BASIC EQUATION. Rotational speed = = ABC 60

Size: px
Start display at page:

Download "BASIC EQUATION. Rotational speed = = ABC 60"

Transcription

1 CENTRIFUGAL PUMP

2 BASIC EQUATION Rotational speed = =?@ = ABC 60 = = linear velocity in m/s? = radius in = angular velocity in rad/s B = diameter in m C = rotation per minute Power OPQR? = S U = O V U = WXh VU = WXh Z Work OPQR? = WXZ h [P?\ = Torque Angular velocity [P?\ = Force Distance

3 TURBOMACHINES Turbomachines are the commonly employed devices that either supply or extract energy from a flowing fluid by means of rotating propellers or vanes. PUMP: Pump adds energy to a system, with the result that the pressure is increased. It also causes flow to occur or it increases the rate of flow. TURBINE: A turbine extracts energy from a system and converts it to some other useful form, typically, to electric power. Hydroturbine: is a machine that generates power from high-pressure water; relatively large conduits or tunnels deliver fluid to closed turbines in order to generate power. Another example: steam turbine and air turbine.

4 PUMP CLASSIFICATION

5 CENTRIFUGAL PUMP A centrifugal pump consists of two principal parts: (1) Impeller: which imparts a rotary motion to the liquid. (2) Housing or casing: which directs the liquid into the impeller region and transports it away under a high pressure. The impeller is mounted on a shaft and is often driven by an electric motor. The casing includes the suction and discharge nozzles and houses the impeller assembly. The portion of the casing surrounding the impeller is termed the volute. Liquid enters through the suction nozzle to the impeller eye and travels along the shroud, developing a rotary motion due to the impeller vanes.

6 It leaves the volute casing peripherally at a higher pressure through the discharging nozzle. Some single-suction impellers are open, with the front shroud removed. Double-suction impellers have liquid entering from both sides.

7

8 HEAD OF PUMP (Manometric head) This is defined by British Standards as the sum of the actual lift (H) + the friction losses in the pipes (hf)+ the discharge velocity head. r s = r + h t + U u v 2X = O v O x WX + U v v v U x 2X However, for special pumps allowance must also be made for the velocity of flow towards the suction intake and any pressure differences at the water surfaces in the supply and receiving tanks. Commonly the suction and delivery pipes are of equal diameter. In which case: r s = O v O x WX

9

10

11 VELOCITY TRIANGLE

12 Legend: At inlet (1) = x =? = Tangetial velocity of impeller { x = Absolute velocity at x to tangent { }x = { x = x = Relataive velocity to impeller blade Component velocity for { x : { ~x = Whirl velocity { tx = Radial flow velocity x = Inlet blade angle At outlet (2) = v =? = Tangetial velocity of impeller { v = Absolute velocity at v to tangent { }v = { v = v = Relataive velocity to impeller blade Component velocity for { v : { ~v = Whirl velocity { tv = Radial flow velocity v = Inlet blade angle

13

14 BLADE TYPE 1. Forward blade 2. Radial blade 3. Backward blade FORWARD BLADE

15 RADIAL BLADE

16 BACKWARD BLADE

17 THE EFFECT OF BLADE TYPE Centrifugal pumps do not always have backward curved vanes. But when they do, it is mostly for fluids in the incompressible regime of operation such as water. For compressible operation of fluids such as air, forward curve-vaned centrifugal pumps are used. The net ideal head developed by a centrifugal pump is given by: r ÇuÉÑÖ = V ÜZ Z = volume flow rate at the impeller outlet V, Ü = constant for a given impeller running at a given speed Additionally, Ü cot v.

18 Do note that the value of the actual head developed by the pump will be lower than this ideal value owing to shocks r àâäãå = ç x Z u Z v Z u = design volume flow rate Z = actual volume flow rate Friction can be calculated by: h t = ç v Z v which together constitute hydraulic losses.

19 The power required to drive the pump to provide a given flow-rate is given as: O = WXZ r ÇuÉÑÖ The representative curves are given below.

