Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc.

Size: px
Start display at page:

Download "Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc."

Transcription

1 Geophysical Exploration in Water Resources Assessment John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc.

2 Presentation Objective Introduce the use of geophysical survey methods to enhance standard site characterization practices and improve the ability to map and delineate water resources for complex and difficult geologic conditions.

3 Overview Brief Background Typical Water Resource Assessment Building a Conceptual Site Model (CSM) Geophysical Survey Methods Practical Application Examples Conclusion/Questions

4 Who Are We? Consulting professionals with geologic, geochemical, geophysical, and engineering backgrounds Focused on the use of geophysics integrated into environmental, engineering, water resources, and construction projects Personnel have performed geophysical surveys since Ryan Brumbaugh John Mundell

5 The Challenge - Geologic Complexity Can cause rapid material property changes in both the lateral and vertical direction in unexpected ways not able to be predicted by classic widely-spaced soil boring and drilling programs. Subsurface data density limits the development of an accurate Conceptual Site Model that can adequately describe groundwater availability.

6 Glacial Terrain Bedrock Terrain Karst Terrain

7 Midwestern Geologic Complexity

8 Geology and Hydrogeology of Marion County Flows, Soils, Urban Wells Glaciers formed landscape Melting glaciers filled areas with sand and gravel = aquifers Drinking water is stored in aquifers

9 THEORETICAL WELLFIELD AREA OPTIMIZATION OF WELLFIELD YIELD BASED ON PUBLISHED AQUIFER CONDITIONS TYPICAL WATER RESOURCE ASSESSMENT PRACTICE

10 WELLFIELD AREA

11 Water Supply Need Is there the potential for aquifers? WELLFIELD AREA

12 Desktop Regional Geologic Study In addition to our one boring, we have some nearby data WELLFIELD AREA

13 Aquifer Characteristics Hydraulic Conductivity, Thickness, 100 ft 100 Wellfield Drilling Program 1 Boring WELLFIELD AREA

14 Aquifer Characteristics Hydraulic Conductivity, Thickness, varies regionally 100 WELLFIELD AREA Wellfield Drilling Program 1 Boring REGIONAL AREA

15 Aquifer Characteristics Hydraulic Conductivity, Thickness, varies regionally WELLFIELD AREA Wellfield Drilling Program 1 Boring REGIONAL AREA

16 Aquifer Characteristics Hydraulic Conductivity, Thickness, varies regionally WELLFIELD AREA Wellfield Drilling Program 1 Boring REGIONAL AREA

17 Aquifer Characteristics 40 Hydraulic Conductivity, Thickness, varies regionally Interpolation of thicknesses WELLFIELD AREA Wellfield Drilling Program 1 Boring REGIONAL AREA

18 Aquifer Characteristics 40 Hydraulic Conductivity, Thickness, varies regionally Interpolation of thicknesses WELLFIELD AREA Wellfield Drilling Program 1 Boring REGIONAL AREA

19 Aquifer Characteristics 40 Hydraulic Conductivity, Thickness, varies regionally Interpolation of thicknesses WELLFIELD AREA Wellfield Drilling Program 1 Boring REGIONAL AREA

20 Aquifer Characteristics WELLFIELD AREA Hydraulic Conductivity, Thickness, varies regionally Interpolation of thicknesses REGIONAL AREA

21 WELL PLACEMENT VERSUS WELLFIELD CONCEPTUAL MODEL Wells are placed in areas of greatest thickness of aquifer material Wells are placed and screened in areas of greatest hydraulic conductivity Wells are spaced at distances sufficient that the effects of overlapping recovery zones are minimized (i.e., maximum separation for the wellfield size)

22 Aquifer Characteristics WELLFIELD AREA Hydraulic Conductivity, Thickness, varies regionally Interpolation of thicknesses REGIONAL AREA

23 Aquifer Characteristics WELLFIELD AREA Hydraulic Conductivity, Thickness, varies regionally Interpolation of thicknesses REGIONAL AREA

24 Aquifer Characteristics Hydraulic Conductivity, Thickness, 100 ft 100 Wellfield Drilling Program 1 Boring WELLFIELD AREA

25 Aquifer Characteristics homogeneous, isotropic Hydraulic Conductivity,,K2 Constant Thickness, 100 ft 100 K2 20 Wellfield Drilling Program 2 Borings WELLFIELD AREA

26 Aquifer Characteristics WELLFIELD AREA Hydraulic Conductivity, Thickness, varies regionally Interpolation of thicknesses 20 K REGIONAL AREA

27 EXISTING PRACTICE SUMMARY Dependence on widely-spaced regional geologic information relative to the aquifer thickness and expected scale of horizontal and vertical stratigraphic changes Its convenient, low-cost, and acceptable when water resources are plentiful and widespread The odds of achieving maximized production from the wellfield is remote

28 THEORETICAL WELLFIELD AREA OPTIMIZATION OF WELLFIELD YIELD BASED ON ACTUAL AQUIFER CONDITIONS BUILDING WATER RESOURCE CONCEPTUAL MODELS

29 Aquifer Characteristics Hydraulic Conductivity, Thickness, 100 ft 100 Wellfield Drilling Program 1 Boring WELLFIELD AREA

30 Aquifer Characteristics homogeneous, isotropic Hydraulic Conductivity, Constant Thickness, 100 ft Wellfield Drilling Program 1 Boring WELLFIELD AREA

31 Aquifer Characteristics homogeneous, isotropic Hydraulic Conductivity, Constant Thickness, 100 ft WELLFIELD AREA

32 Aquifer Characteristics homogeneous, isotropic Hydraulic Conductivity, Constant Thickness, 100 ft WELLFIELD AREA

33 Aquifer Characteristics homogeneous, isotropic Hydraulic Conductivity, Constant Thickness, 100 ft WELLFIELD AREA

34 Aquifer Characteristics homogeneous, isotropic Hydraulic Conductivity, Constant Thickness, 100 ft WELLFIELD AREA

35 Aquifer Characteristics homogeneous, isotropic Hydraulic Conductivity, Variable Thickness Wellfield Drilling Program 2 Borings WELLFIELD AREA

36 THEORETICAL WELLFIELD AREA OPTIMIZATION OF WELLFIELD YIELD BASED ON ACTUAL AQUIFER CONDITIONS WELL PLACEMENT DEPENDS ON CONCEPTUAL GEOLOGIC AND HYDROGEOLOGIC MODELS TO MAXIMIZE YIELD FROM WELLFIELD

