Local Atomic Structure and Chemical Bonds of Zinc Sulfide and Selenide Nanostructures in Porous Aluminum Oxide Matrices

Size: px
Start display at page:

Download "Local Atomic Structure and Chemical Bonds of Zinc Sulfide and Selenide Nanostructures in Porous Aluminum Oxide Matrices"

Transcription

1 ISSN , Bulletin of the Russian Academy of Sciences. Physics, 2015, Vol. 79, No. 9, pp Allerton Press, Inc., Original Russian Text R.G. Valeev, A.N. Beltukov, V.V. Kriventsov, N.A. Mezentsev, A.I. Chukavin, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 9, pp Local Atomic Structure and Chemical Bonds of Zinc Sulfide and Selenide Nanostructures in Porous Aluminum Oxide Matrices R. G. Valeev a, b, A. N. Beltukov a, V. V. Kriventsov c, N. A. Mezentsev d, and A. I. Chukavin a a Physicotechnical Institute, Ural Branch, Russian Academy of Sciences, Izhevsk, Russia b Udmurt State University, Izhevsk, Russia c Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia d Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia rishatvaleev@mail.ru Abstract The local atomic structure and chemical bonds of ZnSe and ZnS nanocomposites are studied. Both materials are obtained via thermal evaporation of the materials powder onto porous matrices of anodic aluminum oxide and polycorr substrates. The mechanism responsible for the formation of the local atomic structure and the chemical bonds of zinc sulfide and selenide is studied. Relative to the films on polycorr surfaces, changes in the local atomic structure are observed in the materials obtained in porous matrices because of the difference between the mechanisms of condensation. DOI: /S INTRODUCTION Even though zinc sulfide and selenide have long studied thoroughly as materials used in semi-conducting engineering, nanostructures based on them (e.g., nanoparticles in oxide matrices) are still of great interest to researchers [1, 2]. In addition, methods have been developed in recent decades that enable us to obtain spatially correlated and ordered nanostructures whose properties are the coherent result of those of individual particles. The properties of materials are determined at the local atomic level: the presence or absence of longrange ordering considerably affects the electronic structure of semiconductors [3]. A dielectric matrix in which nanosize particles can form produces such nanoscale effects as dangling chemical bonds, resulting in the unique optical and electrical properties of semiconductor dielectric nanocomposites [4]. Gathering information on the parameters of local atomic environments (chemical bond lengths and coordination numbers) for specific atoms should thus help to explain those that are expanded relative to continuous (films and single crystals) media. In addition, the type of chemical bonds changes considerably (from covalent to partially ionic) upon moving from germanium to gallium arsenide and zinc selenide in the isoelectronic series. EXPERIMENTAL Aluminum oxide films with highly ordered pores were synthesized via twin-stage anodic oxidation [5]. The semi-conductors were sputtered onto porous surfaces via anodic abrasion and the resistive evaporation of polycrystalline powder in a high (10 5 Pa) vacuum [6]. Semiconductive films were simultaneously sputtered onto smooth polycorr surfaces to create the test samples. The local atomic structure of films was investigated via extended X-ray absorption fine structure (EXAFS) spectroscopy at the Siberian Center of Synchrotron and Terahertz Radiation (Novosibirsk) [7]. The VEPP-3 accelerating ring with its electron beam energy of 2 GeV and average current of 80 ma was used as our source of X-ray radiation. A (111)Si crystal was used for monochromatic radiation. EXAFS spectra were recorded using the fluorescence yield mode on the absorption К-edge E K specific to each of the studied materials and with a scanning pitch of 1.5 ev. For zinc selenide, E K was 9659 ev (for Zn) and ev (for Se); the energy was scanned over the ranges of ev and ev, respectively. For zinc sulfide, E K was 9659 ev and the energy was scanned over the range of ev. Spectra of the К-edge for sulfur were not obtained, since excitation in the soft X-ray region was needed for their registration, and this was not possible on the VEPP-3. Our EXAFS spectra were preliminarily treated using the standard technique in [8, 9]. The correlation functions and their parameters (chemical bond lengths and coordination numbers) were determined from the normalized oscillating parts of the χ(k) function by Fourier fitting over a k-space range of

