Thermodynamics Lecture Series

Size: px
Start display at page:

Download "Thermodynamics Lecture Series"

Transcription

1 Termodynamics Lecture Series Ideal Ranke Cycle Te Practical Cycle Applied Sciences Education Researc Group (ASERG) Faculty of Applied Sciences Universiti Teknologi MARA ttp://www5.uitm.edu.my/faculties/fsg/drjj1.tml

2 Steam Power Plant Example: A steam power cycle. Combustion Products Fuel Steam Turbe Mecanical Energy to Generator Air Pump Heat Excanger Coolg Water System System Boundary for for Termodynamic Analysis

3 Workg fluid: Water Second Law Hig T Res., T H Furnace q q H Purpose: Produce work, W out, ω out Steam Power Plant ω net,out q out q L Low T Res., T L Water from river An Energy-Flow diagram for a SPP

4 Second Law Dream Enge Wat is te maximum performance of real enges if it can never acieve 100%?? Carnot Cycle P - ν diagram for a Carnot (ideal) power plant P, kpa 1 q 4 desired output η required put 3 η rev q q q ω out net q,out rev q out ν, m 3 /kg

5 Second Law Will a Process Happen Carnot Prciples For eat enges contact wit te same ot and cold reservoir P1: η 1 η η 3 (Equality) P: η real < η rev (Inequality) Consequence q L TL q H TH rev (K) (K) ; η rev 1 q q L H rev ηreal η rev 1 Processes satisfyg Carnot Prciples obeys te Second Law of Termodynamics T T L H (K) (K)

6 Second Law Will a Process Happen Clausius Inequality : Sum of Q/T a cyclic process must be zero for reversible processes and negative for real processes δq kj δq kj 0, 0, T K T kg K δq 0, reversible T δq < 0, real T δq > 0, impossible T

7 Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. Isolated systems FIGURE 6-6 Te entropy cange of an isolated system is te sum of te entropy canges of its components, and is never less tan zero. 6-3

8 S Entropy Quantifyg Disorder Increase of Entropy Prciple closed system isolated Te entropy of an isolated (closed and adiabatic) system undergog any process, will always crease. S eat For pure substance: and Ten S gen + S gen S sys + S S sys m(s s1 ) S surr ( Q Q ) T out surr m( s s1 ) + surr surr 0 ( ) Q T surr net, Surroundg System

9 Entropy Quantifyg Disorder Entropy Balance for any general system For any system undergog any process, Energy must be conserved (E E out E sys ) Mass must be conserved (m m out m sys ) Entropy will always be generated except for reversible processes Entropy balance is (S S out + S gen S sys )

10 Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. Entropy Transfer FIGURE 6-61 Mecanisms of entropy transfer for a general system. 6-18

11 Entropy Quantifyg Disorder Entropy Balance Steady-flow device Q S Q out + W W out S out + S gen Ssys m ϑ 0 out So, m ϑ S gen, kw S out S Ten: S gen S eat + S mass S eat + S mass out Q out Q gen + m s m s Tout exit T S let

12 Turbe: Entropy Quantifyg Disorder Entropy Balance Steady-flow device Q out + W W out m ( ϑexit ϑlet ), kw Q Assume adiabatic, ke mass 0, pe mass 0 Entropy Balance S gen S gen were m m W m( ) out 4 3, kw Q out kw + m 4 s4 m 3 s3, out T K Q T ( s s ) m 4 3, m let kw K exit Out In,3

13 Q Entropy Quantifyg Disorder Entropy Balance Steady-flow device Mixg Camber: Q out + W W out m ϑ exit m ϑ Q Q out + W W out m3 3 m m1 1 Q out Q kw S gen + m 3 s3 m s m1 s1, Tout T K were m let m exit 1 let,, kw kw 3

14 Steam Power Plant Vapor Cycle External combustion Fuel (q H ) from nuclear reactors, natural gas, carcoal Workg fluid is H O Ceap, easily available & ig entalpy of vaporization fg Cycle is closed termodynamic cycle Alternates between liquid and gas pase Can Can Carnot cycle be used for representg real SPP?? Aim: To decrease ratio of T L /T H

