X-ray Absorption Spectroscopy

Size: px
Start display at page:

Download "X-ray Absorption Spectroscopy"

Transcription

1 X-ray Absorption Spectroscopy Matthew Newville Center for Advanced Radiation Sources University of Chicago 12-Sept-2014 SES VI SES VI 12-Sept-2014 SES VI

2 What Is XAFS? X-ray Absorption Fine-Structure (XAFS) is the modulation of the x-ray absorption coefficient at energies near and above an X-ray absorption edge. XAFS is also called X-ray Absorption Spectroscopy (XAS), and is broken into 2 energy regimes: XANES EXAFS X-ray Absorption Near-Edge Spectroscopy Extended X-ray Absorption Fine-Structure which contain related, but slightly different information about an element s local coordination and chemical state. XAFS Characteristics: local atomic coordination chemical / oxidation state applies to any element works at low concentrations minimal sample requirements Fe K-edge XAFS for FeO. Introduction to X-ray Absorption SES VI 12-Sept-2014

3 X-Ray Absorption X-rays are absorbed by all matter through the photo-electric effect: photoelectron An atom absorbs an x-ray when the x-ray energy is transferred to a core-level electron (K, L, or M shell). The atom is left in an excited state with a core hole an empty electronic level. Any excess energy from the x-ray is given to an ejected photo-electron. conduction band valence band E vacuum E Fermi 3d M 4, M 5 3p M 2, M 3 3s M 1 2p L 2, L 3 2s L 1 X-ray Energy 1s K Introduction to X-ray Absorption SES VI 12-Sept-2014

4 The X-ray Absorption Coefficient: µ The intensity of an x-ray beam passing through a material of thickness t is given by the absorption coefficient µ: I = I 0e µt I0 I t where I 0 is the x-ray intensity hitting the material, and I is the intensity transmitted through the material. Introduction to X-ray Absorption SES VI 12-Sept-2014

5 The X-ray Absorption Coefficient: µ The intensity of an x-ray beam passing through a material of thickness t is given by the absorption coefficient µ: I = I 0e µt I0 I t where I 0 is the x-ray intensity hitting the material, and I is the intensity transmitted through the material. µ depends strongly on x-ray energy E atomic number Z, and also on density ρ, and Atomic mass A: µ ρz 4 AE 3 Introduction to X-ray Absorption SES VI 12-Sept-2014

6 The X-ray Absorption Coefficient: µ The intensity of an x-ray beam passing through a material of thickness t is given by the absorption coefficient µ: I = I 0e µt I0 I t where I 0 is the x-ray intensity hitting the material, and I is the intensity transmitted through the material. µ depends strongly on x-ray energy E atomic number Z, and also on density ρ, and Atomic mass A: µ ρz 4 AE 3 Plus: µ has sharp Absorption Edges corresponding to the characteristic core-level energies of the atom. Introduction to X-ray Absorption SES VI 12-Sept-2014

7 X-ray Absorption Measurements µ(e) can be measured two ways: Transmission measure what is transmitted through the sample: I = I 0e µ(e)t Appropriate for concentration samples: 10 wt.%. Fluorescence measure fluorescent x-rays from the re-filling the core hole: µ(e) I f /I 0 Appropriate for dilute elements: 2 wt.% (to ppm, or so). We need a measurement of µ(e) to 0.1%, but with an energy-tunable x-ray source, the measurements are fairly easy. X-ray Absorption Measurements SES VI 12-Sept-2014

8 X-ray Absorption Measurements µ(e) can be measured two ways: Transmission measure what is transmitted through the sample: I = I 0e µ(e)t Appropriate for concentration samples: 10 wt.%. Fluorescence measure fluorescent x-rays from the re-filling the core hole: µ(e) I f /I 0 Appropriate for dilute elements: 2 wt.% (to ppm, or so). We need a measurement of µ(e) to 0.1%, but with an energy-tunable x-ray source, the measurements are fairly easy. X-ray Absorption Measurements SES VI 12-Sept-2014

9 Absorption Edge Energies of the Elements The energies of the K shell absorption edges for the elements go roughly as E K Z 2. Elements with Z > 18 have K-, or L-edge between 2 and 35 kev, which can be accessed at many synchrotron sources. Lower Z elements (softer x-rays) can be measured as well, but may require working in vacuum. X-ray Absorption Measurements SES VI 12-Sept-2014

10 XANES: X-ray Absorption Near-Edge Spectra XANES gives chemical state and oxidation state. Cr K-edge for Cr 3+ and Cr 6+ As K-edge for As 3+ and As 5+ XANES SES VI 12-Sept-2014

11 XANES: X-ray Absorption Near-Edge Spectra XANES gives chemical state and oxidation state. Cr K-edge for Cr 3+ and Cr 6+ As K-edge for As 3+ and As 5+ Analyzing XANES: 1. Linearly combine known spectra to match measured spectra. 2. ab initio calculations to map features to electronic density of states. XANES SES VI 12-Sept-2014

