Metal-insulator transitions

Size: px
Start display at page:

Download "Metal-insulator transitions"

Transcription

1 Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential shift

2 Metal-insulator transitions Bandwidth control versus fillig control.

3 Metal-insulator transition through collapse of Mott-Hubbard gap U > W U < W

4 Metal-insulator transition through hole doping into Mott-Hubbard insulator n = 1 n < 1

5 Bandwidth- versus filling-controlled metal-insulator transition U/W or /W BANDWIDTH Filling-controlled MIT 1 Bandwidth-controlled MIT n

6 Bandwidth- versus filling-controlled in Mott-Hubbard systems Bandwidth control Filling control

7 Metal-insulator transitions Strongly correlated Fermi liquids

8 Bandwidth- versus filling-controlled in Mott-Hubbard systems Bandwidth control Strongly correlated metal (Fermi liquid) Filling control

9 Spectral function of correlated Fermi liquid quasi-particle (QP) peak incoherent part incoherent part k F k F Fermi surface k F is defined by * Discontinuity in n k * E F crossing of infinitely sharp QP peak A. Damascelli et al., RMP 01

10 m*/m b ~ W b /W coh ~ v F,b /v F > 1: mass renormalization bandwidth Fermi velocity (m b : band mass, ) Correlation effects on spectral function A(k, (k,ω), band dispersion ε k, DOS ρ(ω), momentum distribution n(k) without electron correlation with electron correlation A(k,ω) non-interacting band A(k,ω) non-interacting band v F,b incoherent part W b coherent part W coh v F incoherent part

11 Spectral function A(k, (k,ω) without electron correlation Green s function spectral function DOS A(k,ω) = N b (ω) : band DOS band dispersion QP weight = 1

12 Effects of self-energy energy Σ (k,ω) on the spectral function A(k, (k,ω) Green s function ~ coherent part spectral function A(k,ω) ~ incoherent part band (QP) dispersion QP weight (renormalization factor) Im Re

13 Measuring A(k,ω) using angle-resolved photoemission spectroscopy (ARPES) EDC

14 Fermi-liquid behavior in ARPES spectra of 2D system TiTe 2 Self-energy near µ k k theoretical fit R. Claessen et al., PRL 92

15 Metal-insulator transitions Spectral weight transfer and mass renormalization Bandwidth control

16 Bandwidth-controlled metal-insulator transition in Mott-Hubbard systems θ W cos 2 θ Bandwidth control Hubbard picture? Brikman-Rice picture m* Filling control

17 Bandwidth-controlled metal-insulator transition in Mott-Hubbard systems Photoemission expt. on d 1 systems Hubbard model calc coherent part (quasi-particle bands) U / W <<1 m* ~ m b ~ W b U / W >1 W W coh U m* incoherent O 2p V 3d Incoherent part (Hubbard bands) A. Fujimori et al., PRL 92 X.Y. Zhang et al., PRL 93

18 Bandwidth-controlled d 1 Mott-Hubbard system Sr 1-x Ca x VO 3 Band calc. d 1 d 0 W b d 1 d 0 d 1 d 0 W coh Incoherent part (Hubbard bands) + surface coherent part (quasi-particle bands) m*/m b ~ W b /W coh ~ 1.7 K. Morikawa et al., PRB 95 H.I. Inoue et al., PRL 95

19 Bandwidth-controlled d 1 Mott-Hubbard system Sr 1-x Ca x VO 3 - surface or bulk? Electronic specific heat & Pauli-paramagnetic susceptibility Bulk-sensitive photoemission LDA m*/m b ~ 1.8 W b W coh CaVO 3 SrVO 3 H.I. Inoue et al., PRB 98 Incoherent part coherent part m*/m b ~ W b /W coh ~ 1.7 A. Sekiyama et al., PRL 04 cf) R. Eguchi et al., cond-mat/05

20 Band structure and Fermi surfaces of Sr 1-x Ca x VO 3 Band-structure calculation d xy d zx d yz X Γ Γ ε xy ε yz ε zx ( k) = ed + t0 (cos kxa + cos k ya) +... ( k) = ed + t0 (cos k ya + cos kza) +... ( k) = e + t (cos k a + cos k a)... d Γ R M 0 z x + Three 2D bands, Three cylindrical Fermi surfaces Fermi surface of CaVO 3 studied by de Haas-van Alphen measurements K. Takegahara et al., JES 94 H.I. Inoue et al., PRL 02