15 Vapor Cycle Carnot Cycle Efficiency of a Carnot Cycle SPP TL ηrev 1 1 T H 0.55 TL ηrev 1 1 T H 0.67

16 Vapor Cycle Carnot Cycle Impracticalities of Carnot Cycle T, C T crit T H T L q q H qout ql Isotermal expansion: T H limited to only T crit for H O. Hig moisture at turbe exit Not economical to design pump to work -pase (end of Isotermal compression) No assurance can get same x for every cycle (end of Isotermal compression) s 1 s s 3 s 4 s, kj/kg K

17 Vapor Cycle Alternate Carnot Cycle T H Impracticalities of Alternate Carnot Cycle T, C T crit T L q q H Still Problematic Isotermal expansion but at variable pressure Pump to very ig pressure Can te boiler susta te ig P? s 1 s q out q L s 3 s 4 s, kj/kg K

18 Vapor Cycle Ideal Ranke Cycle Overcomg Impracticalities of Carnot Cycle Supereat Supereat te H O at a constant pressure (isobaric expansion) Can easily acieve desired T H iger tan T crit. reduces moisture content at turbe exit Remove all excess eat at condenser Pase is sat. liquid at condenser exit, ence need only a pump to crease pressure Quality is zero for every cycle at condenser exit (pump let)

19 Vapor Cycle Ideal Ranke Cycle Workg fluid: Water Hig T Res., T H Furnace q q H Boiler ω Pump Turbe ω out q -q out ω out - ω Condenser q out q L Low T Res., T L Water from river q -q out ω net,out A Scematic diagram for a Steam Power Plant

20 Vapor Cycle Ideal Ranke Cycle T- s diagram for an Ideal Ranke Cycle T H T crit T, C q q H boiler P H 3 turbe P L T sat@p ω out T L T sat@p4 ω pump 1 s 1 s q out q L condenser 4 s 3 s 4 s, kj/kg K

21 Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 9- Te simple ideal Ranke cycle. 9-

22 Vapor Cycle Ideal Ranke Cycle Energy Analysis In, q q H Out,3 Boiler Assume ke 0, pe 0 for te movg mass, kj/kg q q out + ω ω out θ out θ, kj/kg q exit let, kj/kg q 3, kj/kg Q m( 3 ), kj Q m ( ), kw 3

23 Vapor Cycle Ideal Ranke Cycle Energy Analysis Assume ke 0, pe 0 for te movg mass, kj/kg q q out + ω ω out θ out θ, kj/kg 0 q out exit let -q out 1 4, Out,1 Condenser In,4 So, q out 4 1, kj/kg Q out m( 4 1), kj q out q L ( ) kw Q out m 4 1,

24 Vapor Cycle Ideal Ranke Cycle Energy Analysis In,3 q q out + ω ω out θ out θ, kj/kg Turbe ω out ω out exit let, kj/kg - ω out 4 3, kj/kg So, ω out 3 4, kj/kg Out,4 W out m( 3 4), kj W out m ( ), kw 3 4 Assume ke 0, pe 0 for te movg mass, kj/kg

25 Vapor Cycle Ideal Ranke Cycle Energy Analysis Out, q q out + ω ω out θ out θ, kj/kg ω 0 exit let, kj/kg ω 1, kj/kg For reversible pumps were ω ω pump pump,, ν ω Pdν + νdp ν ν 1 ν f So, W m( 1), kj 1 ( P ) P1 P 1 W m ν 1 Pump dp In,1 ( ), kw 1

26 Vapor Cycle Ideal Ranke Cycle Energy Analysis Efficiency η η ω ω net q net q,out,out q ω η q out 3 q q out ω ( ) 4 1 ( ) 1

27 Vapor Cycle Ideal Ranke Cycle T- s diagram for an Ideal Ranke Cycle T H T crit T, C q q H Note tat P 1 P 4 boiler P H 3 turbe P L s 1 s f@p1 1 f@p1 s 3 T sat@p L T sat@p4 pump ω 1 s 1 s q out q L condenser 4 s 3 s 4 ω out s 4 [s f +xs fg s 3 x s 3 s 4 [ f +x fg s, kj/kg K s f P P 4 1 +ν (P P 1 ); were ν ν 1 ν P 1

28 Vapor Cycle Ideal Ranke Cycle Energy Analysis Increasg Efficiency Must crease ω net,out q q out Increase area under process cycle Decrease condenser pressure; P 1 P 4 P m > P sat@tcoolg+10 deg C Supereat T 3 limited to metullargical strengt of boiler Increase boiler pressure; P P 3 Will decrease quality (an crease moisture). Mimum x is 89.6%.