12 Fe K-edge XANES Edge shifts and Heights and positions of pre-edge peaks can also determine valence state. Fe K-edge XANES for several compounds. XANES can be used to fingerprint chemical and mineral phases. XANES SES VI 12-Sept-2014

13 S K-edge XANES XANES of low-z elements are particularly sensitive to oxidation state. XANES SES VI 12-Sept-2014

14 XANES calculation: SF 6 A simple ab initio XANES calculation (from FEFF8) can model principle features and show sensitivity to structural changes: SF 6 : an octahedral coordination with bond length 1.54 Å. An off-center distortion hybridizes the d and p electron levels, giving the resonance near 2507 ev. ab initio calculations are qualitately useful, but generally not quite accurate enough for quantitative analysis. XANES SES VI 12-Sept-2014

15 EXAFS: Extended X-ray Absorption Fine Structure We re interested in the energy oscillations in µ(e), as these will tell us something about the neighboring atoms. We define the EXAFS as: µ(e) = µ 0(E)[1 + χ(e)] χ(e) = µ(e) µ0(e) µ 0(E 0) Subtract off a smooth bare atom background µ 0(E), and divide by the edge step µ 0(E 0) to get the oscillations normalized to 1 absorption event: µ(e) and smooth µ 0(E) for FeO χ(e) for FeO, with E 0 = 7122 ev. EXAFS SES VI 12-Sept-2014

16 EXAFS: χ(k) and XAFS Fourier Transforms XAFS is an interference effect, using the wave-nature of the photo-electron. We express the XAFS in terms of photo-electron wavenumber, k: 2m(E E0) k = 2 We ll also then use Fourier Transforms to convert from k to R. k 2 χ(k) for FeO Fourier Transform χ(r) for FeO. Similar to a Pair Distribution Function from scattering techniques. EXAFS SES VI 12-Sept-2014

17 The EXAFS Equation To model the EXAFS, we use the EXAFS Equation: χ(k) = j N j f j (k)e 2R j /λ(k) e 2k2 σj 2 sin[2kr j + δ j (k)] kr j 2 where f (k) and δ(k) are photo-electron scattering properties of the neighboring atom [and λ(k) is the photo-electron mean-free-path]. If we know these properties, we can determine: EXAFS SES VI 12-Sept-2014

18 The EXAFS Equation To model the EXAFS, we use the EXAFS Equation: χ(k) = j N j f j (k)e 2R j /λ(k) e 2k2 σj 2 sin[2kr j + δ j (k)] kr j 2 where f (k) and δ(k) are photo-electron scattering properties of the neighboring atom [and λ(k) is the photo-electron mean-free-path]. If we know these properties, we can determine: R distance to neighboring atom. N coordination number of neighboring atom. σ 2 mean-square disorder of neighbor distance. EXAFS SES VI 12-Sept-2014

19 The EXAFS Equation To model the EXAFS, we use the EXAFS Equation: χ(k) = j N j f j (k)e 2R j /λ(k) e 2k2 σj 2 sin[2kr j + δ j (k)] kr j 2 where f (k) and δ(k) are photo-electron scattering properties of the neighboring atom [and λ(k) is the photo-electron mean-free-path]. If we know these properties, we can determine: R distance to neighboring atom. N coordination number of neighboring atom. σ 2 mean-square disorder of neighbor distance. f (k) and δ(k) depend on atomic number Z of the scattering atom, so we can also determine the species of the neighboring atom. EXAFS SES VI 12-Sept-2014

20 Scattering Amplitude and Phase-Shift The scattering amplitude f (k) and phase-shift δ(k) depend on atomic number. f (k) extends to higher k values for higher Z elements. For very heavy elements, there is structure in f (k). EXAFS SES VI 12-Sept-2014

21 Scattering Amplitude and Phase-Shift The scattering amplitude f (k) and phase-shift δ(k) depend on atomic number. f (k) extends to higher k values for higher Z elements. For very heavy elements, there is structure in f (k). δ(k) shows sharp changes for very heavy elements. These functions can be calculated for modeling EXAFS. EXAFS SES VI 12-Sept-2014

22 Scattering Amplitude and Phase-Shift The scattering amplitude f (k) and phase-shift δ(k) depend on atomic number. f (k) extends to higher k values for higher Z elements. For very heavy elements, there is structure in f (k). δ(k) shows sharp changes for very heavy elements. These functions can be calculated for modeling EXAFS. Z can usually be determined to ±5. Fe and O can be distinguished, but Fe and Mn cannot be. EXAFS SES VI 12-Sept-2014