2 1192 VALEEV et al Å 1 using the VIPER software [10]. Analysis of the resulting functions allowed us to determine the chemical bond lengths and coordination numbers for the first two coordination spheres. The chemical bonds were studied by X-ray photoelectron spectroscopy (XPS) using a SPECS spectrometer (Germany). The spectra were excited with Al K α radiation (E = ev). Before recording the spectrum, each sample s surface was cleaned for 5 min via Ar + ion etching at an energy of 4 kev and a current density of 30 µa. This was sufficient for the complete removal of surface impurities. We obtained both full spectra and spectra of the principal elements for all samples. RESULTS AND DISCUSSION 200 nm Fig. 1. Scanning electron microscopy image of our sample of zinc selenide nanostructure, obtained in the matrix of porous anodic aluminum oxide with a pore diameter of 40 nm. Zinc selenide The typical SEM pattern of nanostructured zinc selenide after removal of the porous anodic aluminum oxide matrix (pore diameter, 40 nm) is shown in Fig. 1. As can be seen, the nanostructures are threads and points formed by thread breakage and have diameters equal to those of the matrix pores. Analysis of the chemical composition and chemical bonds of ZnSe nanostructures in porous aluminum oxide revealed (Fig. 2) that the free surface contained adsorbed hydrocarbon impurities and adsorbed oxygen. The carbon concentration was as high as at % in the near-surface layers 1 3 nm thick. It did not exceed Intensity, arb. units Zn2p 3/2 Se3d O1s C1s Zn3s Zn3d Zn3p Se3d Zn LMV, LMM Fig. 2. XPS of nanostructured zinc selenide in the Al 2 O 3 matrix.

3 LOCAL ATOMIC STRUCTURE AND CHEMICAL BONDS 1193 Fourier transforms, arb. units K-edge Zn (c) (b) (a) 3 5% at depths of 8 10 nm, and there was no oxygen at these depths. The selenium : zinc ratio after removing the modified superthin surface layer corresponded almost exactly to the equiatomic ZnSe composition. The bonding energy for the Se3d line coincided with that of its metallic compounds. E bond of Se3d line exceeds the value typical of pure zinc, while the chemical shift is greater than the one characteristic of standard ZnO oxide. We may therefore conclude that our E bond of Zn2p and Se3d are is also that of ZnSe compound. Figure 3 shows the Fourier transforms of normalized oscillating parts of the absorption spectra at the Zn and Se К-edges for zinc selenide, obtained via thermal sputtering into matrix pores and onto smooth Al 2 O 3 surfaces. Fourier fitting allowed us to calculate the interatomic distances and coordination numbers for the first coordination spheres of the local atomic environments of Zn and Se atoms. The results are shown in Table 1. Under normal conditions, zinc selenide has a cubic (zincblende-type) crystalline structure in which each Zn and Se atom has four Se or Zn atoms, respectively, in its immediate environment. In our case, no changes in the interatomic distances were observed for ZnSe on either porous or smooth substrate surfaces, while the coordination number grew for zinc selenide implanted into the matrix. In addition, the Fourier transforms and table data show that there is an inverse redistribution of Zn and Se atoms between the first and the second coordination spheres for smooth films and zinc selenide, and for films inside the porous Al 2 O 3 matrix. In a smooth film, the first coordination sphere contains more zinc atoms and fewer atoms of selenium, while the second has more selenium atoms. The opposite is true for zinc selenide in porous aluminum oxide, due possibly to the formation of zinc selenide on the substrate occuring in parallel with atomic dissociation during reevaporation from the substrate. Zinc Sulfide K-edge Se R, Å R, Å Fig. 3. Fourier transforms of EXAFS spectra for the Zn and Se К-edges: (a) FEFF model; (b) ZnSe film on polycorr; (c) ZnSe in the porous Al 2 O 3 matrix. According to XPS results, the free surface of this sample contained adsorbed hydrocarbon impurities and adsorbed oxygen. The carbon impurities appeared to have been completely removed after 1 min of etching, (Fig. 4, plane spectrum). The energy bonding values for the S2p line agree with those of its metallic Table 1. Parameters of the ZnSe local atomic environment Sample R 1, Å N 1 R 2, Å N 2 Crystallography FEFF model ZnSe in the Al 2 O 3 matrix ZnSe film on polycorr 2.45 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.5 (1) Zn Se (top) and Se Zn (bottom) atomic pairs; (2) Zn Zn (top) and Se Se (bottom) atomic pairs.