20 As is evident from the power-discharge characteristics of the radial and forward vaned centrifugal pump, the power requirement increases monotonically with an increase in discharge. Hence, if the pump motor is rated for maximum power, then it will remain under-utilized for most of the operating time, and result in an increased cost due to its higher rating. On the other hand, if a motor is rated at the design point, and due to some reason the flow-rate exceeds the design flow rate, then the power requirement will shoot up (in case of forward and radial vanes only), causing overloading and motor failure. However, for backward curve-vaned centrifugal pumps, if the flow-rate exceeds the design flow rate (occurs quite close to the maxima of the power-discharge curve), then contrary to the earlier case, the power requirement drops down as evident from the curves. This enables the motor which is rated at the design power to handle the entire range of flow-rates without any problems. The actual design point is located corresponding to the flowrate at which maximum efficiency occurs.

21 EULER HEAD Torque = kadar perubahan momentum sudut Momentum sudut = (jisim) (halaju tangen) (jejari) Momentum sudut masuk = è{ ~x? x Momentum sudut keluar = è{ ~v? v è = kadar jisim mengalir sesaat Kadar perubahan momentum sudut: ê = è{ ~v? v è{ ~x? x è = WVU = WZ ê = WZ { ~v? v { ~x? x Diketahui power ialah: O = ê@ O = WZ { ~v? v { ~x? Diketahui: = =?@ = x =? = v =? x = ë í ì and? v = ë î ì

22 Diketahui power ialah: O = WZ { ~v? v { ~x? = v = WZ { { = = WZ { ~v = v { ~x = x Power juga boleh ditulis sebagai: O = WXZ h Jika power adalah maksimum, nilai h ialah nilai maksimum, iaitu niai power dalam keadaan tiada kehilangan tenaga (losses, friction, etc). Nilai h boleh ditulis sebagai r ñ (Euler head) O = WXZ r ñ = WZ { ~v = v { ~x = x r ñ = 1 X { ~v= v { ~x = x Ia kenali sebagai Euler head (turus Euler). Unitnya dalam meter (m). Ia adalah turus ideal yang dihasilkan oleh impeller (pendesak) dalam system pam.

23 PUMP EFFICIENCY (kecekapan pam) Manometric efficiency ó sñòä = Kuasa air yang dihasilkan Kuasa impeller = WXZ r s WXZ r ñ = WXZ WXZ r s 1 X { ~v= v { ~x = x ó sñòä = Xr s { ~v = v { ~x = x Mechanical efficiency ó séãâ = Kuasa impeller Kuasa yang diberikan kepada syaf ó séãâ = 1 X { ~v= v { ~x = x O Çòôëö

24 Overall efficiency ó ä = Kuasa air yang dihasilkan Kuasa yang diberikan kepada syaf ó ä = WXZ r s O Çòôëö

25 CENTRIFUGAL PUMP TUTORIAL O1

26 QUESTION 1 A centrifugal pump is driven by an electric motor at 1450 rpm. Outlet diameter of blade, outlet blade width and outlet blade angle are 600 mm, 400 mm and 30 o, respectively. Inlet diameter of blade, inlet blade width and inlet blade angle are 300 mm, 80mm and 20ᵒ respectively. Pressure at suction pipe and delivery are positive 13.5 bar and negative 0.5 bar, respectively. Assume that the diameter for suction and delivery pipes is equal. The flowrate inside the pump is 0.3m 3 /s. Determine: i. The monometric head, Hm ii. The manometric efficiency, W X iii. Power required by electric motor if overall efficiency is 98%. QUESTION 2 A centrifugal pump has inlet and outlet diameter of 30 cm and 60 cm, respectively. Impeller width at outlet is 12 cm. Blade thickness occupied 10 percent of the circumference. Blade is backward with inlet and outlet blade angle is 30ᵒ and 40ᵒ, respectively. The flowrate is 0.5m 3 /s. Assume there are no whirl at inlet and velocity of flow is constant determine: i. The rotation of pump in rpm ii. The output power if manometric efficiency is 85% iii. The pressure difference across the impeller