29 Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 9-6 Te effect of lowerg te condenser pressure on te ideal Ranke cycle. Lowerg Condenser Pressure 9-4

30 Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 9-7 Te effect of supereatg te steam to iger temperatures on te ideal Ranke cycle. Supereatg Steam 9-5

31 Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. Increasg Boiler Pressure FIGURE 9-8 Te effect of creasg te boiler pressure on te ideal Ranke cycle. 9-6

32 FIGURE 9-10 T-s diagrams of te tree cycles discussed Example 9 3. Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9-8

33 Vapor Cycle Reeat Ranke Cycle Hig T Reservoir, T H ω Pump 1 q q H Boiler q reeat Hig P turbi ne Low P turbi ne ω out,1 ω out, Condenser 6 q out q L Low T Reservoir, T L

34 FIGURE 9-11 Te ideal reeat Ranke cycle. Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9-9

35 Vapor Cycle Reeat Ranke Cycle Reeatg creases η and reduces moisture turbe T, C q reeat 5-4 T 3 5 H T q primary 3 - crit P 3 P 4 P ω 5 out T sat@p3 T ω sat@p4 out, II P 6 P 1 4 T L T sat@p1 1 ω q out s, kj/kg K s 1 s s 3 s 4 s 5 s 6

36 Vapor Cycle Reeat Ranke Cycle Energy Analysis q q primary +q reeat q out 6-1 ω net,out ω out,1 + ω out, - ω η ω net,out q q q q out ( ) η ω net, out q ω out1 + ω q out ω

37 Vapor Cycle Reeat Ranke Cycle Energy Analysis were s 6 [s f +xs fg Use x and s 5 s 6 6 [ f +x fg Knowg s 5 and T 5, P 5 needs to be estimated (usually approximately a quarter of P 3 to ensure x is around 89%. On te property table, coose P 5 so tat te entropy is lower tan s 5 above. Ten can fd

38 Vapor Cycle Reeat Ranke Cycle Energy Analysis were s 1 s f@p1 1 f@p1 s 3 s ν (P P 1 ); were ν ν 1 ν P 1 P 5 P 4. From P 4 and s 4, lookup for 4 te table. If not found, ten do terpolation.

39 Copyrigt Te McGraw-Hill Companies, Inc. Permission required for reproduction or display. Supercritical Ranke Cycle FIGURE 9-9 A supercritical Ranke cycle. 9-7

Thermodynamics Lecture Series

Thermodynamics Lecture Series Thermodynamics Lecture Series Second Law uality of Energy Applied Sciences Education Research Group (ASERG) Faculty of Applied Sciences Universiti Teknologi MARA email: drjjlanita@hotmail.com http://www.uitm.edu.my/faculties/fsg/drjj.html

More information

Quotes. Review - First Law. Review - First Law. Review - First Law. Review - First Law. Thermodynamics Lecture Series

Quotes. Review - First Law. Review - First Law. Review - First Law. Review - First Law. Thermodynamics Lecture Series 8//005 herodynaics ecture Series Entropy uantifyg Energy Degradation Applied Sciences Education Research Group (ASERG) Faculty of Applied Sciences Universiti eknologi MARA eail: drjjlanita@hotail.co http://www3.uit.edu.y/staff/drjj/

More information

Lecture 38: Vapor-compression refrigeration systems

Lecture 38: Vapor-compression refrigeration systems ME 200 Termodynamics I Lecture 38: Vapor-compression refrigeration systems Yong Li Sangai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Cuan Road Sangai, 200240, P. R. Cina Email

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Thermodynamics ecture Series Reference: Chap 0 Halliday & Resnick Fundamental of Physics 6 th edition Kinetic Theory of Gases Microscopic Thermodynamics Applied Sciences Education Research Group (ASERG)

More information

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Existing Resources: Supplemental/reference for students with thermodynamics background and interests: Existing Resources: Masters, G. (1991) Introduction to Environmental Engineering and Science (Prentice Hall: NJ), pages 15 29. [ Masters_1991_Energy.pdf] Supplemental/reference for students with thermodynamics