4 1194 VALEEV et al. Intensity, arb. units S2p Zn2p 3/2 Zn2p Zn3s O1s Zn LVV Zn3p S2p Fig. 4. XPS of nanostructured zinc sulfide in the porous Al 2 O 3 matrix. compounds. E bond of the Zn2p 3/2 line is within the range typical of ZnS, and Zn : S ratio is almost equal to the equiatomic ratio. The Fourier transforms for ZnS in the porous aluminum oxide are close to the model, and we can see a bend in the range of the third coordination sphere while only two coordination spheres can be found for the film (Fig. 5). It follows from Table 2 that the parameters of the local atomic environment in ZnS Al 2 O 3 are also closer to being crystallographic than those of the film; this can be explained by the different mechanisms of growth for the films on the smooth aluminum oxide surface and the nanostructures in matrix. Table 2. Parameters of the ZnS local atomic environment Sample R 1, Å N 1 R 2, Å Crystallography FEFF model 2.34 ± ± ± 0.05 ZnS in the Al 2 O 3 matrix 2.33 ± ± ± 0.05 ZnS film on polycorr 2.33 ± ± ± 0.05 (1) Zn S; (2) Zn Zn atomic pairs.

5 LOCAL ATOMIC STRUCTURE AND CHEMICAL BONDS 1195 Fourier transforms, arb. units closed volume (Al 2 O 3 matrix pores), due to the higher probability of eventual collisions and the time one component is near another. Sulfur and selenium evaporate much more easily from a flat open surface than from a porous matrix. It is probably this factor that determines the established features of the formation of local structure and the nonstoichiometry of zinc sulfide and selenide nanostructures in the channels of porous matrices R, Å Fig. 5. Fourier transforms of normalized oscillating parts of the EXAFS spectra for the Zn К-edge. (a) FEFF model; (b) ZnS film on polycorr; (c) ZnS in the porous Al 2 O 3 matrix. CONCLUSIONS The deposition of semiconductor materials into the channels of a porous aluminum oxide matrix is promising in terms of their possible use in photonic and micro- and nanoelectronic devices. The mechanism behind the formation of local atomic structure can be quite complex, depending on the number of components in a material and the origin of its matrix. The likelihood of interaction between vapor components and the formation of a chemical compound is higher with a two-component vapor in a closed or partially (c) (b) (a) ACKNOWLEDGMENTS This work was performed on equipment of the Center for Collective use at the Siberian Center for Synchrotron and Terahertz Radiation. It was supported by the RF Ministry of Education and Science; by the Ural branch of the Russian Academy of Sciences, project nos. 12-S and 12-P ; by the Presidium of the Russian Academy of Sciences, project nos and 24.3; and by the Russian Foundation for Basic Research. REFERENCES 1. Taghavinia, N. and Yao, Y., Phys. E, 2004, vol. 21, p Shi, L., Xu, Y.M., and Li, Q., Nanotechnology, 2005, vol. 16, p Gorbachev, V.V. and Spitsyna, L.G., Fizika poluprovodnikov i metallov (Physics of Semiconductors and Metals), Moscow: Metallurgiya, Yuan, J.N., He, F.Y., Sun, D.C., et al., Chem. Mater., 2004, vol. 16, p Masuda, H. and Satoh, M., Jpn. J. Appl. Phys., Part 2, 1996, vol. 35, p. L Valeev, R.G., Krylov, P.N., and Romanov, E.A., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2007, vol. 1, p Kulipanov, G.N., Ancharov, A.I., Antokhin, E.I., et al., in Brilliant Light in Life and Material Sciences, Tsakanov, V. and Wiedemann, H., Eds., Springer, 2007, p Kochubey, D.I., EXAFS spektroskopiya v katalize (EXAFS Spectroscopy in Catalysis), Novosibirsk: Nauka, Zabinsky, S.I., Rehr, J.J., Ankudinov, A., et al., Phys. Rev. B, 1995, vol. 52, p viper.html Translated by O. Maslova