21 m*/m b ~ W b /W coh ~ v F,b /v F > 1: mass renormalization bandwidth Fermi velocity (m b : band mass, ) Correlation effects on spectral function A(k, (k,ω), band dispersion ε k, DOS ρ(ω), momentum distribution n(k) without electron correlation with electron correlation A(k,ω) non-interacting band A(k,ω) non-interacting band v F,b incoherent part W b coherent part W coh v F incoherent part

22 Band dispersion and mass renormalization in SrVO 3 m*/m b ~ v F,b /v F ~ 1.7 Fermi velocity Electronic specific heat m*/m b ~ 1.8 π Γ ν ν Γ I.H. Inoue et al, PRB 98 π T. Yoshida et al., cond-mat/05, to PRL

23 ARPES form 2D materials Momentum parallel to surface k II

24 ARPES form 3D materials X M X M Γ(103) k z Γ(003) X X k z X M X M 96 e 88 ev 74 ev k ll Momentum parallel to surface k ll k ll hν = 60 ev 68 ev Momentum perpendicular to surface k z z

25 Metal-insulator transitions Spectral weight transfer and mass renormalization Filling control

26 Filling-controlled metal-insulator transition in Mott-Hubbard systems Bandwidth control ? Filling control

27 Filling-controlled Mott-Hubbard system La 1-x Sr x TiO 3 Electronic specific heat & Pauli-paramagnetic suseptibility Kadowaki-Woods relationship x =0.05 x =0.2 x =0.1 x =0 rigid band model Wilson ratio: χ/γ ~ 2 x =0.3 x n=1/r H ~1-x Y. Tokura et al. PRL SrTiO 3 d 0 x x 0 LaTiO 3 d 1 Mott insulator

28 Filling-controlled Mott-Hubbard system La 1-x Sr x TiO 3 Photoemission expt SrTiO 3 d 0 Hubbard model calc δ = x + y δ AFM AFI Incoherent (LHB) T. Yoshida et al., EPL 02 coherent 0 µ ~ LaTiO 3 Mott insulator LHB UHB U H. Kajueter et al, PRB 96

29 Perovskite-type type transition-metal oxdies Bandwidth control Ti Mn A 2 BO 4 Textbook Fermi liquid Giant High-Tc Mott transition thermoelectricity Giant superconductivity Magnetoresistance Co Cu Filling control M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 98

30 Colossal magneto-resistance in filling-controlled system La 1-x Sr x MnO 3 M. Urushibara et al., PRB 95 Y. Tokura et al., JPSJ 94

31 Filling-controlled system La 1-x Sr x MnO 3 with colossal magneto-resistance extremely weak coherent part polaron effect? T. Saitoh et al., PRB 95

32 Metal-insulator transitions Chemical potential shift

33 Chemical potential shift in Fermi liquid charge susceptibility : F s0 : Landau parameter for e-e repulsion : electronic specific heat coefficient : quasi-particle density = ρ(ω)/z A. Fujimori et al., JES 02

34 Deducing chemical potential shift from core-level shifts T [K] 100 antiferromagnetic insulator pseudo-gap metal 10 normal metal (Fermi liquid) Core-level XPS spectra Core-level shifts 0 superconductor spin glass? Hole / Cu atom A. Ino et al., PRL 97

35 Transition-metal core levels Ti 4+ Ti 3+ YTiO3 Mott insulator 0 Ti 4+ /Ti 3+ intensity ratio x CaTiO 3 d 0 K. Morikawa et al., PRB 96

36 Deducing chemical potential shift from core-level shifts Core-level shifts Madelung potential Chemical potential shift Qualitatively different from expt. A. Ino et al., PRL 97 A. Fujimori et al., JES 02 N. Harima et al., PRB 01

37 QP-QP repulsion F s o and mass enhancement m*/m b Unusual pinning of chemical potential

38 Chemical potential shift pinning due to incommensurate CDW/SDW ~ stripes

39 Microscopic phase separation as the origin of chemical potential pinning

40 Chemical potential shift in filling-controlled systems AF γ as δ 0 1/8 chemical potential pinning incommensurate CDW/SDW ~ stripes 1/3 no chemical potential pinning commensurate CDW/SDW A. Fujimori et al., JES 02