27 QUESTION 3 Centrifugal pump supplies water at the rate of 400 liter/s and the pressure difference across the pump is 200 kn/m 3. Outlet diameter and outlet width are 40cm and 10 cm, respectively. Blade thickness occupied 10% of the circumference. Impeller inlet diameter is half of the outlet diameter. Assume losses in casing and impeller are negligible and zero whirl at inlet. The diameter of suction and delivery pipes is equal. If the blades are radial, determine: i. The pump power input in horsepower if overall efficiency is 80% ii. The impeller speed in rpm iii. The inlet blade angle if velocity of flow is constant QUESTION 4 The inlet and outlet impeller diameter of centrifugal pump are 200 mm and 400 m, respectively. Impeller width at inlet and outlet are 15 mm and 8 mm, respectively. Blades are backward with angle of 38ᵒ. Pump operates at 1500 rpm. The flowrate is 15 liter/s. Determine the pressure changes in the impeller. Assume no energy losses.

28 QUESTION 01

29 QUESTION 02 QUESTION 03 QUESTION 04

BASIC EQUATION. Rotational speed. u = linear velocity in m/s r = radius in m ω = angular velocity in rad/s D = diameter in m N = rotation per minute

BASIC EQUATION. Rotational speed. u = linear velocity in m/s r = radius in m ω = angular velocity in rad/s D = diameter in m N = rotation per minute CENTRIFUGAL PUMP BASIC EQUATION Rotational speed u = rω = πdn 60 u = linear velocity in m/s r = radius in m ω = angular velocity in rad/s D = diameter in m N = rotation per minute Power Power = F V = P

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. - Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. 2- Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

CHAPTER TWO CENTRIFUGAL PUMPS 2.1 Energy Transfer In Turbo Machines

CHAPTER TWO CENTRIFUGAL PUMPS 2.1 Energy Transfer In Turbo Machines 7 CHAPTER TWO CENTRIFUGAL PUMPS 21 Energy Transfer In Turbo Machines Fig21 Now consider a turbomachine (pump or turbine) the total head (H) supplied by it is The power delivered to/by the fluid simply

More information

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines Unit (Potters & Wiggert Sec. 1..1, &-607) Expression relating Q, H, P developed by Rotary machines Rotary

More information

Introduction to Fluid Machines (Lectures 49 to 53)

Introduction to Fluid Machines (Lectures 49 to 53) Introduction to Fluid Machines (Lectures 49 to 5) Q. Choose the crect answer (i) (ii) (iii) (iv) A hydraulic turbine rotates at N rpm operating under a net head H and having a discharge Q while developing

More information

Specific Static rotor work ( P P )

Specific Static rotor work ( P P ) The specific Static Rotor ork p 1 ρ Specific Static rotor work ( P P ) here P, P static pressures at points, (P P ) static pressure difference of the rotor ρ density, in case of a compressible medium average

More information

CHAPTER EIGHT P U M P I N G O F L I Q U I D S

CHAPTER EIGHT P U M P I N G O F L I Q U I D S CHAPTER EIGHT P U M P I N G O F L I Q U I D S Pupmps are devices for supplying energy or head to a flowing liquid in order to overcome head losses due to friction and also if necessary, to raise liquid

More information

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids INTRODUCTION Hydrodynamic Machines A hydromachine is a device used either for extracting energy from a fluid or to add energy to a fluid. There are many types of hydromachines and Figure 1 below illustrates

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia ENERGY TRANSFER BETWEEN FLUID AND ROTOR Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Basic Laws and Equations Continuity Equation m m ρ mass

More information

(Refer Slide Time: 4:41)

(Refer Slide Time: 4:41) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-30. Basic Principle and Energy Transfer in Centrifugal Compressor Part