37 Aquifer Characteristics >> K2 Hydraulic Conductivity, K2 K2 K2 K2 K2 WELLFIELD AREA

38 Aquifer Characteristics >> K2 Hydraulic Conductivity, K2 K2 K2 K2 K2 WELLFIELD AREA

39 Aquifer Characteristics Hydraulic Conductivity, Constant Thickness, 100 ft K2 K2 K2 >> K2 WELLFIELD AREA

40 Aquifer Characteristics Hydraulic Conductivity, Constant Thickness, 100 ft K2 K2 K2 >> K2 WELLFIELD AREA

41 Aquifer Characteristics 10 Hydraulic Conductivity, Variable Thickness K K2 0 K >> K2 WELLFIELD AREA

42 Aquifer Characteristics 10 Hydraulic Conductivity, Variable Thickness K K2 0 K >> K2 WELLFIELD AREA

43 Aquifer Characteristics Hydraulic Conductivity, Variable Thickness 50 K2 90 K2 130 K2 0 WELLFIELD AREA 0 >> K2

44 Aquifer Characteristics Hydraulic Conductivity, Variable Thickness 50 K2 90 K2 130 K2 0 WELLFIELD AREA 0 >> K2

45 Aquifer Characteristics K Hydraulic Conductivity, Variable Area 150 >> K2 WELLFIELD AREA K2

46 Aquifer Characteristics K2 50 Hydraulic Conductivity, Variable Area >> K2 WELLFIELD AREA K2

47 WELLFIELD OPTIMIZATION Depends on the accuracy of the conceptual model, that is, how it matches with reality The question is: Is drilling the only way to improve the conceptual model?

48 THE USE OF GEOPHYSICS TO IMPROVE WATER RESOURCE CONCEPTUAL MODELS If you had another method that would increase the ability to predict the horizontal and vertical distribution of aquifer materials, wouldn t you use it?

49 Technologies used to quantify properties of soils, bedrock and groundwater in an understandable manner. Technologies providing subsurface information without direct sampling. Technologies that can reduce time to collect information, drilling and cost.

50 A way of measuring the Earth s natural or induced properties for the purpose of characterizing its variability. Contrasts in surface or subsurface materials cause changes to these properties, and allow us to locate their position and depth.

51 The Commonly Applied Technologies Potential Field Methods - gravity & magnetics Transmitted Energy Source Methods - seismic & ground penetrating radar Electromagnetic Methods - conductivity, TEM, VLF Electrical Methods - resistivity & IP

52 Geophysical Methods Electromagnetic Metal Detection Electromagnetic Conductivity Electrical Resistivity Imaging Seismic (Refraction, Surface Wave) Microgravity Ground Penetrating Radar (GPR) Downhole Logging

53 Geophysics Water Issues Groundwater Investigations/Remediation Aquifer/Sand/Gravel Unit Mapping Fracture/fault/karst delineation Placement of Wells (Monitoring/Production) Enhanced Design of In-situ Water Treatment Monitoring of Remediation Progress

54 In the past, surgeons had to do exploratory surgery to locate objects in a human body similar to drilling and excavating to locate subsurface aquifer areas. Now days, applied geophysics is like scanning using MRI, except to image objects in the earth. MRI Machine

55 Wellfield Site 4000 ft by 3000 ft Area History indicates possible aquifer Objective - find one 250 ft x 450 ft aquifer area within this 4000 ft by 3000 ft grid

56 Approach: Soil Borings Here are 150 randomly chosen sampling locations (borings), surely we will find and characterize our single aquifer thickness and extent

57 Oops! We missed!

58 We also missed these 11!

59 And these 9!

60 And these 13 too!

61 Single row, Perimeter Medium Density, Double Low Density, Center Single Row Cross Medium density, Center Low density, Meandering Medium density, target High density, target

62 Wellfield Exploration Problems Areas where glacial drift overlies non-productive bedrock (poor yield or quality) Glacial drift is till-dominated but contains isolated pockets of sand and gravel aquifer materials Inadequate surface water locations are in upland areas Known water supply does/will not meet current or projected demand Hunt & Peck drilling has had poor or mixed results and is a costly method of exploration

63 Geophysical Mapping Criteria Effective at Detecting and Discriminating Aquifer Materials Able to Reliably Reach Desired Depth of Investigation Rapid Data Collection, Processing, Interpretation Easily Deployed Intuitive Cost Effective

64 Applicable Geophysical Methods Lateral Terrain Conductivity Mapping Vertical 2-D Resistivity Profiling Downhole Logging

65 EM31: Moderate Depth Conductivity Meter Lateral Conductivity Mapping EM34: Deepest Conductivity Meter GEM-2: Multi-Frequency Conductivity Meter

66 Conductivity Mapping Greatest Variety of Techniques Available Able to Scan Large Areas Quickly

67 Case History Conductivity Mapping Can Delineate Aquifers

68 Vertical 2D Resistivity Profiling Geophysical Services Division Mundell & Associates, Inc.

69 Resistivity Profiling High detail method for characterizing subtle variations in both shallow and deeper subsurface resistivity Often used in conjunction with more rapid mapping techniques, such as terrain conductivity

70

71 2D Electrical Resistivity Imaging System Here s an example of the subsurface coverage from a dipole-dipole array Current (I) Flows between B & A while Voltage (V) is Measured between M & N Apparent resistivity is calculated using ohm s law (R=V/I) and the electrode geometries

72 2D Electrical Resistivity Imaging System Once the apparent resistivity data is collected, it is modeled using an inversion technique which creates a true resistivity cross section

73 Resistivity for Sand and Gravel Aquifers Resistivity for Fractured Bedrock Aquifers

74 Downhole Logging

75 Downhole Logging Used for determining site geology from existing wells Can examine the structural integrity of existing wells

76 Downhole Logging

77 The Process 1. Preliminary Geologic Research is Done 2. An Aerial/Topographic Study of the Proposed Site is Done 3. Based on the Previous Two Studies, a Geophysical Technique/Techniques is Selected.

78 Geologic Setting Narrow Valley incised into Devonian Shale Valley filled with sand and gravel Till on either side Compare with setting to North where adequate sand & gravel and/or carbonate are available.