41 Chemical potential shift in hole-doped CMR Mn perovskites Chemical potential shift µ (ev) no stripes Pr 1-x Ca x MnO 3 La 1-x Sr x MnO 3 stripes Stripes/bi-stripes x = x, carrier concentration x = 0.67 stripes K. Ebata et al. J. Matsuno et al., EPL 02 S.Mori et al., Nature 98 Y. Tokura and Y. Tomioka

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Spin-charge

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625 Photoemission and the electronic structure of magnetic oxides Dan Dessau University of Colorado, Boulder Duane F625 Dessau@Colorado.edu Einstein s Photoelectric effect XPS, UPS, ARPES BE e- hn D.O.S. occupied

More information

The High T c Superconductors: BCS or Not BCS?

The High T c Superconductors: BCS or Not BCS? The University of Illinois at Chicago The High T c Superconductors: BCS or Not BCS? Does BCS theory work for the high temperature superconductors? We take a look at the electronic excitations using angle

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

On-site Coulomb energy versus crystal-field splitting for the insulator-metal transition in La 1Àx Sr x TiO 3

On-site Coulomb energy versus crystal-field splitting for the insulator-metal transition in La 1Àx Sr x TiO 3 PHYSICAL REVIEW B 68, 104420 2003 On-site Coulomb energy versus crystal-field splitting for the insulator-metal transition in La 1Àx Sr x TiO 3 T. Higuchi, D. Baba, T. Takeuchi, and T. Tsukamoto Department

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment Spin-Charge Separation in 1-D Lecture: Solvable 1D electron systems, Mott insulator and correlated electron systems in 2D Solid State Spectroscopy Course 25/2/2013 Spin : J Charge : t Decay of a photohole

More information

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction Mott insulators Introduction Cluster-model description Chemical trend Band description Self-energy correction Introduction Mott insulators Lattice models for transition-metal compounds Hubbard model Anderson-lattice

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000 Electronic Structure of La 2 x Sr x CuO 4 in the Vicinity of the Superconductor-Insulator Transition arxiv:cond-mat/99248v3 [cond-mat.supr-con] 23 May 2 A. Ino, C. Kim 2, M. Nakamura 3, T. Yoshida, T.

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (June 12) 2. Crystal structure and band structure (June 19) 3. Mott insulators (June 26) 4. Metal-insulator transition

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4

Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4 Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4 Thesis Akihiro Ino Department of Physics, University of Tokyo January 1999 Contents 1 Introduction 1 2 Backgrounds 5 2.1 High-T

More information

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap Novel Superconductors and Synchrotron Radiation: state of the art and perspective Adriatico Guest House, Trieste, December 10-11, 2014 ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic

More information

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University Polaronic Effects in the Lightly Doped Cuprates Kyle M. Shen Stanford University April 6, 2005 ARPES Studies of the Cuprates Temperature (K) AFI Bi 2 Sr 2 CaCu 2 O 8+δ Bi 2 Sr 2 CuO 6+δ YBa 2 Cu 3 O 7-δ

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Changyoung Kim Dept. Physics, Yonsei University B. J. Kim 1, J. Yu 1, S. J. Oh 1, H. Koh 2, I. Nagai 3, S. I. Ikeda

More information

Correlatd electrons: the case of high T c cuprates

Correlatd electrons: the case of high T c cuprates Correlatd electrons: the case of high T c cuprates Introduction: Hubbard U - Mott transition, The cuprates: Band structure and phase diagram NMR as a local magnetic probe Magnetic susceptibilities NMR

More information

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris Introductory lectures on Angle-resolved photoemission spectroscopy (ARPES) and its application to the experimental study of the electronic structure of solids Andrés s Felipe Santander-Syro Syro Université

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Superconductivity in Fe-based ladder compound BaFe 2 S 3 02/24/16 QMS2016 @ Incheon Superconductivity in Fe-based ladder compound BaFe 2 S 3 Tohoku University Kenya OHGUSHI Outline Introduction Fe-based ladder material BaFe 2 S 3 Basic physical properties High-pressure