LOCAL ATOMIC STRUCTURE OF ZINC SELENIDE FILMS: EXAFS DATA INTRODUCTION UDC 538.9

LOCAL ATOMIC STRUCTURE OF ZINC SELENIDE FILMS: EXAFS DATA INTRODUCTION UDC 538.9 Journal of Structural Chemistry, Vol. 49, Supplement, pp. S124-S128, 2008 Original Russian Text Copyright 2008 by R. G. Valeev,. N. Deev, F. Z. Gilmutdinov, S. G. Bystrov,. I. Pivovarova, É.. Romanov,

More information

Low-dimensional NbO structures on the Nb(110) surface: scanning tunneling microscopy, electron spectroscopy and diffraction

Low-dimensional NbO structures on the Nb(110) surface: scanning tunneling microscopy, electron spectroscopy and diffraction Low-dimensional NbO structures on the Nb(110) surface: scanning tunneling microscopy, electron spectroscopy and diffraction A.S. Razinkin, E.V. Shalaeva and M.V. Kuznetsov Institute of Solid State Chemistry,

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Spin-resolved photoelectron spectroscopy

Spin-resolved photoelectron spectroscopy Spin-resolved photoelectron spectroscopy Application Notes Spin-resolved photoelectron spectroscopy experiments were performed in an experimental station consisting of an analysis and a preparation chamber.

More information

structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting Information

structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting Information At the interface between organic radicals and TiO 2 (110) single crystals: electronic structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Gas Sensors and Solar Water Splitting. Yang Xu

Gas Sensors and Solar Water Splitting. Yang Xu Gas Sensors and Solar Water Splitting Yang Xu 11/16/14 Seite 1 Gas Sensor 11/16/14 Seite 2 What are sensors? American National Standards Institute (ANSI) Definition: a device which provides a usable output

More information

The characterization of MnO nanostructures synthesized using the chemical bath deposition method

The characterization of MnO nanostructures synthesized using the chemical bath deposition method The characterization of MnO nanostructures synthesized using the chemical bath deposition method LF Koao 1, F B Dejene 1* and HC Swart 2 1 Department of Physics, University of the Free State (Qwaqwa Campus),

More information

ToF-SIMS or XPS? Xinqi Chen Keck-II

ToF-SIMS or XPS? Xinqi Chen Keck-II ToF-SIMS or XPS? Xinqi Chen Keck-II 1 Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Not ToF MS (laser, solution) X-ray Photoelectron Spectroscopy (XPS) 2 3 Modes of SIMS 4 Secondary Ion Sputtering

More information

Auger Electron Spectroscopy Overview

Auger Electron Spectroscopy Overview Auger Electron Spectroscopy Overview Also known as: AES, Auger, SAM 1 Auger Electron Spectroscopy E KLL = E K - E L - E L AES Spectra of Cu EdN(E)/dE Auger Electron E N(E) x 5 E KLL Cu MNN Cu LMM E f E

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012830 TITLE: XPS Study of Cu-Clusters and Atoms in Cu/SiO2 Composite Films DISTRIBUTION: Approved for public release, distribution

More information

arxiv: v1 [physics.acc-ph] 1 Apr 2015

arxiv: v1 [physics.acc-ph] 1 Apr 2015 Preprint typeset in JINST style - HYPER VERSION arxiv:1504.00130v1 [physics.acc-ph] 1 Apr 2015 The system for delivery of IR laser radiaton into high vacuum E.V. Abakumova a, M.N. Achasov a,b,, A.A. Krasnov

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment.

Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment. NATIOMEM Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment. R. Grilli *, P. Mack, M.A. Baker * * University of Surrey, UK ThermoFisher Scientific

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Near-surface regions of chalcopyrite (CuFeS 2 ) studied using XPS, HAXPES, XANES and DFT

Near-surface regions of chalcopyrite (CuFeS 2 ) studied using XPS, HAXPES, XANES and DFT 2016 International Conference Synchrotron and Free electron laser Radiation: generation and application, Novosibirsk Near-surface regions of chalcopyrite (CuFeS 2 ) studied using XPS, HAXPES, XANES and

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices

Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices V. W. Ballarotto, K. Siegrist, R. J. Phaneuf, and E. D. Williams University of Maryland and Laboratory for Physical

More information

A DIVISION OF ULVAC-PHI

A DIVISION OF ULVAC-PHI A DIVISION OF ULVAC-PHI X-ray photoelectron spectroscopy (XPS/ESCA) is the most widely used surface analysis technique and has many well established industrial and research applications. XPS provides

More information

Characterization of Semiconductor Detectors of (1 30)-keV Monoenergetic and Backscattered Electrons

Characterization of Semiconductor Detectors of (1 30)-keV Monoenergetic and Backscattered Electrons ISSN 162-8738, Bulletin of the Russian Academy of Sciences: Physics, 28, Vol. 72, No. 11, pp. 1456 1461. Allerton Press, Inc., 28. Original Russian Text A.V. Gostev, S.A. Ditsman, V.V. Zabrodskii, N.V.

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

STUDIES ON ZnS - CuS NANOPARTICLE SYSTEM.

STUDIES ON ZnS - CuS NANOPARTICLE SYSTEM. CHAPTER - VI STUDIES ON ZnS - CuS NANOPARTICLE SYSTEM. 6.1 INTRODUCTION ZnS is an important direct band gap semiconductor. It has a band gap energy of 3.6 ev[1], displays a high refractive index (2.37)

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

Optical Vibration Modes in (Cd, Pb, Zn)S Quantum Dots in the Langmuir Blodgett Matrix

Optical Vibration Modes in (Cd, Pb, Zn)S Quantum Dots in the Langmuir Blodgett Matrix Physics of the Solid State, Vol. 44, No. 0, 2002, pp. 976 980. Translated from Fizika Tverdogo Tela, Vol. 44, No. 0, 2002, pp. 884 887. Original Russian Text Copyright 2002 by Milekhin, Sveshnikova, Repinskiœ,

More information

Lecture 5: Characterization methods

Lecture 5: Characterization methods Lecture 5: Characterization methods X-Ray techniques Single crystal X-Ray Diffration (XRD) Powder XRD Thin film X-Ray Reflection (XRR) Microscopic methods Optical microscopy Electron microscopies (SEM,

More information

Electrochemical Deposition of Iron Nanoparticles on PPY and H terminated Si substrates. Karan Sukhija Co-op Term # 1 April 28 th, 2005

Electrochemical Deposition of Iron Nanoparticles on PPY and H terminated Si substrates. Karan Sukhija Co-op Term # 1 April 28 th, 2005 Electrochemical Deposition of Iron Nanoparticles on PPY and H terminated Si substrates Karan Sukhija Co-op Term # 1 April 28 th, 2005 Future Suggested Experiments Acknowledgments Presentation Outline Background

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction Supporting Information Insights into Interfacial Synergistic Catalysis over Ni@TiO2-x Catalyst toward Water-Gas Shift Reaction Ming Xu, 1 Siyu Yao, 2 Deming Rao, 1 Yiming Niu, 3 Ning Liu, 1 Mi Peng, 2

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201502134 Stable Metallic 1T-WS 2 Nanoribbons Intercalated with Ammonia

More information

Structural and Optical Properties of ZnSe under Pressure

Structural and Optical Properties of ZnSe under Pressure www.stmjournals.com Structural and Optical Properties of ZnSe under Pressure A. Asad, A. Afaq* Center of Excellence in Solid State Physics, University of the Punjab Lahore-54590, Pakistan Abstract The

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

Photocatalysis: semiconductor physics

Photocatalysis: semiconductor physics Photocatalysis: semiconductor physics Carlos J. Tavares Center of Physics, University of Minho, Portugal ctavares@fisica.uminho.pt www.fisica.uminho.pt 1 Guimarães Where do I come from? 3 Guimarães 4 Introduction>>

More information

FINE PATTERN ETCHING OF SILICON USING SR-ASSISTED IONIZATION OF CF4 GAS

FINE PATTERN ETCHING OF SILICON USING SR-ASSISTED IONIZATION OF CF4 GAS Technical Paper Journal of Photopolymer Science and Technology Volume 6, Number 4(1993) 617-624 1993TAPJ FINE PATTERN ETCHING OF SILICON USING SR-ASSISTED IONIZATION OF CF4 GAS YASUO NARA, YosHIHto SUGITA,