79 Aerial Study - Lineaments

80 Aerial Study - Lineaments

81 Conductivity Mapping East test hole produced >800 gpm, double any prior well yields >20 of aquifer than previously seen

82 Correlations: Logging

83 Once the preliminary study and lateral mapping are done, 2-D resistivity data can give vertical data

84 If multiple lines are collected, vertical resistivity data can also be sliced at different depths

85 Once an aquifer has been delineated laterally and vertically, water volumes can be approximated

86 Line 1 Waverly Wellfield Cross-Section Geophysical Pilot Test Area Line 3 Line 2 Geophysical Pilot Test Area

87 Line 1 Waverly Wellfield Cross-Section Geophysical Pilot Test Area Geophysical Pilot Test Area Line 3 Line 2

88 Waverly Wellfield - Geology

89 Waverly Wellfield Contour Maps Top of Bedrock Top of Aquifer

90 Waverly Wellfield Contour Maps Upper Aquifer Lower Aquifer

91 Waverly Wellfield Contour Maps Transmissivity

92 Waverly Wellfield Geophysical Pilot Test

93 Line 1 Resistivity Profiles Line 2 Line 3

94 Case History Ethanol Plant Central Indiana Site No surface or municipal supply 1000 gpm demand <50 gpm found on site* Geology: glacial till overlying Mississippian Siltstone & Shale (basically no aquifer) Linden Figure 4. Map showing location of Linden, Indiana. Linden is located between Lafayette to the north and Crawfordsville to the south. * Plant was already under construction before test wells were drilled because adequate water was taken for granted.

95 2D Resistivity Transects Planned Across Valley Research into available well log information indicated buried valley one mile in width (red). Few wells drilled within the valley - little known about the aquifer materials - Old Seismic Study (IDNR). A series of 1-mile long geophysical transects across the valley (blue). Method chosen was 2D resistivity imaging. N 1 mile Figure 6. Map of Study Area. Green area is about 1 mile in width and 3 miles along the inferred valley axis. Of the 10 resistivity lines acquired, 9 of them were located in the southernmost square mile.

96 Figure 5. Bedrock geology map showing location of possible bedrock valley to the northeast of Linden. Only apparent hope: Possible tributary to ancient Teays River several miles east of plant Buried Valley Ethanol Plant

97 First Lines crossed valley fill materials

98 Line 2 thickest accumulation of sand and gravel Geology Here similar to plant site Figure 7. Transect 2 (Lines 2A and 2B). Lines are oriented east-west and cross the buried valley on Line 2B. The shale bedrock is the low resistivity material on the lower portion of the section. The discontinous sand and gravel are the type of material encountered at the plant site which yielded less than 50 gallons per minute. The buried valley materials, which exist within a zone only about 500 meters wide, are complex in detail and appear to be a series of discrete, irregularly shaped channel bodies. Drilling has discovered that there are more than 50 meters of gravel in the center of the valley, and pumping test yields have exceeded 1,000 gallons per minute.

99 Cross lines appear to run along fill

100 Likely Best Location Location Chosen for Non-technical Reasons

101 Conclusions The use of geophysics can greatly aid the optimization of water production yields from a wellfield. The methods are relatively rapid and less expensive than extensive drilling programs. Drilling confirmation is always necessary to verify the validity of the wellfield conceptual model. The combined use of geophysics with standard drilling techniques have proven effective in areas where aquifers are limited.

102 The End Thanks for your Attention

Applied Geophysics for Environmental Site Characterization and Remediation

Applied Geophysics for Environmental Site Characterization and Remediation Applied Geophysics for Environmental Site Characterization and Remediation MSECA Webinar September 24, 2015 John Mundell, P.E., L.P.G. Ryan Brumbaugh, L.P.G. MUNDELL & ASSOCIATES, INC. Webinar Objective

More information

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge Zonge Engineering and Research Organization, Inc. 3322 East Fort Lowell Road Tucson, Arizona,

More information

USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY. Abstract

USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY. Abstract USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY John A. Mundell, Mundell & Associates, Inc., Indianapolis, IN Gregory B. Byer, Mundell &

More information

Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results

Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results Jim Berg and Todd Petersen Geophysicists, DNR Waters January 2000 Table of Contents

More information

Aquitard Characterization The Legend of Indiana s Magic Clay Layer. Juliet Port, LPG #2214 July 2014

Aquitard Characterization The Legend of Indiana s Magic Clay Layer. Juliet Port, LPG #2214 July 2014 Aquitard Characterization The Legend of Indiana s Magic Clay Layer Juliet Port, LPG #2214 July 2014 Topics What is an Aquitard? Why do we care? Review of Indiana glacial geology Conceptual Framework Investigation

More information

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA By Todd A. Petersen and James A. Berg Geophysics Program Ground Water and Climatology Section DNR Waters June 2001 1.0 Summary A new

More information

High Resolution Geophysics: A Better View of the Subsurface. By John Jansen, P.G., Ph.D., Aquifer Science and Technology

High Resolution Geophysics: A Better View of the Subsurface. By John Jansen, P.G., Ph.D., Aquifer Science and Technology High Resolution Geophysics: A Better View of the Subsurface By John Jansen, P.G., Ph.D., Aquifer Science and Technology Geologist Use Only Part of the Information Available To Them Most Geologist rely

More information

Multimethod Geophysical Characterization of Fault Systems for Environmental Planning

Multimethod Geophysical Characterization of Fault Systems for Environmental Planning Multimethod Geophysical Characterization of Fault Systems for Environmental Planning John A. Mundell and Ryan P. Brumbaugh, Mundell & Associates, Inc. Brian Ham and Ric Federico, EnSafe Inc. Talk Outline

More information

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM Pelatihan Tahap II IESO Teknik Geologi UGM Februari 2009 1 Introduction Photos from http://www.eegs.org/whatis/

More information

Geological Mapping using Geophysics

Geological Mapping using Geophysics Geological Mapping using Geophysics Pugin, A.J.M. and T.H. Larson Illinois State Geological Survey, 615 E Peabody Dr., Champaign, IL 61820; E-mail: A.J.M. Pugin at pugin@isgs.uiuc.edu Mapping Techniques.