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder Angle Resolved Photoemission Spectroscopy Dan Dessau University of Colorado, Boulder Dessau@Colorado.edu Photoemission Spectroscopy sample hn Energy High K.E. Low B.E. e - analyzer E F e- hν Density of

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

Complexity in Transition Metal Oxides

Complexity in Transition Metal Oxides Complexity in Transition Metal Oxides Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville, TN, USA. Supported by NSF grants DMR-0443144 and 0454504. Collaborators G. Alvarez (ORNL)

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Introduction to Angle-Resolved Photoelectron Spectroscopy Andrea Damascelli

Introduction to Angle-Resolved Photoelectron Spectroscopy Andrea Damascelli Introduction to Angle-Resolved Photoelectron Spectroscopy Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Group: Electronic Structure of Solids AMPEL

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

Optical and transport properties of small polarons from Dynamical Mean-Field Theory

Optical and transport properties of small polarons from Dynamical Mean-Field Theory Optical and transport properties of small polarons from Dynamical Mean-Field Theory S. Fratini, S. Ciuchi Outline: Historical overview DMFT for Holstein polaron Optical conductivity Transport Polarons:

More information

In-situ photoemission study of La 1 x Sr x FeO 3 epitaxial thin films

In-situ photoemission study of La 1 x Sr x FeO 3 epitaxial thin films In-situ photoemission study of La 1 x Sr x FeO 3 epitaxial thin films Master Thesis Hiroki Wadati Department of Physics, University of Tokyo January, 2004 Contents 1 Introduction 1 2 Principles of photoemission

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 22 May 2001

arxiv:cond-mat/ v1 [cond-mat.str-el] 22 May 2001 Electronic structure of Ca 1 x Sr x VO 3 : a tale of two energy-scales arxiv:cond-mat/0105424v1 [cond-mat.str-el] 22 May 2001 K. Maiti,,a D.D. Sarma,, M.J. Rozenberg, I.H. Inoue,,b H. Makino, O. Goto,

More information

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- MECHANISM requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron- A serious limitation of BCS theory is that it

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

When Landau and Lifshitz meet

When Landau and Lifshitz meet Yukawa International Seminar 2007 "Interaction and Nanostructural Effects in Low-Dimensional Systems" November 5-30, 2007, Kyoto When Landau and Lifshitz meet Unconventional Quantum Criticalities November

More information

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon Electron spectroscopy on high temperature superconductors and other novel materials Gey Hong Gweon Jan 28, 2013 Kazue Mastuyama Jianqiao Meng Ahram Kim Greg Kaminsky Matthew Brunner Brandon McGuire James

More information

Neutron Scattering in Transition Metal Oxides

Neutron Scattering in Transition Metal Oxides Neutron Scattering in Transition Metal Oxides C. Ulrich Department Prof. B. Keimer Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany physics of the 3d electrons strongly correlated electrons

More information

Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities

Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities Lawrence Berkeley National Laboratory Robert Schoenlein Materials Sciences Division - Chemical Sciences Division Ultrafast

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

How to model holes doped into a cuprate layer

How to model holes doped into a cuprate layer How to model holes doped into a cuprate layer Mona Berciu University of British Columbia With: George Sawatzky and Bayo Lau Hadi Ebrahimnejad, Mirko Moller, and Clemens Adolphs Stewart Blusson Institute

More information

Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors

Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors Master Thesis Satoru Kudo Department of Complexity Science and Engineering, University of Tokyo February, 28 Contents

More information

Phases of Na x CoO 2

Phases of Na x CoO 2 Phases of Na x CoO 2 by Aakash Pushp (pushp@uiuc.edu) Abstract This paper deals with the various phases of Na x CoO 2 ranging from charge ordered insulator to Curie-Weiss metal to superconductor as the

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Matériaux et dispositifs à fortes corrélations électroniques

Matériaux et dispositifs à fortes corrélations électroniques Chaire de Physique de la Matière Condensée Matériaux et dispositifs à fortes corrélations électroniques I.3 Transition de Mott et théorie de champ moyen dynamique Antoine Georges Cycle 2014-2015 4 mai

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates ARPES study of many-body effects and electronic reconstructions in misfit cobaltates Véronique Brouet, Alessandro Nicolaou Laboratoire de Physique des Solides d Orsay M. Zacchigna (Elettra), A. Tejeda

