless-hydrodynamic crossover 5. Hubbard model as a SU(2) gauge theory Spin liquids, valence bond solids: analogies with SQED and SYM

42 t ε k H 0 = i<j t ij c iα c iα k ε k c kα c kα k Begin with free electrons.

43 t ε k H 0 = i<j t ij c iα c iα k ε k c kα c kα k Begin with free electrons. Add local antiferromagnetism with order parameter ϕ H sdw = i ϕ (r i )( 1) i c iα σ αβc iβ

44 t ε k H 0 = i<j t ij c iα c iα k ε k c kα c kα k Begin with free electrons. Add local antiferromagnetism with order parameter ϕ H sdw = i ϕ (r i )( 1) i c iα σ αβc iβ The phase with ϕ = 0 is an insulator with a gap between conduction and valence bands.

45 Z. Y. Meng et al., Nature 464, 847 (2010).

46 R z (x, τ) Néel Perform SU(2) rotation R z on filled band of electrons: c ψ+ c = z z z z ψ ε k ψ ± states empty ψ ± states filled k

47 Quantum disordering magnetic order c = z z ψ+ c z z ψ

48 Quantum disordering magnetic order c = z z ψ+ c z z ψ SU(2) spin

49 Quantum disordering magnetic order c = z z ψ+ c z z ψ U(1) charge

50 Quantum disordering magnetic order c = z z ψ+ c z z ψ U U 1 SU(2) s;gauge S. Sachdev, M. A. Metlitski, Y. Qi, and S. Sachdev Phys. Rev. B 80, (2009)

51 Quantum disordering magnetic order c = z z ψ+ c z z ψ The Hubbard model can be written exactly as a lattice gauge theory with a SU(2) s;g SU(2) spin U(1) charge invariance. The SU(2) s;g is a gauge invariance, while SU(2) spin U(1) charge is a global symmetry

52 Matter context of SU(2) s;g SU(2) spin U(1) charge theory Fundamental fermions ψ transforming as (2, 1, 1), Fundamental scalar z transforming as ( 2, 2, 0), connecting local to global Néel order, Adjoint scalar N(r i )=ψ i σ ψ i transforming as (3, 1, 0), measuring local Néel order.

53 Phase diagram

54 Phase diagram ε k Semi-metal k

55 Phase diagram ε k t Insulator Semi-metal with Neel k order

56 Phase diagram ε k k Semi-metal = 4 mass- SU(2) QCD with N f less Dirac quarks t Insulator with Neel L = 1 g 2 F 2 µν + ψγ µ ( µ ia µ )ψ order Could describe a CFT3 like SYM, but z could =0 also be, unstable N to =0 confinement.

57 Phase diagram ε k t Insulator Semi-metal with Neel k order Spin liquid: CFT of SU(2) QCD with Nf =4 massless Dirac quarks

58 Phase diagram ε k SU(2) is Higgsed down to U(1). k Semi-metal All matter fields are gapped. U(1) monopoles drive Polyakov z confinement =0, N =0 z Spectral =0 flow, in filled N fermion =0 bands leads to Berry phases of monopoles, endowing them with crystal Spin liquid: momentum. CFT of SU(2) QCD Confining state has valence bond with solid Nf =4 (VBS) massless order Dirac quarks t Insulator with Neel order

59 Phase diagram ε k t Insulator Semi-metal with Neel k order t Spin liquid: CFT of SU(2) QCD with Nf =4 massless Dirac quarks Confining insulator with VBS (kekule) order

60 Phase diagram ε k t Insulator Semi-metal with Neel k order M Spin liquid: CFT of SU(2) QCD with Nf =4 massless Dirac quarks Confining insulator with VBS (kekule) order t

61 Phase diagram ε k t Insulator Semi-metal with Neel k order M Spin liquid: CFT of SU(2) QCD with Nf =4 massless Dirac quarks Confining insulator with VBS (kekule) order t

62 Phase diagram ε k t k Semi-metal Spin liquid: CFT of SU(2) QCD with Nf =4 massless Multicritical point M: SU(2) QCD with N f = 4 massless Dirac quarks, 4 real fundamental scalars, and 3 real adjoint scalars. Dirac quarks M Insulator with Neel order L = 1 g 2 F 2 µν + ψγ µ ( µ ia µ )ψ + ( µ ia µ )z 2 +(( µ ia µ )φ) 2 Could describe a CFT3 like SYM, but could also be unstable to confinement. Confining insulator with VBS (kekule) order t

63 Phase diagram ε k t Insulator Semi-metal with Neel k order M Spin liquid: CFT of SU(2) QCD with Nf =4 massless Dirac quarks Confining insulator with VBS (kekule) order t

Quantum critical transport and AdS/CFT

Quantum critical transport and AdS/CFT Quantum critical transport and AdS/CFT Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller, Trieste Joerg Schmalian, Iowa Dam Son, Washington

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Quantum critical transport, duality, and M-theory

Quantum critical transport, duality, and M-theory Quantum critical transport, duality, and M-theory hep-th/0701036 Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington) Talks online at http://sachdev.physics.harvard.edu

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states States of quantum matter with long-range entanglement in d spatial dimensions Gapped quantum matter Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold atoms, antiferromagnets

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Particle theorists Sean Hartnoll, KITP Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Condensed matter theorists

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality Institute for Nuclear Theory, Seattle Summer School on Applications of String Theory July 18-20 Subir Sachdev HARVARD Outline 1. Conformal quantum matter 2. Compressible

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Relativistic quantum criticality and the AdS/CFT correspondence

Relativistic quantum criticality and the AdS/CFT correspondence Relativistic quantum criticality and the AdS/CFT correspondence Indian Institute of Science, Bangalore, Dec 7, 2010 Lecture notes arxiv:1010.0682 arxiv: 1012.0299 sachdev.physics.harvard.edu HARVARD J.