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Syllabus Advanced Nano Materials Semiconductor Physics and Devices Textbook Donald A. Neamen (McGraw-Hill) Semiconductor Physics and Devices Seong Jun Kang Department of Advanced Materials Engineering

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

CHEM*3440. X-Ray Energies. Bremsstrahlung Radiation. X-ray Line Spectra. Chemical Instrumentation. X-Ray Spectroscopy. Topic 13

CHEM*3440. X-Ray Energies. Bremsstrahlung Radiation. X-ray Line Spectra. Chemical Instrumentation. X-Ray Spectroscopy. Topic 13 X-Ray Energies very short wavelength radiation 0.1Å to 10 nm (100 Å) CHEM*3440 Chemical Instrumentation Topic 13 X-Ray Spectroscopy Visible - Ultraviolet (UV) - Vacuum UV (VUV) - Extreme UV (XUV) - Soft

More information

EXAFS. Extended X-ray Absorption Fine Structure

EXAFS. Extended X-ray Absorption Fine Structure AOFSRR Cheiron School 2010, SPring-8 EXAFS Oct. 14th, 2010 Extended X-ray Absorption Fine Structure Iwao Watanabe Ritsumeikan University EXAFS Theory Quantum Mechanics Models Approximations Experiment

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

The first three categories are considered a bottom-up approach while lithography is a topdown

The first three categories are considered a bottom-up approach while lithography is a topdown Nanowires and Nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. The common characteristic of these structures is that all they

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

Nanosphere Lithography

Nanosphere Lithography Nanosphere Lithography Derec Ciafre 1, Lingyun Miao 2, and Keita Oka 1 1 Institute of Optics / 2 ECE Dept. University of Rochester Abstract Nanosphere Lithography is quickly emerging as an efficient, low

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy (AES) 1. Introduction Auger Electron Spectroscopy (AES) Silvia Natividad, Gabriel Gonzalez and Arena Holguin Auger Electron Spectroscopy (Auger spectroscopy or AES) was developed in the late 1960's, deriving

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Conductance Measurements The conductance measurements were performed at the University of Aarhus. The Ag/Si surface was prepared using well-established procedures [1, 2]. After

More information

Applications of Micro-Area Analysis Used by JPS-9200 X-ray Photoelectron Spectrometer

Applications of Micro-Area Analysis Used by JPS-9200 X-ray Photoelectron Spectrometer Applications of Micro-Area Analysis Used by JPS-9200 X-ray Photoelectron Spectrometer Yoshitoki Iijima Application & Research Center, JEOL Ltd. Introduction Recently, with advances in the development of

More information

The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements

The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements Uwe Scheithauer, 82008 Unterhaching, Germany E-Mail: scht.uhg@googlemail.com Internet: orcid.org/0000-0002-4776-0678;

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Solid State Spectroscopy Problem Set 7

Solid State Spectroscopy Problem Set 7 Solid State Spectroscopy Problem Set 7 Due date: June 29th, 2015 Problem 5.1 EXAFS Study of Mn/Fe substitution in Y(Mn 1-x Fe x ) 2 O 5 From article «EXAFS, XANES, and DFT study of the mixed-valence compound

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) Lasse Vines 1 Secondary ion mass spectrometry O Zn 10000 O 2 Counts/sec 1000 100 Li Na K Cr ZnO 10 ZnO 2 1 0 20 40 60 80 100 Mass (AMU) 10 21 10 20 Si 07 Ge 0.3 Atomic

More information

Opportunities for Advanced Plasma and Materials Research in National Security

Opportunities for Advanced Plasma and Materials Research in National Security Opportunities for Advanced Plasma and Materials Research in National Security Prof. J.P. Allain allain@purdue.edu School of Nuclear Engineering Purdue University Outline: Plasma and Materials Research