More information

Metal-Insulator Transition in Mn Perovskite Compounds

Metal-Insulator Transition in Mn Perovskite Compounds Metal-Insulator Transition in Mn Perovskite Compounds arxiv:cond-mat/9811221v1 [cond-mat.str-el] 16 Nov 1998 Yukitoshi Motome 1), Hiroki Nakano 2) and Masatoshi Imada 2), 1) Department of Physics, Tokyo

More information

High T C copper oxide superconductors and CMR:

High T C copper oxide superconductors and CMR: High T C copper oxide superconductors and CMR: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite slabs with rock salt slabs. First

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution.

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution. Lattice Dynamics and Electron Pairing in High Temperature Superconductors A. Lanzara 1,2, G.-H. Gweon 3, S. Y. Zhou 1 1 Department of Physics, University of California, Berkeley, CA 94720, U.S.A. 2 Materials

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Colossal magnetoresistance:

Colossal magnetoresistance: Colossal magnetoresistance: Ram Seshadri (seshadri@mrl.ucsb.edu) The simplest example of magnetoresistance is transverse magnetoresistance associated with the Hall effect: H + + + + + + + + + + E y - -

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Umesh Kumar Yadav Centre for Condensed Matter Theory Department of Physics Indian Institute of Science August

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Surprising Effects of Electronic Correlations in Solids

Surprising Effects of Electronic Correlations in Solids Center for Electronic Correlations and Magnetism University of Augsburg Surprising Effects of Electronic Correlations in Solids Dieter Vollhardt Supported by TRR 80 FOR 1346 University of Florida, Gainesville;

More information

Metal-Mott insulator transitions

Metal-Mott insulator transitions University of Ljubljana Faculty of Mathematics and Physics Seminar I b Metal-Mott insulator transitions Author: Alen Horvat Advisor: doc. dr. Tomaž Rejec Co-advisor: dr. Jernej Mravlje Ljubljana, September

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Transport and Magnetic Properties of La 0.85 Ca Mn 1-x Al x O 3 Manganites

Transport and Magnetic Properties of La 0.85 Ca Mn 1-x Al x O 3 Manganites Asian Journal of Chemistry Vol. 21, No. 1 (29), S86-9 Transport and Magnetic Properties of La.85 Ca. 15 Mn 1-x Al x O 3 Manganites G ANJUM and S MOLLAH Department of Physics, Aligarh Muslim University,

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Anjan K. Gupta Physics Department, I. I. T Kanpur ICTS-GJ, IITK, Feb 2010 Acknowledgements

More information

High temperature superconductivity

High temperature superconductivity High temperature superconductivity Applications to the maglev industry Elsa Abreu April 30, 2009 Outline Historical overview of superconductivity Copper oxide high temperature superconductors Angle Resolved

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations Demystifying the Strange Metal in High-temperature Superconductors: Composite Excitations Thanks to: T.-P. Choy, R. G. Leigh, S. Chakraborty, S. Hong PRL, 99, 46404 (2007); PRB, 77, 14512 (2008); ibid,

More information

High Tc superconductivity in doped Mott insulators

High Tc superconductivity in doped Mott insulators Lecture # 3 1 High Tc superconductivity in doped Mott insulators Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity In collaboration with: A.Paramekanti, Toronto

More information

Superconductivity and Electron Correlations in Ruthenates

Superconductivity and Electron Correlations in Ruthenates University of St Andrews School of Physics and Astronomy Superconductivity and Electron Correlations in Ruthenates Andy Mackenzie University of St Andrews, UK Key collaborator: Yoshi Maeno, Kyoto University

More information

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Review of typical behaviours observed in strongly correlated systems Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : Major part of solid state physics of the second part

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

Electron State and Lattice Effects in Cuprate High Temperature Superconductors Electron State and Lattice Effects in Cuprate High Temperature Superconductors - The True Story Revealed by Fermi Surface and Unconventional Lattice Effects- October 27-28, 2005 Headquarters and Information

More information

Electron spectroscopic investigation of metal insulator transition in Ce 1 x Sr x TiO 3