23 EXAFS Analysis Example: Modeling the 1st Shell of FeO FeO has a rock-salt structure. To model the FeO EXAFS, we ll calculate the scattering amplitude f (k) and phase-shift δ(k), based on a guess of the structure, with Fe-O distance R = 2.14 Å (a regular octahedral coordination). We ll use these functions to refine the values R, N, σ 2, and E 0 so our model EXAFS function matches our data. Fit results: N = 5.8 ± 1.8 R = 2.10 ± 0.02Å E 0 = -3.1 ± 2.5 ev σ 2 = ± Å 2. χ(r) for FeO data and 1 st shell fit. EXAFS Example: FeO SES VI 12-Sept-2014

24 EXAFS Analysis: 1st Shell of FeO 1 st shell fit in k space. The 1 st shell fit to FeO in k space. There is clearly another component in the XAFS! EXAFS Example: FeO SES VI 12-Sept-2014

25 EXAFS Analysis: 1st Shell of FeO 1 st shell fit in k space. The 1 st shell fit to FeO in k space. There is clearly another component in the XAFS! 1 st shell fit in R space. χ(r) and Re[χ(R)] for FeO (blue), and a 1 st shell fit (red). Though the fit to the magnitude didn t look great, the fit to Re[χ(R)] looks very good. EXAFS Example: FeO SES VI 12-Sept-2014

26 EXAFS Analysis: Second Shell of FeO Adding the second shell Fe to the model, with f (k) and δ(k) for Fe-Fe, and refining R, N, σ 2 : χ(r) data for FeO (blue), and fit of 1 st and 2 nd shells (red). These results are consistent with the known values for FeO: 6 O at 2.13Å, 12 Fe at 3.02Å. EXAFS Example: FeO SES VI 12-Sept-2014

27 EXAFS Analysis: Second Shell of FeO Adding the second shell Fe to the model, with f (k) and δ(k) for Fe-Fe, and refining R, N, σ 2 : χ(r) data for FeO (blue), and fit of 1 st and 2 nd shells (red). These results are consistent with the known values for FeO: 6 O at 2.13Å, 12 Fe at 3.02Å. Fit results: Statistics: R χ 2 ν 100. Shell N R (Å) σ 2 (Å 2 ) E 0 (ev) Fe-O 6.0(1.0) 2.10(.02) 0.015(.003) -2.1(0.8) Fe-Fe 11.7(1.3) 3.05(.02) 0.014(.002) -2.1(0.8) EXAFS Example: FeO SES VI 12-Sept-2014

28 EXAFS Analysis: Second Shell of FeO Adding the second shell Fe to the model, with f (k) and δ(k) for Fe-Fe, and refining R, N, σ 2 : χ(r) data for FeO (blue), and fit of 1 st and 2 nd shells (red). These results are consistent with the known values for FeO: 6 O at 2.13Å, 12 Fe at 3.02Å. Fit results: Statistics: R χ 2 ν 100. Shell N R (Å) σ 2 (Å 2 ) E 0 (ev) Fe-O 6.0(1.0) 2.10(.02) 0.015(.003) -2.1(0.8) Fe-Fe 11.7(1.3) 3.05(.02) 0.014(.002) -2.1(0.8) These are typical even for a very good fit on known structures. The calculation for f (k) and δ(k) are good, but not perfect! EXAFS Example: FeO SES VI 12-Sept-2014

29 EXAFS Analysis: Second Shell of FeO Other views of the data and fit: The Fe-Fe EXAFS extends to higher-k than the Fe-O EXAFS. Even in this simple system, there is some overlap of shells in R-space. The agreement in Re[χ(R)] look especially good this is how the fits are done. Of course, the modeling can get more complicated than this! EXAFS Example: FeO SES VI 12-Sept-2014

30 XANES/EXAFS Spatial and Concentration Ranges Sensitivities and time required for X-ray Spectroscopy measurements from a X-ray microprobe: Measurement Result Concentration Resolution Time µ-xrf Abundances < 1 ppm 1 µm 10 sec XRF Mapping Relative abundances 5 ppm 1 µm 50 msec µ-xanes oxidation state 10 ppm 2 µm 10 min µ-xafs 1 st neighbor distance 50 ppm 5 µm 60 min The more the energy changes, and the more time required, the worse the spatial resolution is. These are estimates of typical-to-best conditions for soil samples, and can vary greatly. MicroXAS SES VI 12-Sept-2014

31 µxanes Primary vs. diagenetic sulfur phases in bryozoan fossils Carbonate fossils have up to 1000 ppm sulfate, carrying a record of the sulfur content of the ancient. S isotope analysis are highly variable and suggest a late deposition of S. XRF map of 3mm section of a bryozoan fossil from the Ordovician era (450 Myears ago) - 5 µm pixels, 30 msec/pt, repeated at 2 incident energies to emphasize sulfide (red), sulfate (blue) and silicon (green). David Fike, Catherine Rose, Jeff Catalano (Washington Univ) S µxanes at several spots confirms localized sulfide grains - probably detrital sulfides - while most of the fossil is dominated by sulfate. MicroXAS SES VI 12-Sept-2014