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

arxiv: v1 [cond-mat.str-el] 7 Oct 2009 Finite temperature dissipation and transport near quantum critical points Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138 (Dated: Oct 5, 2009) arxiv:0910.1139v1 [cond-mat.str-el]

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

arxiv: v1 [hep-th] 16 Feb 2010

arxiv: v1 [hep-th] 16 Feb 2010 Condensed matter and AdS/CFT Subir Sachdev arxiv:1002.2947v1 [hep-th] 16 Feb 2010 Lectures at the 5th Aegean summer school, From gravity to thermal gauge theories: the AdS/CFT correspondence, Adamas, Milos

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München .. Gauge/Gravity Duality: An introduction Johanna Erdmenger Max Planck Institut für Physik, München 1 Outline I. Foundations 1. String theory 2. Dualities between quantum field theories and gravity theories

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality 2013 Arnold Sommerfeld School, Munich, August 5-9, 2013 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD " k Dirac semi-metal " k Insulating antiferromagnet

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Viscosity in strongly coupled gauge theories Lessons from string theory

Viscosity in strongly coupled gauge theories Lessons from string theory Viscosity in strongly coupled gauge theories Lessons from string theory Pavel Kovtun KITP, University of California, Santa Barbara A.Buchel, (University of Western Ontario) C.Herzog, (University of Washington,

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

From Critical Phenomena to Holographic Duality in Quantum Matter

From Critical Phenomena to Holographic Duality in Quantum Matter From Critical Phenomena to Holographic Duality in Quantum Matter Joe Bhaseen TSCM Group King s College London 2013 Arnold Sommerfeld School Gauge-Gravity Duality and Condensed Matter Physics Arnold Sommerfeld

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Chern-Simons Theories and AdS/CFT

Chern-Simons Theories and AdS/CFT Chern-Simons Theories and AdS/CFT Igor Klebanov PCTS and Department of Physics Talk at the AdS/CMT Mini-program KITP, July 2009 Introduction Recent progress has led to realization that coincident membranes

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS Tin Sulejmanpasic North Carolina State University Erich Poppitz, Mohamed Anber, TS Phys.Rev. D92 (2015) 2, 021701 and with Anders Sandvik,

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

AdS/CFT and holographic superconductors

AdS/CFT and holographic superconductors AdS/CFT and holographic superconductors Toby Wiseman (Imperial) In collaboration with Jerome Gauntlett and Julian Sonner [ arxiv:0907.3796 (PRL 103:151601, 2009), arxiv:0912.0512 ] and work in progress

More information

An Introduction to AdS/CFT Correspondence

An Introduction to AdS/CFT Correspondence An Introduction to AdS/CFT Correspondence Dam Thanh Son Institute for Nuclear Theory, University of Washington An Introduction to AdS/CFT Correspondence p.1/32 Plan of of this talk AdS/CFT correspondence

More information

Universal Peaks in Holographic Photon Production. David Mateos University of California at Santa Barbara

Universal Peaks in Holographic Photon Production. David Mateos University of California at Santa Barbara Universal Peaks in Holographic Photon Production David Mateos University of California at Santa Barbara Plan Introduction and motivation. Phase transitions for fundamental matter. Photon production. Summary

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Dynamics of heavy quarks in charged N = 4 SYM plasma

Dynamics of heavy quarks in charged N = 4 SYM plasma Dynamics of heavy quarks in charged N = 4 SYM plasma Aleksi Vuorinen University of Washington, Seattle & Technical University of Vienna C. Herzog and AV, arxiv:0708:0609 [hep-th] Outline N = 4 SYM and

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University Course at Harvard University: Physics 268r Classical and Quantum Phase Transitions. MWF 10 in Jefferson 256

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München Holographic hydrodynamics of systems with broken rotational symmetry Johanna Erdmenger Max-Planck-Institut für Physik, München Based on joint work with M. Ammon, V. Grass, M. Kaminski, P. Kerner, H.T.

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Quantum matter & black hole ringing

Quantum matter & black hole ringing Quantum matter & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

AdS/QCD. K. Kajantie. Helsinki Institute of Physics Helsinki, October 2010

AdS/QCD. K. Kajantie. Helsinki Institute of Physics   Helsinki, October 2010 AdS/QCD Actually mainly AdS/CFT K. Kajantie Helsinki Institute of Physics http://www.helsinki.fi/~kajantie/ Helsinki, 28-29 October 2010 Literature: Go to arxiv th or phen. Find Gubser, Son, Starinets,

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Putting String Theory to the Test with AdS/CFT

Putting String Theory to the Test with AdS/CFT Putting String Theory to the Test with AdS/CFT Leopoldo A. Pando Zayas University of Iowa Department Colloquium L = 1 4g 2 Ga µνg a µν + j G a µν = µ A a ν ν A a µ + if a bc Ab µa c ν, D µ = µ + it a

More information

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu The main unsolved problem in theoretical physics today: Unification of The main unsolved

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

Non-Equilibrium Steady States Beyond Integrability

Non-Equilibrium Steady States Beyond Integrability Non-Equilibrium Steady States Beyond Integrability Joe Bhaseen TSCM Group King s College London Beyond Integrability: The Mathematics and Physics of Integrability and its Breaking in Low-Dimensional Strongly

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

lattice that you cannot do with graphene! or... Antonio H. Castro Neto Theoretical Aspects What you can do with cold atomsof on agraphene honeycomb lattice that you cannot do with graphene! or... Antonio H. Castro Neto 2 Outline 1. Graphene for beginners 2. Fermion-Fermion

More information