Electron spectroscopic investigation of metal insulator transition in Ce 1 x Sr x TiO 3 Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 115, Nos 5 & 6, October December 2003, pp 491 498 Indian Academy of Sciences Electron spectroscopic investigation of metal insulator transition in Ce 1 x Sr x

More information

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon Electron spectroscopy on high temperature superconductors and other novel materials Gey Hong Gweon Credits Simon Bell Gregory Kaminsky Ahram Kim Jianqiao Meng Matthew Brunner Brandon McGuire James Hinton

More information

Fermiology of bilayer colossal magnetoresistant manganites

Fermiology of bilayer colossal magnetoresistant manganites Fermiology of bilayer colossal magnetoresistant manganites Mark S. Golden Van der Waals-Zeeman Institute Universiteit van Amsterdam FOM-A-11 Outline ARPES as k-space k microscopy Intro. to colossal magneto-resistant

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Surfing q-space of a high temperature superconductor

Surfing q-space of a high temperature superconductor Surfing q-space of a high temperature superconductor Adam Kaminski Ames Laboratory and Iowa State University Funded by: US Department of Energy National Science Foundation The Royal Society of Great Britain

More information

arxiv: v1 [cond-mat.supr-con] 28 May 2018

arxiv: v1 [cond-mat.supr-con] 28 May 2018 Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca 2 CuO 2 Cl 2 Cheng Hu 1,2, Jian-Fa Zhao 1,2, Ying Ding 1,2, Jing Liu 1,2, Qiang arxiv:1805.10991v1

More information

Ultrahigh-resolution photoemission study of superconductors and strongly correlated materials using quasi-cw VUV laser

Ultrahigh-resolution photoemission study of superconductors and strongly correlated materials using quasi-cw VUV laser CORPES 2005-4-4 Ultrahigh-resolution photoemission study of superconductors and strongly correlated materials using quasi-cw VUV laser S. Shin, 1,2 T. Kiss, 1 S. Tsuda, 1 K. Ishizaka, 1 T. Yokoya, 1 and

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Density matrix renormalization group study of a three- orbital Hubbard model with spin- orbit coupling in one dimension

Density matrix renormalization group study of a three- orbital Hubbard model with spin- orbit coupling in one dimension Density matrix renormalization group study of a three- orbital Hubbard model with spin- orbit coupling in one dimension Nitin Kaushal, Jacek Herbrych, Alberto Nocera, Gonzalo Alvarez, Adriana Moreo and

More information

Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe 2 (As 1 x P x ) 2

Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe 2 (As 1 x P x ) 2 Angle-resolved photoemission study of the iron-based superconductors PrFeAsO 1 y and BaFe (As 1 x P x ) Master Thesis Ichiro Nishi Department of Physics, Graduate School of Science, The University of Tokyo

More information

Dirac fermions in Graphite:

Dirac fermions in Graphite: Igor Lukyanchuk Amiens University, France, Yakov Kopelevich University of Campinas, Brazil Dirac fermions in Graphite: I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, 166402 (2004) - Phys. Rev.

More information

Quasiparticle dynamics and interactions in non uniformly polarizable solids

Quasiparticle dynamics and interactions in non uniformly polarizable solids Quasiparticle dynamics and interactions in non uniformly polarizable solids Mona Berciu University of British Columbia à beautiful physics that George Sawatzky has been pursuing for a long time à today,

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

The Hubbard Model In Condensed Matter and AMO systems

The Hubbard Model In Condensed Matter and AMO systems The Hubbard Model In Condensed Matter and AMO systems Transition Metal Oxides The Fermion Hubbard Model Transition Metal Oxides - The Whole Story High Temperature Superconductors Monte Carlo and Quantum

More information

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Y. Dagan 1, A. Biswas 2, M. C. Barr 1, W. M. Fisher 1, and R. L. Greene 1. 1 Center for Superconductivity Research,

More information

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Tokyo University of Science Shigetoshi Sota AICS, RIKEN Outline Density-matrix

More information

Direct Electronic Structure Measurements of the Colossal Magnetoresistive Oxides.

Direct Electronic Structure Measurements of the Colossal Magnetoresistive Oxides. Direct Electronic Structure Measurements of the Colossal Magnetoresistive Oxides. D.S. DESSAU Department of Physics, University of Colorado, Boulder CO, 80309, USA and Z.-X. SHEN Department of Applied

More information