32 µxafs Sr in coral aragonite Sr concentration in corals has been used as a paleothermometer. Over what lengthscale is this valid? XRF maps of 0.3mm section of a natural coral of Ca (top) and Sr (bottom) show diurnal variation in [Sr] / [Ca] ratio on a 10 micron scale. Nicola Allison, Adrian Finch (Univ St. Andrews) Sr µ-xafs shows that coral trap Sr in aragonite without precipitating SrCO 3, even when [Sr] > above the solubility limit of Sr in aragonite. MicroXAS SES VI 12-Sept-2014

33 High Energy-Resolution Fluorescence XAFS and XANES are heavily used in environmental sciences, element-specific probes of chemical state for any species. Minimal sample requirements. Work at relatively low concentrations (ppm). Require tunable, monochromatic X-rays synchrotron. MicroXAS SES VI 12-Sept-2014

34 High Energy-Resolution Fluorescence XAFS and XANES are heavily used in environmental sciences, element-specific probes of chemical state for any species. Minimal sample requirements. Work at relatively low concentrations (ppm). Require tunable, monochromatic X-rays synchrotron. High (Energy) resolution X-ray Fluorescence (K β ) give chemical information comparable to XANES. Element-specific, minimal sample constraints, as XAS. Scan/analyze emission energy with 1 ev resolution, not incident energy! Currently photon-starved measurements, so fairly high concentrations. detector/analyzer-limited, not intrinsic. Useful for environmental science? MicroXAS SES VI 12-Sept-2014

An Introduction to XAFS

An Introduction to XAFS An Introduction to XAFS Matthew Newville Center for Advanced Radiation Sources The University of Chicago 21-July-2018 Slides for this talk: https://tinyurl.com/larch2018 https://millenia.cars.aps.anl.gov/gsecars/data/larch/2018workshop

More information

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis Part II Fundamentals of X-ray Absorption Fine Structure: data analysis Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Page 1 S. Pascarelli HERCULES 2016 Data Analysis: EXAFS

More information

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30 Today s Outline - April 07, 2015 C. Segre (IIT) PHYS 570 - Spring 2015 April 07, 2015 1 / 30 Today s Outline - April 07, 2015 PHYS 570 days at 10-ID C. Segre (IIT) PHYS 570 - Spring 2015 April 07, 2015

More information

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis Introduction to XAFS Part 1: What is XAFS? What does it tell us? The EXAFS equation Part 2: Basic steps in the analysis Quick overview of typical analysis Tomorrow Measurement methods and examples The

More information

Solid State Spectroscopy Problem Set 7

Solid State Spectroscopy Problem Set 7 Solid State Spectroscopy Problem Set 7 Due date: June 29th, 2015 Problem 5.1 EXAFS Study of Mn/Fe substitution in Y(Mn 1-x Fe x ) 2 O 5 From article «EXAFS, XANES, and DFT study of the mixed-valence compound

More information

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln X-ray Absorption Spectroscopy Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln Interaction of X-rays with matter Incident X-ray beam Fluorescent X-rays (XRF) Scattered

More information

An Introduction to X- ray Absorption Spectroscopy

An Introduction to X- ray Absorption Spectroscopy An Introduction to X- ray Absorption Spectroscopy Paul Fons National Institute of Advanced Industrial Science & Technology paul-fons@aist.go.jp to Share -- to copy, distribute, and transmit the work to

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97 Introduction to XAFS Grant Bunker Associate Professor, Physics Illinois Institute of Technology Revised 4/11/97 2 tutorial.nb Outline Overview of Tutorial 1: Overview of XAFS 2: Basic Experimental design

More information

EXAFS. Extended X-ray Absorption Fine Structure

EXAFS. Extended X-ray Absorption Fine Structure AOFSRR Cheiron School 2010, SPring-8 EXAFS Oct. 14th, 2010 Extended X-ray Absorption Fine Structure Iwao Watanabe Ritsumeikan University EXAFS Theory Quantum Mechanics Models Approximations Experiment

More information

Basics of EXAFS Processing

Basics of EXAFS Processing Basics of EXAFS Processing Shelly Kelly 2009 UOP LLC. All rights reserved. X-ray-Absorption Fine Structure Attenuation of x-rays It= I0e-µ(E) x Absorption coefficient µ(e) If/I0 2 File Number X-ray-Absorption

More information

Speciation of Actinides Using XAFS

Speciation of Actinides Using XAFS Speciation of Actinides Using XAFS Part I Tobias Reich Johannes Gutenberg-Universität Mainz Institut für Kernchemie Ringvorlesung des GRK Elementspeziation im SS 2006 Mainz, 4.9.2006 Outline Introduction

More information

Anatomy of an XAFS Measurement

Anatomy of an XAFS Measurement Anatomy of an XAFS Measurement Matt Newville Consortium for Advanced Radiation Sources University of Chicago Experiment Design Transmission v. Fluorescence modes X-ray detectors Data Collection Strategies