More information

1 Introduction COPYRIGHTED MATERIAL. 1.1 HowdoweDefinetheSurface?

1 Introduction COPYRIGHTED MATERIAL. 1.1 HowdoweDefinetheSurface? 1 Introduction JOHN C. VICKERMAN Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK The surface behaviour of materials

More information

Atomic Level Analysis of SiC Devices Using Numerical Simulation

Atomic Level Analysis of SiC Devices Using Numerical Simulation Atomic Level Analysis of Devices Using Numerical mulation HIRSE, Takayuki MRI, Daisuke TERA, Yutaka ABSTRAT Research and development of power semiconductor devices with (silicon carbide) has been very

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS S.K. Lazarouk, D.A. Sasinovich BELARUSIAN STATE UNIVERSITY OF INFORMATICS AND RADIOELECTRONICS Outline: -- experimental

More information

Determining Chemical Composition. Of Sputtered Uranium Oxide Thin Films. through X-Ray Photoelectron Spectroscopy

Determining Chemical Composition. Of Sputtered Uranium Oxide Thin Films. through X-Ray Photoelectron Spectroscopy Determining Chemical Composition Of Sputtered Uranium Oxide Thin Films through X-Ray Photoelectron Spectroscopy Kristi Adamson Department of Physics & Astronomy Brigham Young University April 2004 Submitted

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

X- ray Photoelectron Spectroscopy and its application in phase- switching device study

X- ray Photoelectron Spectroscopy and its application in phase- switching device study X- ray Photoelectron Spectroscopy and its application in phase- switching device study Xinyuan Wang A53073806 I. Background X- ray photoelectron spectroscopy is of great importance in modern chemical and

More information

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging Supplementary Information to Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging M. B. Gongalsky 1, L.A. Osminkina 1,2, A. Pereira 3, A. A. Manankov 1, A. A. Fedorenko 1, A. N. Vasiliev

More information

Influence of CO 2 and H 2 O on Air Oxidation of Mg Nanoparticles Studied by NEXAFS

Influence of CO 2 and H 2 O on Air Oxidation of Mg Nanoparticles Studied by NEXAFS Paper Influence of CO 2 and H 2 O on Air Oxidation of Mg Nanoparticles Studied by NEXAFS S. Ogawa, 1 * H. Niwa, 1 K. Nakanishi, 2 T. Ohta 2 and S. Yagi 1 1 Nagoya University, Furo-cho, Chikusa-ku, Nagoya,

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Matthew Newville Center for Advanced Radiation Sources University of Chicago 12-Sept-2014 SES VI SES VI 12-Sept-2014 SES VI What Is XAFS? X-ray Absorption Fine-Structure (XAFS)

More information

Local Atomic Structure and Electronic State of ZnS Films Synthesized by Using CBD Technique

Local Atomic Structure and Electronic State of ZnS Films Synthesized by Using CBD Technique Materials Transactions, Vol. 43, No. 7 (2002) pp. 1512 to 1516 Special Issue on Grain Boundaries, Interfaces, Defects and Localized Quantum Structures in Ceramics c 2002 The Japan Institute of Metals Local

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

EELFS SPECTROSCOPY APPLIED TO MATERIALS SCIENCE

EELFS SPECTROSCOPY APPLIED TO MATERIALS SCIENCE EELFS SPECTROSCOPY APPLIED TO MATERIALS SCIENCE A.N. Maratkanova, Yu.V. Ruts, D.V. Surnin, D.E. Guy Physical-Technical Institute, Ural Branch of RAS 132 Kirov St., Izhevsk 426000 Abstract In this paper

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry Yoko Tada Kunihiro Suzuki Yuji Kataoka (Manuscript received December 28, 2009) As complementary metal oxide

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Effect of Surface Contamination on Solid-State Bondability of Sn-Ag-Cu Bumps in Ambient Air

Effect of Surface Contamination on Solid-State Bondability of Sn-Ag-Cu Bumps in Ambient Air Materials Transactions, Vol. 49, No. 7 (28) pp. 18 to 112 Special Issue on Lead-Free Soldering in Electronics IV #28 The Japan Institute of Metals Effect of Surface Contamination on Solid-State Bondability

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Initial stage showing monolayer MoS 2 islands formation on Au (111) surface. a, Scanning tunneling microscopy (STM) image of molybdenum (Mo) clusters deposited