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

Applied Thermodynamics. Gas Power Cycles

Applied Thermodynamics. Gas Power Cycles Applied Thermodynamics Gas Power Cycles By: Mohd Yusof Taib Faculty of Mechanical Engineering myusof@ump.edu.my Chapter Description Aims To identify and recognized ideal thermodynamics cycle. To analyze

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals King Fahd University of Petroleum & Minerals Mechanical Engineering Thermodynamics ME 04 BY Dr. Haitham Bahaidarah My Office Office Hours: :00 0:00 am SMW 03:00 04:00 pm UT Location: Building Room # 5.4

More information

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 7 ENTROPY Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction Journal of Modern Pysics, 2017, 8, 1795-1808 ttp://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 arnot Factor of a Vapour Power ycle wit Regenerative Extraction Duparquet Alain

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process: Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;

More information

In the next lecture...

In the next lecture... 16 1 In the next lecture... Solve problems from Entropy Carnot cycle Exergy Second law efficiency 2 Problem 1 A heat engine receives reversibly 420 kj/cycle of heat from a source at 327 o C and rejects

More information

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are . A team poer plant operate on a imple ideal Ranke cycle beteen te peciied preure limit. e termal eiciency o te cycle, te ma lo rate o te team, and te temperature rie o te coolg ater are to be determed.

More information

Special Topic: Binary Vapor Cycles

Special Topic: Binary Vapor Cycles 0- Special opic: Bary Vapor ycle 0- Bary poer cycle i a cycle ic i actually a combation o to cycle; one te ig temperature region, and te oter te lo temperature region. It purpoe i to creae termal eiciency.

More information

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation.

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation. Soln_21 An ordinary household refrigerator operating in steady state receives electrical work while discharging net energy by heat transfer to its surroundings (e.g., the kitchen). a. Is this a violation

More information

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011. Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

More information

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q & 8-4 8-4 Air i compreed teadily by a compreor. e air temperature i mataed contant by eat rejection to te urroundg. e rate o entropy cange o air i to be determed. Aumption i i a teady-low proce ce tere i

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

= for reversible < for irreversible

= for reversible < for irreversible CHAPER 6 Entropy Copyright he McGraw-Hill Companies, Inc. Permission required for reproduction or display. he Clausius Inequality: δ 0 Cyclic integral his inequality is valid for all cycles, reversible

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING Delft University of Technology DEPRTMENT OF EROSPCE ENGINEERING Course: Physics I (E-04) Course year: Date: 7-0-0 Time: 4:00-7:00 Student name and itials (capital letters): Student number:. You have attended

More information

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law Kelv Planck Statement of te Second aw It is imossible to construct an enge wic, oeratg a cycle, will roduce no oter effect tan te extraction of eat from a sgle reservoir and te erformance of an equivalent

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics he Second Law of hermodynamics So far We have studied the second law by looking at its results We don t have a thermodynamic property that can describe it In this chapter we will develop a mathematical

More information

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: T η = T 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent

More information

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037 onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln 0. (a) Sol: Section A A refrigerator macine uses R- as te working fluid. Te temperature of R- in te evaporator coil is 5C, and te gas leaves te compressor as dry saturated at a temperature of 40C. Te mean

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

VI. Entropy. VI. Entropy

VI. Entropy. VI. Entropy A. Introduction. he first law: energy cannot be created or destroyed. he second law: certain processes do occur and certain processes don t 3. he magic vortex tube. Will it work or won t it? Cold air kg

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

= for reversible < for irreversible

= for reversible < for irreversible CAPER 6 Entropy Copyright he McGraw-ill Companies, Inc. Permission required for reproduction or display. he Clausius Inequality: 0 his inequality is valid for all cycles, reversible or irreversible Cycle

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

CLAUSIUS INEQUALITY. PROOF: In Classroom

CLAUSIUS INEQUALITY. PROOF: In Classroom Chapter 7 ENTROPY CLAUSIUS INEQUALITY PROOF: In Classroom 2 RESULTS OF CLAUSIUS INEQUALITY For internally reversible cycles δq = 0 T int rev For irreversible cycles δq < 0 T irr A quantity whose cyclic