More information

Fundamentals of X-ray Absorption Fine Structure

Fundamentals of X-ray Absorption Fine Structure UNDERGRADUATE SUMMER SCHOOL, ESRF, SEPTEMBER 16 Fundamentals of X-ray Absorption Fine Structure Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Page Undergraduate summer school

More information

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL Basics of EXAFS data analysis Shelly Kelly Argonne National Laboratory, Argonne, IL X-ray-Absorption Fine Structure APS monochromator slits Sample I 0 I t Ion Chambers I f Attenuation of x-rays I t = I

More information

Introduction of X-ray Absorption Near Edge Structure (XANES)

Introduction of X-ray Absorption Near Edge Structure (XANES) Introduction of X-ray Absorption Near Edge Structure (XANES) 2012 년 2 월 29 일 11:00 11:50 Eun Suk Jeong February 29-March 1, 2012 xafs school Outline 1. Introduction of XANES 2. Structural and chemical

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Muffin-tin potentials in EXAFS analysis

Muffin-tin potentials in EXAFS analysis J. Synchrotron Rad. (5)., doi:.7/s6577555 Supporting information Volume (5) Supporting information for article: Muffin-tin potentials in EXAFS analysis B. Ravel Supplemental materials: Muffin tin potentials

More information

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL Basics of EXAFS data analysis Shelly Kelly Argonne National Laboratory, Argonne, IL X-ray-Absorption Fine Structure NSLS monochromator slits Sample I 0 I t Ion Chambers I f Attenuation of x-rays I t =

More information

Introduction to EXAFS data analysis. Shelly D. Kelly Argonne National Laboratory

Introduction to EXAFS data analysis. Shelly D. Kelly Argonne National Laboratory Introduction to EXAFS data analysis Shelly D. Kelly Argonne National Laboratory Data processing overview Absorption data Crystal structures (Atoms) Background subtracted EXAFS data (IFEFFIT) Theoretical

More information

Doped lithium niobate

Doped lithium niobate Chapter 6 Doped lithium niobate Figure 6.1: a) An iron-doped LiNbO 3 crystal has been illuminated for days with a light stripe. As a result, a region with deficit of Fe 2+ (more Fe 3+ ) and saturated with

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1 Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1.1 What is EXAFS? X-ray absorption fine structure (EXAFS, XAFS) is an oscillatory modulation in the X-ray absorption coefficient on the high-energy

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

X-ray absorption spectroscopy

X-ray absorption spectroscopy X-ray absorption spectroscopy Prof. Hugh H. Harris Department of Chemistry The University of Adelaide hugh.harris@adelaide.edu.au AOFSRR - synchrotron school May 30, 2017 1 Outline X-ray absorption spectroscopy

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

Introduction to X-ray Absorption Spectroscopy, Extended X-ray Absorption Fine Structure

Introduction to X-ray Absorption Spectroscopy, Extended X-ray Absorption Fine Structure Mini-school X-ray Absorption Spectroscopy Introduction to X-ray Absorption Spectroscopy, Extended X-ray Absorption Fine Structure Martin C. Feiters, IMM, HG 03.021, Radboud University Heijendaalsweg 153,

More information

XANES Measurements and Interpretation

XANES Measurements and Interpretation XANES Measurements and Interpretation Simon R. Bare UOP LLC, Des Plaines, IL simon.bare@uop.com Page 1 Miscellaneous: E to k k = (2m(E-E 0 )/h 2 ) ½ k = (0.2625 x [E-E 0 ]) ½ W L 3 -edge XANES of tungsate

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Determining partial pair distribution functions X-ray absorption spectroscopy (XAS). Atoms of different elements have absorption edges at different energies. Structure

More information

Chapter 1 Introduction to X-Ray Absorption Spectroscopy

Chapter 1 Introduction to X-Ray Absorption Spectroscopy Chapter 1 Introduction to X-Ray Absorption Spectroscopy Claudia S. Schnohr and Mark C. Ridgway X-ray Absorption Spectroscopy (XAS) is a well-established analytical technique used extensively for the characterization

More information

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 Outline Generation/Absorption of X-rays History Synchrotron Light Sources Data reduction/analysis Examples Crystallite size from Coordination Number

More information

Using synchrotron radiation to study catalysis

Using synchrotron radiation to study catalysis Using synchrotron radiation to study catalysis Carlo Segre Physics Department & Center for Synchrotron Radiation Research and Instrumentation Illinois Institute of Technology March 18, 2014 Illinois Institute

More information

Lecture 5: Characterization methods

Lecture 5: Characterization methods Lecture 5: Characterization methods X-Ray techniques Single crystal X-Ray Diffration (XRD) Powder XRD Thin film X-Ray Reflection (XRR) Microscopic methods Optical microscopy Electron microscopies (SEM,