More information

GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS. Abstract

GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS. Abstract GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS John A. Mundell, Mundell & Associates, Inc., Indianapolis, Indiana Gabriel Hebert, Mundell & Associates, Inc.,

More information

Geophysics for Environmental and Geotechnical Applications

Geophysics for Environmental and Geotechnical Applications Geophysics for Environmental and Geotechnical Applications Dr. Katherine Grote University of Wisconsin Eau Claire Why Use Geophysics? Improve the quality of site characterization (higher resolution and

More information

Case Study: University of Connecticut (UConn) Landfill

Case Study: University of Connecticut (UConn) Landfill Case Study: University of Connecticut (UConn) Landfill Problem Statement:» Locate disposal trenches» Identify geologic features and distinguish them from leachate and locate preferential pathways in fractured

More information

A surficial. P^HiHI waste disposal site, Bureau County, Illinois. east of the Sheffield low-level radioactive. electrical resistivity survey

A surficial. P^HiHI waste disposal site, Bureau County, Illinois. east of the Sheffield low-level radioactive. electrical resistivity survey ISGS CONTRACT/GRANT REPORT 1981-6 WATER RESOURCES DIVISION/USGS P^HiHI 100240 557.09773 IL6cr 1981-6 A surficial electrical resistivity survey east of the Sheffield low-level radioactive waste disposal

More information

Use of Non-Invasive Near-Surface Geophysics for Managing Brine Releases

Use of Non-Invasive Near-Surface Geophysics for Managing Brine Releases Use of Non-Invasive Near-Surface Geophysics for Managing Brine Releases Presented by: Brent W. Barker, Staff Geophysicist Remediation Technologies Symposium 2012 Imagine the result Co-Authors Boyce L.

More information

REPORT OF GEOPHYSICAL SURVEY

REPORT OF GEOPHYSICAL SURVEY REPORT OF GEOPHYSICAL SURVEY KARST IMAGING STUDY CADIZ INDUSTRIAL PARK CADIZ, TRIGG COUNTY, KY MUNDELL PROJECT NO. M NOVEMBER, South Downey Avenue, Indianapolis, Indiana - Telephone --, Facsimile -- www.mundellassociates.com

More information

Site Characterization & Hydrogeophysics

Site Characterization & Hydrogeophysics Site Characterization & Hydrogeophysics (Source: Matthew Becker, California State University) Site Characterization Definition: quantitative description of the hydraulic, geologic, and chemical properties

More information

Advanced processing and inversion of two AEM datasets for 3D geological modelling: the case study of Spiritwood Valley Aquifer

Advanced processing and inversion of two AEM datasets for 3D geological modelling: the case study of Spiritwood Valley Aquifer Advanced processing and inversion of two AEM datasets for 3D geological modelling: the case study of Spiritwood Valley Aquifer Vincenzo Sapia, INGV, Rome, Italy Vincenzo.sapia@ingv.it Andrea Viezzoli,

More information

DESIGN-PHASE GEOLOGIC FRAMEWORK MODELING FOR LARGE CONSTRUCTION PROJECTS

DESIGN-PHASE GEOLOGIC FRAMEWORK MODELING FOR LARGE CONSTRUCTION PROJECTS DESIGN-PHASE GEOLOGIC FRAMEWORK MODELING FOR LARGE CONSTRUCTION PROJECTS Christine Vilardi, P.G., C.G.W.P. (vilardcl@stvinc.com, STV Inc., New York, New York) and Todd Kincaid, Ph.D. (Hazlett-Kincaid,

More information

Finding Large Capacity Groundwater Supplies for Irrigation

Finding Large Capacity Groundwater Supplies for Irrigation Finding Large Capacity Groundwater Supplies for Irrigation December 14, 2012 Presented by: Michael L. Chapman, Jr., PG Irrigation Well Site Evaluation Background Investigation Identify Hydrogeologic Conditions

More information

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Subsurface Investigation and Conceptual Alternatives Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Presented By: Ohio Department of Transportation CH2M HILL CTL Engineering Technos,

More information

LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION

LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION LECTURE 10 3.6 GEOPHYSICAL INVESTIGATION In geophysical methods of site investigation, the application of the principles of physics are used to the study of the ground. The soil/rock have different characteristics

More information

NEAR THE VILLAGE OF NORTH AURORA, ILLINOIS RESULTS OF A SHALLOW SEISMIC REFRACTION SURVEY. Timothy H. Larson. QsuJk Sa^^oJ^M. Philip G.

NEAR THE VILLAGE OF NORTH AURORA, ILLINOIS RESULTS OF A SHALLOW SEISMIC REFRACTION SURVEY. Timothy H. Larson. QsuJk Sa^^oJ^M. Philip G. 557 IL6of 1991-15 QsuJk Sa^^oJ^M RESULTS OF A SHALLOW SEISMIC REFRACTION SURVEY NEAR THE VILLAGE OF NORTH AURORA, ILLINOIS Timothy H. Larson Philip G. Orozco Open File Series 1991-15 ILLINOIS STATE GEOLOGICAL

More information

FORENSIC GEOLOGY A CIVIL ACTION

FORENSIC GEOLOGY A CIVIL ACTION NAME 89.215 - FORENSIC GEOLOGY A CIVIL ACTION I. Introduction In 1982 a lawsuit was filed on behalf of eight Woburn families by Jan Schlictmann. The suit alleged that serious health effects (childhood

More information

Instructional Objectives

Instructional Objectives GE 6477 DISCONTINUOUS ROCK 8. Fracture Detection Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1. List the advantages and disadvantages

More information

Buried Bedrock Channels in the Athabasca Oil Sands Region Conceptual Understanding and Implications to Water Supply

Buried Bedrock Channels in the Athabasca Oil Sands Region Conceptual Understanding and Implications to Water Supply Buried Bedrock Channels in the Athabasca Oil Sands Region Conceptual Understanding and Implications to Water Supply Scott Rayner Matrix Solutions Inc. Sandra Rosenthal Devon Canada Corporation Presentation

More information

SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE BOULDERS IN GLACIAL DEPOSITS

SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE BOULDERS IN GLACIAL DEPOSITS SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE BOULDERS IN GLACIAL DEPOSITS 51 SASKATCHEWAN STRATIGRAPHY GLACIAL SURFICIAL STRATIFIED DEPOSITS 52 SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE OF SEDIMENT DEPOSITION

More information

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 GEOTECHNICAL ENGINEERING II Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 1. SUBSURFACE EXPLORATION 1.1 Importance, Exploration Program 1.2 Methods of exploration, Boring, Sounding

More information

APPENDIX F OKANAGAN VALLEY SEISMIC SURVEY

APPENDIX F OKANAGAN VALLEY SEISMIC SURVEY APPENDIX F OKANAGAN VALLEY SEISMIC SURVEY F.1 INTRODUCTION F.2 DISCUSSION OF RESULTS OF 1970 TEST HOLE PROGRAM F.3 CONCLUSIONS 605 APPENDIX F.2 OKANAGAN VALLEY SEISMIC SURVEY By R.M. Lundberg, P. Eng F.1

More information

Development of geophysical investigation for verifying treatment efficiency of underground cavities

Development of geophysical investigation for verifying treatment efficiency of underground cavities Development of geophysical investigation for verifying treatment efficiency of underground cavities Hasan A. Kamal* Kuwait Institute for Scientific Research, Infrastructure Risk and Reliability Program,