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Crystalline Surfaces for Laser Metrology

Crystalline Surfaces for Laser Metrology Crystalline Surfaces for Laser Metrology A.V. Latyshev, Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Abstract: The number of methodological recommendations has been pronounced to describe

More information

Supplementary Information

Supplementary Information Supplementary Information Bismuth Sulfide Nanoflowers for Detection of X-rays in the Mammographic Energy Range Shruti Nambiar a,b, Ernest K. Osei a,c,d, John T.W.Yeow *,a,b a Department of Systems Design

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

Appearance Potential Spectroscopy

Appearance Potential Spectroscopy Appearance Potential Spectroscopy Submitted by Sajanlal P. R CY06D009 Sreeprasad T. S CY06D008 Dept. of Chemistry IIT MADRAS February 2006 1 Contents Page number 1. Introduction 3 2. Theory of APS 3 3.

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

Muffin-tin potentials in EXAFS analysis

Muffin-tin potentials in EXAFS analysis J. Synchrotron Rad. (5)., doi:.7/s6577555 Supporting information Volume (5) Supporting information for article: Muffin-tin potentials in EXAFS analysis B. Ravel Supplemental materials: Muffin tin potentials

More information

X-ray photoelectron spectroscopic characterization of molybdenum nitride thin films

X-ray photoelectron spectroscopic characterization of molybdenum nitride thin films Korean J. Chem. Eng., 28(4), 1133-1138 (2011) DOI: 10.1007/s11814-011-0036-2 INVITED REVIEW PAPER X-ray photoelectron spectroscopic characterization of molybdenum nitride thin films Jeong-Gil Choi Department

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Transmutation Reaction Induced by Deuterium Permeation Through Nanostructured Multi-layer Thin Film

Transmutation Reaction Induced by Deuterium Permeation Through Nanostructured Multi-layer Thin Film 106 Transmutation Reaction Induced by Deuterium Permeation Through Nanostructured Multi-layer Thin Film SHIGENORI TSURUGA *1 KENJI MUTA *1 YUTAKA TANAKA *2 TADASHI SHIMAZU *3 KOJI FUJIMORI *4 TAKEHIKO

More information

Xps Study of the Oxidation State of Uranium Dioxide

Xps Study of the Oxidation State of Uranium Dioxide https://doi.org/10.15415/jnp.2017.51022 Xps Study of the Oxidation State of Uranium Dioxide J A LÓPEZ 1*, C DÍAZ MORENO 1, J MURILLO 2 AND L ECHEGOYEN 2 1 Department of Physics, University of Texas at

More information

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky 1 Secondary Ion Mass Spectrometry (SIMS) Thomas Sky Depth (µm) 2 Characterization of solar cells 0,0 1E16 1E17 1E18 1E19 1E20 0,2 0,4 0,6 0,8 1,0 1,2 P Concentration (cm -3 ) Characterization Optimization

More information

The Use of Synchrotron Radiation in Modern Research

The Use of Synchrotron Radiation in Modern Research The Use of Synchrotron Radiation in Modern Research Physics Chemistry Structural Biology Materials Science Geochemical and Environmental Science Atoms, molecules, liquids, solids. Electronic and geometric

More information

Nanoporous GaN-Ag Composite Materials Prepared by Metal-Assisted Electroless Etching

Nanoporous GaN-Ag Composite Materials Prepared by Metal-Assisted Electroless Etching Supporting Information for Nanoporous GaN-Ag Composite Materials Prepared by Metal-Assisted Electroless Etching for Direct Laser Desorption-Ionization Mass Spectrometry Bei Nie a,, Barrett K. Duan a and

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax:

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax: Curriculum Vitae Lionel Santinacci 19.10.1974 Nationality: French Südliche Stadtmauerstr. 15a Tel: + 49 9131 852 7587 D-91054 Erlangen Fax: + 49 9131 852 7582 Germany e-mail: lionel@ww.uni-erlangen.de

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis Introduction to XAFS Part 1: What is XAFS? What does it tell us? The EXAFS equation Part 2: Basic steps in the analysis Quick overview of typical analysis Tomorrow Measurement methods and examples The

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information