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

ADVANCED APPLICATIONS OF SYNCHROTRON RADIATION IN CLAY SCIENCE

ADVANCED APPLICATIONS OF SYNCHROTRON RADIATION IN CLAY SCIENCE CMS WORKSHOP LECTURES Volume 19 ADVANCED APPLICATIONS OF SYNCHROTRON RADIATION IN CLAY SCIENCE THE CLAY MINERALS SOCIETY Joseph W. Stucki, Series Editor and Editor in Chief University of Illinois Urbana,

More information

General introduction to XAS

General introduction to XAS General introduction to XAS Júlio Criginski Cezar LNLS - Laboratório Nacional de Luz Síncrotron CNPEM - Centro Nacional de Pesquisa em Energia e Materiais julio.cezar@lnls.br 5 th School on X-ray Spectroscopy

More information

Lecture 23 X-Ray & UV Techniques

Lecture 23 X-Ray & UV Techniques Lecture 23 X-Ray & UV Techniques Schroder: Chapter 11.3 1/50 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

An introduction to X-ray Absorption Fine Structure Spectroscopy

An introduction to X-ray Absorption Fine Structure Spectroscopy An introduction to X-ray Absorption Fine Structure Spectroscopy Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France sakura@esr.r S. Pascarelli An Introduction to XAFS - Cheiron

More information

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France X-RAY ABSORPTION SPECTROSCOPY: FUNDAMENTALS AND SIMPLE MODEL OF EXAFS Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Part I: Fundamentals o X-ray Absorption Fine Structure:

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL Zerovalent Iron with High Sulfur Content Enhances the Formation of Cadmium Sulfide in Reduced Paddy Soils Yohey Hashimoto 1*, Mitsuhiro Furuya 1, Noriko Yamaguchi 2*, and Tomoyuki

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

X-ray absorption spectroscopy

X-ray absorption spectroscopy X-ray absorption spectroscopy Jagdeep Singh Jeroen A. van Bokhoven Absorption as function of energy of the x-ray Data-analysis Absorption (a.u.) 2.0 Pre-edge subtraction 1.5 1.0 0.5 0.0-0.5 8800 9000 9200

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

Korrelationsfunktionen in Flüssigkeiten oder Gasen

Korrelationsfunktionen in Flüssigkeiten oder Gasen Korrelationsfunktionen in Flüssigkeiten oder Gasen mittlere Dichte Relaxationszeit T 0 L. Van Hove, Phys. Rev. 95, 249 (1954) Inelastische und quasielastische Streuung M. Bée, Chem. Phys. 292, 121 (2003)

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Instrumentelle Analytik in den Geowissenschaften (PI)

Instrumentelle Analytik in den Geowissenschaften (PI) 280061 VU MA-ERD-2 Instrumentelle Analytik in den Geowissenschaften (PI) Handoutmaterial zum Vorlesungsteil Spektroskopie Bei Fragen bitte zu kontaktieren: Prof. Lutz Nasdala, Institut für Mineralogie

More information

Analysis of Soils and Minerals Using X-ray Absorption Spectroscopy

Analysis of Soils and Minerals Using X-ray Absorption Spectroscopy Chapter 14 Analysis of Soils and Minerals Using X-ray Absorption Spectroscopy S. D. KELLY, Argonne National Laboratory, Argonne, Illinois D. HESTERBERG, North Carolina State University, Raleigh, North

More information

X-ray Spectroscopy. Lecture plan. A Critical Look at the Past Accomplishments and Future Prospects. Proposal body not more than 5 pages

X-ray Spectroscopy. Lecture plan. A Critical Look at the Past Accomplishments and Future Prospects. Proposal body not more than 5 pages X-ray Spectroscopy A Critical Look at the Past Accomplishments and Future Prospects James Penner-Hahn jeph@umich.edu Room 243 Monday Wednesday 3-5 PM and by appointment http://www.chem.usyd.edu.au/~penner_j/index.htm

More information

3. EXAFS Data Analysis using Athena 2012 년 2 월 29 일 13:30 14:20

3. EXAFS Data Analysis using Athena 2012 년 2 월 29 일 13:30 14:20 3. EXAFS Data Analysis using Athena 2012 년 2 월 29 일 13:30 14:20 IFEFFIT package FEFFIT Fit χ(k) data to the theoretical calculations of FEFF, and assess the errors in the fitting parameters. The fitting

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

RDCH 702 Lecture 8: Accelerators and Isotope Production

RDCH 702 Lecture 8: Accelerators and Isotope Production RDCH 702 Lecture 8: Accelerators and Isotope Production Particle generation Accelerator Direct Voltage Linear Cyclotrons Synchrotrons Photons * XAFS * Photonuclear Heavy Ions Neutrons sources Fission products