More information

GeothermEx, Inc. GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION HOLE PROGRAM, KILAUEA EAST RIFT ZONE, HAWAII TASK 1 REPORT

GeothermEx, Inc. GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION HOLE PROGRAM, KILAUEA EAST RIFT ZONE, HAWAII TASK 1 REPORT (415) 527 9876 CABLE ADDRESS- GEOTHERMEX TELEX 709152 STEAM UD FAX (415) 527-8164 Geotherm Ex, Inc. RICHMOND. CALIFORNIA 94804-5829 GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION

More information

AWRA PMAS Engineers Club of Philadelphia. A Geologic Perspective on Stormwater

AWRA PMAS Engineers Club of Philadelphia. A Geologic Perspective on Stormwater AWRA PMAS Engineers Club of Philadelphia A Geologic Perspective on Stormwater Toby J. Kessler, P.G. Hydrogeologist Trevor G. Woodward, P.G. Engineering Geologist September 10, 2014 Gilmore & Associates,

More information

Chapter 12 Subsurface Exploration

Chapter 12 Subsurface Exploration Page 12 1 Chapter 12 Subsurface Exploration 1. The process of identifying the layers of deposits that underlie a proposed structure and their physical characteristics is generally referred to as (a) subsurface

More information

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay Groundwater in Unconsolidated Deposits Alluvial (fluvial) deposits - consist of gravel, sand, silt and clay - laid down by physical processes in rivers and flood plains - major sources for water supplies

More information

FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA

FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA Prepared for Andreyev Engineering, Inc. Oxford, FL Prepared by GeoView, Inc. St. Petersburg, FL August

More information

Geologic Considerations of Shallow SAGD Caprock; Seal Capacity, Seal Geometry and Seal Integrity, Athabasca Oilsands, Alberta Canada

Geologic Considerations of Shallow SAGD Caprock; Seal Capacity, Seal Geometry and Seal Integrity, Athabasca Oilsands, Alberta Canada Geologic Considerations of Shallow SAGD Caprock; Seal Capacity, Seal Geometry and Seal Integrity, Athabasca Oilsands, Alberta Canada Gordon T. Stabb, Michael Webb Durando Resources Corp, Suncor Energy

More information

Azimuthal Resistivity to Characterize Fractures in a Glacial Till. Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan

Azimuthal Resistivity to Characterize Fractures in a Glacial Till. Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan Azimuthal Resistivity to Characterize Fractures in a Glacial Till Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan Abstract Azimuthal resistivity was used to characterize

More information

Groundwater in Bedrock Aquifers: Development Considerations

Groundwater in Bedrock Aquifers: Development Considerations Slide 1 Groundwater in Bedrock Aquifers: Development Considerations Pelham, New Hampshire October 3, 2016 Building Trust. Engineering Success. Slide 2 OUTLINE Background on groundwater in bedrock aquifers

More information

PHASE 1 STUDIES UPDATE EROSION WORKING GROUP

PHASE 1 STUDIES UPDATE EROSION WORKING GROUP PHASE 1 STUDIES UPDATE EROSION WORKING GROUP Presented By MICHAEL WOLFF, PG Erosion Study Area Manager West Valley Demonstration Project Quarterly Public Meeting February 24, 2016 OUTLINE Study 1 Terrain

More information

Bedrock Characterization Mottolo Pig Farm Superfund Site

Bedrock Characterization Mottolo Pig Farm Superfund Site Bedrock Characterization Mottolo Pig Farm Superfund Site Andrew Drew Hoffman, PE NH Department of Environmental Services andrew.hoffman@des.nh.gov 603.271.6778 1 Acknowledgments GZA GeoEnvironmental (lead

More information

Big Rivers Electric Corporation Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule CCR Impoundment Liner Assessment Report

Big Rivers Electric Corporation Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule CCR Impoundment Liner Assessment Report Big Rivers Electric Corporation Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule CCR Impoundment Liner Assessment Report CCR Surface Impoundment Information Name: Operator:

More information

Buried-valley Aquifers: Delineation and Characterization from Reflection Seismic and Core Data at Caledon East, Ontario

Buried-valley Aquifers: Delineation and Characterization from Reflection Seismic and Core Data at Caledon East, Ontario Buried-valley Aquifers: Delineation and Characterization from Reflection Seismic and Core Data at Caledon East, Ontario Russell, H.A.J. 1, S.E. Pullan 1, J.A. Hunter 1, D.R. Sharpe 1, and S. Holysh 2 1

More information

GEOL4714 Final Exam Fall 2005, C. H. Jones instructor

GEOL4714 Final Exam Fall 2005, C. H. Jones instructor GEOL4714 Final Exam Fall 2005 p. 1 GEOL4714 Final Exam Fall 2005, C. H. Jones instructor Name: Student ID #: Feel free to use the back of the sheets for answers needing more space. (1) (10 pts) For each

More information

Harvey Thorleifson, Director, Minnesota Geological Survey. Status of geological mapping needed for groundwater protection in Minnesota

Harvey Thorleifson, Director, Minnesota Geological Survey. Status of geological mapping needed for groundwater protection in Minnesota Harvey Thorleifson, Director, Minnesota Geological Survey Status of geological mapping needed for groundwater protection in Minnesota Minnesota is located between the Dakotas and Wisconsin, north of Iowa,

More information

The Geology and Hydrogeology of the Spyhill Area

The Geology and Hydrogeology of the Spyhill Area The Geology and Hydrogeology of the Spyhill Area Clare North (WorleyParsons Komex) and Martin Ortiz (The City of Calgary) 2-Jul-08 Outline Background Site Location Existing Information New Work Geology

More information

iii CONTENTS vii ACKNOWLEDGMENTS EXECUTIVE SUMMARY INTRODUCTION Study Area Data Sources Preparation of Geologic Maps

iii CONTENTS vii ACKNOWLEDGMENTS EXECUTIVE SUMMARY INTRODUCTION Study Area Data Sources Preparation of Geologic Maps CONTENTS ACKNOWLEDGMENTS EXECUTIVE SUMMARY INTRODUCTION Study Area Data Sources Preparation of Geologic Maps GEOLOGY Bedrock Geology Succession and Distribution Structural Features Description of Bedrock

More information

Lines-of-Evidence Approach to the Evaluation of Stray Gas Incidents

Lines-of-Evidence Approach to the Evaluation of Stray Gas Incidents Lines-of-Evidence Approach to the Evaluation of Stray Gas Incidents Lisa Molofsky, Ann Smith, John Connor, Shahla Farhat GSI Environmental Inc. Tom Wagner, Albert Wylie Cabot Oil and Gas Corporation GSI

More information

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT * Shane Hickman, * Todd Lippincott, * Steve Cardimona, * Neil Anderson, and + Tim Newton * The University of Missouri-Rolla Department

More information

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA David Harro The G3 Group, 2509 Success Drive, Suite 1, Odessa, FL 33556, david.harro@geo3group.com

More information

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground.