More information

Solutions to Homework #10

Solutions to Homework #10 Solution to Homeork #0 0-6 A teady-lo Carnot enge it ater a te orkg luid operate at peciied condition. e termal eiciency, te preure at te turbe let, and te ork put are to be determed. Aumption Steady operatg

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Spring_#8. Thermodynamics. Youngsuk Nam

Spring_#8. Thermodynamics. Youngsuk Nam Spring_#8 Thermodynamics Youngsuk Nam ysnam1@khu.ac.krac kr Ch.7: Entropy Apply the second law of thermodynamics to processes. Define a new property called entropy to quantify the secondlaw effects. Establish

More information

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft SIMPLE RANKINE CYCLE um boiler exander condener Steady Flow, Oen Sytem - region ace Steady Flow Energy Equation for Procee m (u Pum Proce,, Boiler Proce,, V ρg) 0, 0, Exanion Proce,, 0, Condener Proce,,

More information

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS S. I. Abdel-Khalik (2014) 1 CHAPTER 6 -- The Second Law of Thermodynamics OUTCOME: Identify Valid (possible) Processes as those that satisfy both the first and

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

Physics 202 Homework 5

Physics 202 Homework 5 Physics 202 Homework 5 Apr 29, 2013 1. A nuclear-fueled electric power plant utilizes a so-called boiling water reac- 5.8 C tor. In this type of reactor, nuclear energy causes water under pressure to boil

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

Chapter 7: The Second Law of Thermodynamics

Chapter 7: The Second Law of Thermodynamics Chapter 7: he Second Law of hermodynamics he second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity he first law places no

More information

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 5 Higher Nationals in Engineering (RQF) Unit 64: Thermofluids Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Vapour Power Cycles Page 1 of 26 2.1 Power Cycles Unit

More information

Number of extra papers used if any

Number of extra papers used if any Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Fall 2018 Exam Circle your structor s last name Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division 2 (9:0): Choi

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas.

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Content Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Entropy can be viewed as a measure of molecular disorder, or molecular randomness. As a system becomes

More information

Basic thermodynamics. heat to the high temperature reservoir.

Basic thermodynamics. heat to the high temperature reservoir. Consider a heat engine that is operating in a cyclic process takes heat (QH) from a high temperature reservoir & converts completely into work (W), violating the Kelvin Planck statement. Let the work W,

More information

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION June 19, 2015 2:30 pm - 4:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Permitted

More information

Availability and Irreversibility

Availability and Irreversibility Availability and Irreversibility 1.0 Overview A critical application of thermodynamics is finding the maximum amount of work that can be extracted from a given energy resource. This calculation forms the

More information

CHAPTER. The First Law of Thermodynamics: Closed Systems

CHAPTER. The First Law of Thermodynamics: Closed Systems CHAPTER 3 The First Law of Thermodynamics: Closed Systems Closed system Energy can cross the boundary of a closed system in two forms: Heat and work FIGURE 3-1 Specifying the directions of heat and work.

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

Lecture 29-30: Closed system entropy balance

Lecture 29-30: Closed system entropy balance ME 200 Thermodynamics I Spring 2016 Lecture 29-30: Closed system entropy balance Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 200240, P.

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances Canges f ure Substances 6-0C Yes, because an ternally reversible, adiabatic prcess vlves n irreversibilities r eat transfer. 6- e radiatr f a steam eatg system is itially filled wit supereated steam. e

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka)

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 10 Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 1 In this chapter we will discuss how heat devices work Heat devices convert heat into work or work into heat and include heat engines

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

ME 200 Thermodynamics 1 Fall 2017 Exam 3

ME 200 Thermodynamics 1 Fall 2017 Exam 3 ME 200 hermodynamics 1 Fall 2017 Exam Circle your structor s last name Division 1: Naik Division : Wassgren Division 6: Braun Division 2: Sojka Division 4: Goldenste Division 7: Buckius Division 8: Meyer

More information

Compressor 1. Evaporator. Condenser. Expansion valve. CHE 323, October 8, Chemical Engineering Thermodynamics. Tutorial problem 5.

Compressor 1. Evaporator. Condenser. Expansion valve. CHE 323, October 8, Chemical Engineering Thermodynamics. Tutorial problem 5. CHE 33, October 8, 014. Cemical Engineering Termodynamics. Tutorial problem 5. In a simple compression refrigeration process, an adiabatic reversible compressor is used to compress propane, used as a refrigerant.