More information

X-ray Spectroscopy Theory Lectures

X-ray Spectroscopy Theory Lectures TIMES Lecture Series SIMES-SLAC-Stanford Winter, 2017 X-ray Spectroscopy Theory Lectures J. J. Rehr I. Introduction to the Theory of X-ray spectra II. Real-space Green's function Theory and FEFF III. Inelastic

More information

CHEM*3440. X-Ray Energies. Bremsstrahlung Radiation. X-ray Line Spectra. Chemical Instrumentation. X-Ray Spectroscopy. Topic 13

CHEM*3440. X-Ray Energies. Bremsstrahlung Radiation. X-ray Line Spectra. Chemical Instrumentation. X-Ray Spectroscopy. Topic 13 X-Ray Energies very short wavelength radiation 0.1Å to 10 nm (100 Å) CHEM*3440 Chemical Instrumentation Topic 13 X-Ray Spectroscopy Visible - Ultraviolet (UV) - Vacuum UV (VUV) - Extreme UV (XUV) - Soft

More information

X-Ray interactions With Superheavy Atoms. Pavlo Baranov Queens College Advisor: John Rehr August 18 th, 2016

X-Ray interactions With Superheavy Atoms. Pavlo Baranov Queens College Advisor: John Rehr August 18 th, 2016 X-Ray interactions With Superheavy Atoms Pavlo Baranov Queens College Advisor: John Rehr August 18 th, 2016 1 Table of Contents Introduction XAFS Theory Project 1: XANES of element Z = 130 Thomson Scattering

More information

X-ray Absorption at the Near-edge and Its Applications

X-ray Absorption at the Near-edge and Its Applications X-ray Absorption at the Near-edge and Its Applications Faisal M Alamgir faisal@msegatechedu School of Materials Science and Engineering, Georgia Institute of Technology Cartoon of XAS ln(i 0 /I t ) or

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy (AES) 1. Introduction Auger Electron Spectroscopy (AES) Silvia Natividad, Gabriel Gonzalez and Arena Holguin Auger Electron Spectroscopy (Auger spectroscopy or AES) was developed in the late 1960's, deriving

More information

X-ray Fluorescence Imaging Following Synchrotron Beam Excitation

X-ray Fluorescence Imaging Following Synchrotron Beam Excitation Conference on Applied Digital Imaging Techniques for Understanding the Palimpsest X-ray Fluorescence Imaging Following Synchrotron Beam Excitation Uwe Bergmann Stanford Synchrotron Radiation Laboratory

More information

Comparative XAFS studies of some Cobalt complexes of (3-N- phenyl -thiourea-pentanone-2)

Comparative XAFS studies of some Cobalt complexes of (3-N- phenyl -thiourea-pentanone-2) Journal of Physics: Conference Series PAPER OPEN ACCESS Comparative XAFS studies of some Cobalt complexes of (3-N- phenyl -thiourea-pentanone-2) To cite this article: Namrata soni et al 2016 J. Phys.:

More information

XANES Measurements and Interpretation

XANES Measurements and Interpretation XANES Measurements and Interpretation Simon R. Bare UOP LLC, Des Plaines, IL simon.bare@uop.com Page 1 Acronyms XANES X-ray Absorption Near Edge Structure NEXAFS Near-Edge X-ray Absorption Fine Structure

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE Jay D. Bourke Postdoctoral Fellow in X-ray Science! School of Physics,! University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts Zhiqiang Niu 1, Nigel Becknell 1, Yi Yu 1,2, Dohyung Kim 3, Chen Chen 1,4, Nikolay Kornienko 1, Gabor A.

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~pchemlab ; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

XAS analysis on nanosystems

XAS analysis on nanosystems XAS analysis on nanosystems Félix Jiménez-Villacorta Spanish CRG Beamline (SpLine) ESRF XLIV Zakopane School of Physics Breaking Frontiers: Submicron Structures in Physics and Biology May-2009 1 XAS analysis

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

1. Introduction A glass material is now widely and commonly used not only in our life but also in industrial field due to the valuable properties. Par

1. Introduction A glass material is now widely and commonly used not only in our life but also in industrial field due to the valuable properties. Par Local structure of Mg in Na 2 O-MgO-B 2 O 3 glasses A. Yamada 1, 2 *, S. Izumi 2, K. Mitsuhara 3, S. Yoshida 1, 2, J. Matsuoka 2 1 Center for Glass Science and Technology, The University of Shiga Prefecture,

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Characterisation of vibrational modes of adsorbed species

Characterisation of vibrational modes of adsorbed species 17.7.5 Characterisation of vibrational modes of adsorbed species Infrared spectroscopy (IR) See Ch.10. Infrared vibrational spectra originate in transitions between discrete vibrational energy levels of

More information

XAS: X-ray Absorption Spectroscopy

XAS: X-ray Absorption Spectroscopy XAS: X-ray Absorption Spectroscopy Hwo-Shuenn Sheu hsheu@nsrrc.org.tw NSRRC, Taiwan Malaya University, 2011/12/14-5 1 outline Basic principles for XAS Experimental setup for XAS Applications 2 1 The X-ray