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical Surveys in Geophysics Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical resistivity method Induced polarization (IP)

More information

Hazard Mapping Along the Dead Sea Shoreline

Hazard Mapping Along the Dead Sea Shoreline FIG Working Week in Marrakech, Morocco 18-22 May 2011 Hazard Mapping Along the Dead Sea Shoreline Rami Al-Ruzouq, Abdullah Al-Zuobi, AbdEl-Rahman Abueladas, Emad Akkawi Department of Surveying and Geomatics

More information

2. Initial Summary of Preliminary Expert Opinion of Converse and Psomas Reports

2. Initial Summary of Preliminary Expert Opinion of Converse and Psomas Reports UNITED WALNUT TAXPAYERS PRELIMINARY REVIEW OF NEGATIVE GEOTECHNICAL AND GEOLOGICAL ASPECTS OF CONSTRUCTING EARTHFILL PAD FOR A SOLAR FARM ON THE WEST PARCEL - DRAFT 1. Introduction A licensed Engineering

More information

Basin Analysis Applied to Modelling Buried Valleys in the Great Lakes Basin

Basin Analysis Applied to Modelling Buried Valleys in the Great Lakes Basin EARTH SCIENCES SECTOR GENERAL INFORMATION PRODUCT 35 Basin Analysis Applied to Modelling Buried Valleys in the Great Lakes Basin Sharpe, D R; Russell, H A J 2004 Originally released as: Basin Analysis

More information

Amistad Dam Investigation and Oversight: Karst- Founded Dam on the USA-Mexico Border

Amistad Dam Investigation and Oversight: Karst- Founded Dam on the USA-Mexico Border Amistad Dam Investigation and Oversight: Karst- Founded Dam on the USA-Mexico Border Brook Brosi, CPG, PG USACE Lisa Nowicki Perks, PG USACE Kimberly Heenan, PE AECOM US Army Corps of Engineers BUILDING

More information

Geology 228/378 Applied and Environmental Geophysics Lecture 6. DC resistivity Surveys

Geology 228/378 Applied and Environmental Geophysics Lecture 6. DC resistivity Surveys Geology 228/378 Applied and Environmental Geophysics Lecture 6 DC resistivity Surveys Direct current (DC) Resistivity. Introduction 2. Current flow in the ground 3. Schlumberger, Wenner, dipole-dipole,

More information

Geotechnical verification of impact compaction

Geotechnical verification of impact compaction PII-73 Geotechnical verification of impact compaction P. J. Waddell1, R. A. Moyle2 & R. J. Whiteley1 1 2 Coffey Geotechnics, Sydney, Australia Coffey Geotechnics, Harrogate, UK Abstract Remediation of

More information

Antelope Hills Directionally Drilled Water Well. Theresa Jehn-Dellaport Jehn Water Consultants, Inc.

Antelope Hills Directionally Drilled Water Well. Theresa Jehn-Dellaport Jehn Water Consultants, Inc. Antelope Hills Directionally Drilled Water Well Theresa Jehn-Dellaport Directional Well Applications Deep Bedrock Aquifers Proven Oil field technology Initial Analysis indicates up to 4 times the production

More information

LIST OF FIGURES APPENDICES

LIST OF FIGURES APPENDICES RESISTIVITY / INDUCED POLARIZATION SURVEY EL PORVENIR PROJECT MUNICIPALITY OF REMEDIOS, ANTIOQUIA, COLOMBIA LOGISTICS REPORT M-17427 APRIL 2017 TABLE OF CONTENTS Abstract... 1 1. The Mandate... 2 2. El

More information

Site characterization at the Groundwater Remediation Field Laboratory

Site characterization at the Groundwater Remediation Field Laboratory Site characterization at the Groundwater Remediation Field Laboratory WILLIAM P. C LEMENT, STEVE CARDIMONA, ANTHONY L. ENDRES, Boston College, Boston, Massachusetts KATHARINE KADINSKY-CADE, Phillips Laboratory,

More information

Summary. Introduction. Theory and/or Method

Summary. Introduction. Theory and/or Method Case studies from Fort Mc Murray, Horn River basin and Manitoba displaying advances in technology, new approach and updated interpretation of AEM data for unconventional hydrocarbons and groundwater mapping

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

Updating of the Three-dimensional Hydrogeological Model of the Virttaankangas Area, Southwestern Finland

Updating of the Three-dimensional Hydrogeological Model of the Virttaankangas Area, Southwestern Finland Updating of the Three-dimensional Hydrogeological Model of the Virttaankangas Area, Southwestern Finland Saraperä S. 1, Artimo A. 2, 1 Department of Geology, FIN-20014, University of Turku, Finland, 2

More information

RESISTIVITY IMAGING AND BOREHOLE INVESTIGATION OF THE BANTING AREA AQUIFER, SELANGOR, MALAYSIA. A.N. Ibrahim Z.Z.T. Harith M.N.M.

RESISTIVITY IMAGING AND BOREHOLE INVESTIGATION OF THE BANTING AREA AQUIFER, SELANGOR, MALAYSIA. A.N. Ibrahim Z.Z.T. Harith M.N.M. JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web at http://www.hydroweb.com VOLUME 11 2003 RESISTIVITY IMAGING

More information

Training the Next Generation of Geoscientists to Solve Realworld Environmental Problems using Advanced Techniques: Year Two Report

Training the Next Generation of Geoscientists to Solve Realworld Environmental Problems using Advanced Techniques: Year Two Report Illinois State Geological Survey 615 E. Peabody Dr. Champaign, IL 61820 Training the Next Generation of Geoscientists to Solve Realworld Environmental Problems using Advanced Techniques: Year Two Report

More information

PRELIMINARY. Select Geophysical Methods and Groundwater Modeling: Examples from USGS studies. Claudia Faunt and a cast of others

PRELIMINARY. Select Geophysical Methods and Groundwater Modeling: Examples from USGS studies. Claudia Faunt and a cast of others Select Geophysical Methods and Groundwater Modeling: Examples from USGS studies Claudia Faunt and a cast of others Current Preliminary Studies Stanford Water in the West Groundwater Data Workshop Series:

More information

ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO

ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO NCKRI REPORT OF INVESTIGATION 3 ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO www.nckri.org NATIONAL CAVE AND KARST RESEARCH INSTITUTE REPORT OF INVESTIGATION

More information

Using Airborne Geophysical Survey for Exploring and Assessment of Groundwater Potentiality in Arid Regions

Using Airborne Geophysical Survey for Exploring and Assessment of Groundwater Potentiality in Arid Regions JKAU: Met., Env. & Arid Land Agric. Sci., Vol. 22, No. 3, pp: 207-220 (2011 A.D. /1432 A.H.) DOI: 10.4197/ Met. 22-3.11 Using Airborne Geophysical Survey for Exploring and Assessment of Groundwater Potentiality

More information

Geological Models for Infrastructure Design:

Geological Models for Infrastructure Design: Geological Models for Infrastructure Design: Reducing Geotechnical Risk and Supporting Sustainability Alan Keith Turner Emeritus Professor of Geological Engineering CSM Visiting Research Associate - British

More information

Pressure Grouting of Fractured Bedrock to Control Acid Mine Drainage

Pressure Grouting of Fractured Bedrock to Control Acid Mine Drainage WATER RESOURCES AT RISK May 14-18, 1995 Denver American Institute of Hydrology Pressure Grouting of Fractured Bedrock to Control Acid Mine Drainage S. A. Effner, G. D. Vandersluis, and V. Straskraba Hydro-Geo

More information

Ground Penetrating Radar Survey of a Portion of East End Cemetery, Cadiz, Kentucky

Ground Penetrating Radar Survey of a Portion of East End Cemetery, Cadiz, Kentucky Ground Penetrating Radar Survey of a Portion of East End Cemetery, Cadiz, Kentucky January 2011 Report prepared by Anthony L. Ortmann, Ph.D. Assistant Professor Department of Geosciences Murray State University

More information

A method for three-dimensional mapping, merging geologic interpretation, and GIS computation

A method for three-dimensional mapping, merging geologic interpretation, and GIS computation A method for three-dimensional mapping, merging geologic interpretation, and GIS computation Soller, David R., U.S. Geological Survey, 908 National Center, Reston, VA 20192 and Richard C. Berg, Illinois

More information

Comparison of geophysical. techniques to determine depth to. bedrock in complex weathered. environments of the Mount Crawford. region, South Australia

Comparison of geophysical. techniques to determine depth to. bedrock in complex weathered. environments of the Mount Crawford. region, South Australia Comparison of geophysical techniques to determine depth to bedrock in complex weathered environments of the Mount Crawford region, South Australia Thesis submitted in accordance with the requirements of

More information

Three-dimensional imaging of a deep marine channellevee/overbank sandstone behind outcrop with EMI and GPR

Three-dimensional imaging of a deep marine channellevee/overbank sandstone behind outcrop with EMI and GPR THE METER READER Three-dimensional imaging of a deep marine channellevee/overbank sandstone behind outcrop with EMI and GPR RYAN P. STEPLER, ALAN J. WITTEN, and ROGER M. SLATT, University of Oklahoma,

More information

INNOVATIVE TECHNIQUES TO INVESTIGATE CONTAMINATION IN FRACTURED BEDROCK

INNOVATIVE TECHNIQUES TO INVESTIGATE CONTAMINATION IN FRACTURED BEDROCK INNOVATIVE TECHNIQUES TO INVESTIGATE CONTAMINATION IN FRACTURED BEDROCK Abstract Christopher Gaule 1, Kenneth Goldstein 2, Grant Anderson 3 Watervliet Arsenal, located in Watervliet, New York, is the oldest

More information

Wisconsin s Hydrogeology: an overview

Wisconsin s Hydrogeology: an overview 2012 Soil and Water Conservation Society Conference Stevens Point, WI Feb 9, 2012 Wisconsin s Hydrogeology: an overview Ken Bradbury Wisconsin Geological and Natural History Survey University of Wisconsin-Extension

More information

Groundwater Hydrology

Groundwater Hydrology EXERCISE 12 Groundwater Hydrology INTRODUCTION Groundwater is an important component of the hydrologic cycle. It feeds lakes, rivers, wetlands, and reservoirs; it supplies water for domestic, municipal,

More information

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses 1 Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses C. RICHARD BATES and RUTH ROBINSON Sedimentary Systems Research Group, University of St. Andrews, St. Andrews, Scotland Abstract

More information

ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME. For: St.Germain-Collins

ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME. For: St.Germain-Collins ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME For: St.Germain-Collins 4 Union Street, Suite 3 Bangor, Maine 441 July, 218 ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON

More information

Geological control in 3D stratigraphic modeling, Oak Ridges Moraine, southern Ontario. Logan, C., Russell, H. A. J., and Sharpe, D. R.

Geological control in 3D stratigraphic modeling, Oak Ridges Moraine, southern Ontario. Logan, C., Russell, H. A. J., and Sharpe, D. R. Geological control in 3D stratigraphic modeling, Oak Ridges Moraine, southern Ontario Logan, C., Russell, H. A. J., and Sharpe, D. R. Rationale Increasing urbanization in the Greater Toronto Area is creating

More information

Senior Thesis. BY Calliope A. Voiklis 2000

Senior Thesis. BY Calliope A. Voiklis 2000 Senior Thesis MODFLOW Model of The Ohio State University, Columbus Campus BY Calliope A. Voiklis 2000 Submitted as partial fulfillment of The requirements of the degree of Bachelor of Science in Geological

More information

Gotechnical Investigations and Sampling

Gotechnical Investigations and Sampling Gotechnical Investigations and Sampling Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Investigations for Structural Engineering 12 14 October, 2017 1 Purpose of

More information

HYDROGEOLOGICAL PROPERTIES OF THE UG2 PYROXENITE AQUIFERS OF THE BUSHVELD COMPLEX

HYDROGEOLOGICAL PROPERTIES OF THE UG2 PYROXENITE AQUIFERS OF THE BUSHVELD COMPLEX R. Gebrekristos, P.Cheshire HYDROGEOLOGICAL PROPERTIES OF THE UG2 PYROXENITE AQUIFERS OF THE BUSHVELD COMPLEX R. Gebrekristos Digby Wells Environmental P. Cheshire Groundwater Monitoring Services Abstract

More information

GPR AS A COST EFFECTIVE BEDROCK MAPPING TOOL FOR LARGE AREAS. Abstract

GPR AS A COST EFFECTIVE BEDROCK MAPPING TOOL FOR LARGE AREAS. Abstract GPR AS A COST EFFECTIVE BEDROCK MAPPING TOOL FOR LARGE AREAS Dr. Jutta L. Hager, Hager GeoScience, Inc., Waltham, MA Mario Carnevale, Hager GeoScience, Inc., Waltham, MA Abstract Hager GeoScience, Inc.