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

Thermodynamics [ENGR 251] [Lyes KADEM 2007]

Thermodynamics [ENGR 251] [Lyes KADEM 2007] CHAPTER V The first law of thermodynamics is a representation of the conservation of energy. It is a necessary, but not a sufficient, condition for a process to occur. Indeed, no restriction is imposed

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib

More information

Chapter 4. Entropy and the Second Law. Soong Ho Um Sungkyunkwan University Chemical Engineering

Chapter 4. Entropy and the Second Law. Soong Ho Um Sungkyunkwan University Chemical Engineering Chapter 4. Entropy and the Second Law Soong Ho Um Sungkyunkwan University Chemical Engineering 1 st Law to 2 nd Law The first law, discussed in the previous chapter, expresses a fundamental principle,

More information

Second Law of Thermodynamics -

Second Law of Thermodynamics - Second Law of Thermodynamics - REVIEW ENTROPY EXAMPLE Dr. Garrick 1/19/09 First Law of Thermodynamics you can t win! First Law of Thermodynamics: Energy cannot be Created or Destroyed the total energy

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

Name: I have observed the honor code and have neither given nor received aid on this exam.

Name: I have observed the honor code and have neither given nor received aid on this exam. ME 235 FINAL EXAM, ecember 16, 2011 K. Kurabayashi and. Siegel, ME ept. Exam Rules: Open Book and one page of notes allowed. There are 4 problems. Solve each problem on a separate page. Name: I have observed

More information

III. Evaluating Properties. III. Evaluating Properties

III. Evaluating Properties. III. Evaluating Properties F. Property Tables 1. What s in the tables and why specific volumes, v (m /kg) (as v, v i, v f, v g ) pressure, P (kpa) temperature, T (C) internal energy, u (kj/kg) (as u, u i, u f, u g, u ig, u fg )

More information

v v = = Mixing chamber: = 30 or, = s6 Then, and = 52.4% Turbine Boiler process heater Condenser 7 MPa Q in 0.6 MPa Q proces 10 kpa Q out

v v = = Mixing chamber: = 30 or, = s6 Then, and = 52.4% Turbine Boiler process heater Condenser 7 MPa Q in 0.6 MPa Q proces 10 kpa Q out 0-0- A cogeneration plant i to generate poer and proce eat. art o te team extracted rom te turbe at a relatively ig preure i ued or proce eatg. e poer produced and te utilization actor o te plant are to

More information

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: Div. 5 7:30 am Div. 2 10:30 am Div. 4 12:30 am Prof. Naik Prof. Braun Prof. Bae Div. 3 2:30 pm Div. 1 4:30 pm Div. 6 4:30 pm Prof. Chen Prof.

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines QuickCheck 19.11 The efficiency of this Carnot heat engine is A. Less than 0.5. B. 0.5. C. Between 0.5 and 1.0. D. 2.0. E. Can t say without knowing Q H. 2013 Pearson Education,

More information

Lecture 9. Heat engines. Pre-reading: 20.2

Lecture 9. Heat engines. Pre-reading: 20.2 Lecture 9 Heat engines Pre-reading: 20.2 Review Second law when all systems taking part in a process are included, the entropy remains constant or increases. No process is possible in which the total entropy

More information

ME Thermodynamics I

ME Thermodynamics I HW-6 (5 points) Given: Carbon dioxide goes through an adiabatic process in a piston-cylinder assembly. provided. Find: Calculate the entropy change for each case: State data is a) Constant specific heats

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics During an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.

More information

NEWCOMEN ATMOSPHERIC ENGINE

NEWCOMEN ATMOSPHERIC ENGINE NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m F 7 stroke 5 sia steam 8 50 F water NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m 5 sia steam 8 F 50 F water 7

More information

FUNDAMENTALS OF THERMODYNAMICS

FUNDAMENTALS OF THERMODYNAMICS FUNDAMENTALS OF THERMODYNAMICS SEVENTH EDITION CLAUS BORGNAKKE RICHARD E. SONNTAG University of Michigan John Wiley & Sons, Inc. PUBLISHER ASSOCIATE PUBLISHER ACQUISITIONS EDITOR SENIOR PRODUCTION EDITOR

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information