More information

X-Ray Emission Spectroscopy

X-Ray Emission Spectroscopy X-Ray Emission Spectroscopy Axel Knop-Gericke knop@fhi-berlin.mpg.de Core Level Spectroscopy Anders Nilsson. Journal of Electron Spectroscopy and Related Phenomena 126 (2002) 3-42 Creation of core holes

More information

Theory, Interpretation and Applications of X-ray Spectra*

Theory, Interpretation and Applications of X-ray Spectra* REU Seminar University of Washington 27 July, 2015 Theory, Interpretation and Applications of X-ray Spectra* J. J. Rehr et al. A theoretical horror story Starring Fernando Vila & Anatoly Frenkel with J.

More information

UNIVERSIT.. AT BONN Physikalisches Institut

UNIVERSIT.. AT BONN Physikalisches Institut UNIVERSIT.. AT BONN Physikalisches Institut X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals von Tonya Vitova The type and concentration of impurity centers

More information

Appearance Potential Spectroscopy

Appearance Potential Spectroscopy Appearance Potential Spectroscopy Submitted by Sajanlal P. R CY06D009 Sreeprasad T. S CY06D008 Dept. of Chemistry IIT MADRAS February 2006 1 Contents Page number 1. Introduction 3 2. Theory of APS 3 3.

More information

Stabilization of Mercury and Methyl Mercury by Biochars in Water/Sediment Microcosms

Stabilization of Mercury and Methyl Mercury by Biochars in Water/Sediment Microcosms Stabilization of Mercury and Methyl Mercury by Biochars in Water/Sediment Microcosms Peng Liu, Carol Ptacek, David Blowes, Krista Paulson, Jing Ma, and Alana Ou Wang Introduction Department of Earth and

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

Basics of EXAFS Data Analysis

Basics of EXAFS Data Analysis Basics of EXAFS Data Analysis Shelly Kelly EXAFS Analysis 2009 UOP LLC. All rights reserved. Data processing overview Introduction to Artemis Modeling Cu foil Background subtraction using theory Modeling

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation SESAME-JSPS School November 14-16, 2011 Amman, Jordan Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation Shin-ichi Adachi (Photon Factory,

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

Structural aspects. Povo (Trento), Italy. 1 Institute of Physics, Academy of Sciences of the Czech Republic, Prague

Structural aspects. Povo (Trento), Italy. 1 Institute of Physics, Academy of Sciences of the Czech Republic, Prague Structural aspects of B K edge XANES of minerals O. Šipr, 1 A. Šimůnek, 1 J. Vackář, 1 F. Rocca, G. Dalba 3 1 Institute of Physics, Academy of Sciences of the Czech Republic, Prague Istituto di Fotonica

More information

An introduction to X-ray Absorption Spectroscopy. Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

An introduction to X-ray Absorption Spectroscopy. Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France An introduction to X-ray Absorption Spectroscopy Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France S. Pascarelli Joint ICTP-IAEA Workshop - Trieste, 14 1 Outline X-ray Absorption

More information

Contents. 1. Introduction. 2. The Basic Words in XAS. 3. The Experiment and how to do it right. 4. How to Analyze the Data

Contents. 1. Introduction. 2. The Basic Words in XAS. 3. The Experiment and how to do it right. 4. How to Analyze the Data The CAMD XAS Tutorial the very very short tutorial for the chemist, geologist and other non-physicists to basically run a XAS experiment and understand in general how to analyze the data at CAMD. Contents

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy E 9 X-ray Absorption Spectroscopy P. S. Bechthold Institut für Festkörperforschung Forschungszentrum Jülich GmbH Contents Introduction Some X-ray Basics Near Edge and Pre-edge Structures 0 4 EXAFS (Extended

More information

Introduction to XAFS. Applications of X-ray and neutron scattering in biology, chemistry and physics

Introduction to XAFS. Applications of X-ray and neutron scattering in biology, chemistry and physics Introduction to XAFS Applications of X-ray and neutron scattering in biology, chemistry and physics Jonas Andersen, ph.d. student, DTU Chemistry Bastian Brink, ph.d. student, DTU Mechanical Engineering

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

The Use of Synchrotron Radiation in Modern Research

The Use of Synchrotron Radiation in Modern Research The Use of Synchrotron Radiation in Modern Research Physics Chemistry Structural Biology Materials Science Geochemical and Environmental Science Atoms, molecules, liquids, solids. Electronic and geometric

More information

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information

An introduction to X- ray photoelectron spectroscopy

An introduction to X- ray photoelectron spectroscopy An introduction to X- ray photoelectron spectroscopy X-ray photoelectron spectroscopy belongs to a broad class of spectroscopic techniques, collectively called, electron spectroscopy. In general terms,

More information

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1)

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1) Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1) Atoms or molecules are physisorbed into a porous structure

More information