More information

Sabal Trail Pipeline Project Evaluation of Karst Topography and Sinkhole Potential for Pipeline and Facilities

Sabal Trail Pipeline Project Evaluation of Karst Topography and Sinkhole Potential for Pipeline and Facilities November 11, 2014 Sabal Trail Pipeline Project Evaluation of Karst Topography and Sinkhole Potential for Pipeline and Facilities Gulf Interstate Engineering Attention: Mr. Denys Stavnychyi - Project Engineer

More information

Control of Fractured Bedrock Structure on the Movement of Chlorinated Volatile Organics in Bedrock and Overburden Aquifers, Newark Basin of New Jersey

Control of Fractured Bedrock Structure on the Movement of Chlorinated Volatile Organics in Bedrock and Overburden Aquifers, Newark Basin of New Jersey Control of Fractured Bedrock Structure on the Movement of Chlorinated Volatile Organics in Bedrock and Overburden Aquifers, Newark Basin of New Jersey Robert M. Bond, PG and Katherine E. Linnell, PG, Langan

More information

Follow this and additional works at: Part of the Geology Commons

Follow this and additional works at:  Part of the Geology Commons Western Michigan University ScholarWorks at WMU Michigan Geological Repository for Research and Education Geosciences 2016 Geology of Michigan William B. Harrison III Michigan Geological Repository for

More information

1. Resistivity of rocks

1. Resistivity of rocks RESISTIVITY 1) Resistivity of rocks 2) General principles of resistivity surveying 3) Field procedures, interpretation and examples 4) Summary and conclusions INDUCED POLARIZATION 1) General principles

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Physics Research, 2010, 1 (2):37-45 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-0970 2-D Resistivity

More information

Connecticut's Aquifers

Connecticut's Aquifers Page 1 of 5 DEP Search: Connecticut's Aquifers The technical definition of the word "aquifer" is: any geologic formation capable of yielding significant quantities of water to wells. By that definition,

More information

Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer

Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer Sung-Ho Song*, Gyu-Sang Lee*, Jin-Sung Kim*, Baekuk Seong*, Young-gyu Kim*, Myung-Ha Woo* and Namsik Park** Abstract

More information

TEMPERATURE GEOTHERMAL SYSTEM *.BY. Roger F. Harrison Salt Lake City, Utah. C; K. Blair

TEMPERATURE GEOTHERMAL SYSTEM *.BY. Roger F. Harrison Salt Lake City, Utah. C; K. Blair - * f c * -6 9 -.I. lcal '. DEVELOPMENT AND TESTSNG OF A SMALL MODERATE TEMPERATURE GEOTHERMAL SYSTEM *.BY Roger F. Harrison Terra Tek, Inc. Salt Lake City, Utah C; K. Blair Terra Tek, Inc. - Salt Lake

More information

Hamed Aber 1 : Islamic Azad University, Science and Research branch, Tehran, Iran. Mir Sattar Meshin chi asl 2 :

Hamed Aber 1 : Islamic Azad University, Science and Research branch, Tehran, Iran. Mir Sattar Meshin chi asl 2 : Present a Proper Pattern for Choose Best Electrode Array Based on Geological Structure Investigating in Geoelectrical Tomography, in order to Get the Highest Resolution Image of the Subsurface Hamed Aber

More information

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone

General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone General Geologic Setting and Seismicity of the FHWA Project Site in the New Madrid Seismic Zone David Hoffman University of Missouri Rolla Natural Hazards Mitigation Institute Civil, Architectural & Environmental

More information

J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report

J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report Pursuant to: 40 CFR 257.60 40 CFR 257.61 40 CFR 257.62 40 CFR 257.63 40 CFR 257.64 Submitted to: Consumers Energy Company

More information

Ground Water in the Piedmont and Blue Ridge

Ground Water in the Piedmont and Blue Ridge engineering earth's development preserving earth's integrity Engineering Earth s Development Preserving Earth s Integrity Ground Water in the Piedmont and Blue Ridge Jim Renner Acknowledgements Contributors:

More information

patersongroup Consulting Engineers April 20, 2010 File: PG1887-LET.01R Novatech Engineering Consultants Suite 200, 240 Michael Cowpland Drive

patersongroup Consulting Engineers April 20, 2010 File: PG1887-LET.01R Novatech Engineering Consultants Suite 200, 240 Michael Cowpland Drive patersongroup April 20, 2010 File: PG1887-LET.01R Novatech Engineering Consultants Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6 Attention: Mr. Adam Thompson Consulting Engineers 28 Concourse

More information

Geophysical Investigation of a 19th Century Archeological Site, Boston College K. Corcoran, J. Hager, M. Carnevale

Geophysical Investigation of a 19th Century Archeological Site, Boston College K. Corcoran, J. Hager, M. Carnevale Geophysical Investigation of a 19th Century Archeological Site, Boston College K. Corcoran, J. Hager, M. Carnevale Hager GeoScience, Inc., Waltham, MA ------------------------------------------------------------------------

More information

Geophysics Course Introduction to DC Resistivity

Geophysics Course Introduction to DC Resistivity NORAD supported project in MRRD covering Capacity Building and Institutional Cooperation in the field of Hydrogeology for Faryab Province Afghanistan Geophysics Course Introduction to DC Resistivity By

More information

Groundwater Resource Evaluation in Support of Dewatering a South Carolina Limestone Quarry

Groundwater Resource Evaluation in Support of Dewatering a South Carolina Limestone Quarry Groundwater Resource Evaluation in Support of Dewatering a South Carolina Limestone Quarry Daniel T. Brantley 1, John M. Shafer 2, and Michael G. Waddell 3 AUTHORS: 1 Research Associate, Earth Sciences

More information

Using groundwater-flow model results to evaluate a useful 3-D GFM mapping scale

Using groundwater-flow model results to evaluate a useful 3-D GFM mapping scale Topography Geology Hydrology Using groundwater-flow model results to evaluate a useful 3-D GFM mapping scale Sally L. Letsinger, Ph.D., LPG, GISP IU Center for Geospatial Data Analysis, Indiana Geological

More information