More information

Centrifugal Machines Table of Contents

Centrifugal Machines Table of Contents NLNG Course 017 Table of Contents 1 Introduction and Basic Principles... 1.1 Hydraulic Machines... 1.... 1.3 Pump Geometry... 1.4 Pump Blade Geometry...3 1.5 Diffusers...5 1.6 Pump Losses...6 1.7 Example

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction to Fluid Machines Well, good

More information

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

More information

Design of Monoblock Centrifugal Pump Impeller

Design of Monoblock Centrifugal Pump Impeller Design of Monoblock Centrifugal Pump Impeller Authors Mr. Chetan Kallappa Tambake 1, Prof. P. V. Salunke 1 Department of Mechanical Engineering, Walchand Institute of Technology, Ashok Chowk, Solapur-413006,

More information

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

M E 320 Professor John M. Cimbala Lecture 23

M E 320 Professor John M. Cimbala Lecture 23 M E 320 Professor John M. Cimbala Lecture 23 Today, we will: Discuss diffusers and do an example problem Begin discussing pumps, and how they are analyzed in pipe flow systems D. Diffusers 1. Introduction.

More information

PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +

PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = + The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Centrifugal Compressor Part I Good morning

More information

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS Fluid Machinery As per Revised Syllabus of Leading Universities including APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Dr. S. Ramachandran Prof. R. Devaraj Professors School of Mechanical Engineering Sathyabama

More information

3 Energy Exchange in Turbomachines

3 Energy Exchange in Turbomachines 3 Energy Exchange in Turbomachines Problem 1 The solved and unsolved examples of this chapter are meant to illustrate the various forms of velocity triangles and the variety of the turbomachines. In addition,

More information

Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance A. Farid Ayad *, H. M. Abdalla,A. S. Abo El-Azm Egyptian Armed Forces, Egypt

Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance A. Farid Ayad *, H. M. Abdalla,A. S. Abo El-Azm Egyptian Armed Forces, Egypt 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 REFERENCES REFERENCES Streeter, Victor L., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, ISBN 07-062191-9.

More information

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 24 Axial Flow Compressor Part I Good morning

More information

SUMMER 14 EXAMINATION

SUMMER 14 EXAMINATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

IJREAS Volume 2, Issue 2 (February 2012) ISSN:

IJREAS Volume 2, Issue 2 (February 2012) ISSN: DESIGN AND CFD ANALYSIS OF SINGLE STAGE, END SUCTION, RADIAL FLOW CENTRIFUGAL PUMP FOR MINE DEWATERING APPLICATION Swapnil Urankar * Dr. H S Shivashankar ** Sourabh Gupta *** ABSTRACT Heavy centrifugal

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - V PUMPS

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - V PUMPS CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - V PUMPS Centrifugal pups - Miniu speed to start the pup - NPSH - Cavitations in pups Operating characteristics - Multistage pups - Reciprocating pups - Negative

More information

To investigate the performance of the Pelton Wheel turbine with different range of flow rates and rotational speeds.

To investigate the performance of the Pelton Wheel turbine with different range of flow rates and rotational speeds. Experiment No. 1 PELTON WHEEL TURBINE Objective To investigate the performance of the Pelton Wheel turbine with different range of flow rates and rotational speeds. Summary of theory Pelton Wheel turbine

More information

by Dr. Shibayan Sarkar Department of Mechanical Engineering

by Dr. Shibayan Sarkar Department of Mechanical Engineering Lecture on Pump by Dr. Shibayan Sarkar Department of Mechanical Engineering Indian School of Mines Dhanbad WHAT IS PUMP? A hydrodynamic pump machine is a device which converts the mechanical energy held

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

UNIFIED DESIGN AND COMPARATIVE PERFORMANCE EVALUATION OF FORWARD AND BACKWARD CURVED RADIAL TIPPED CENTRIFUGAL FAN

UNIFIED DESIGN AND COMPARATIVE PERFORMANCE EVALUATION OF FORWARD AND BACKWARD CURVED RADIAL TIPPED CENTRIFUGAL FAN Proceedings of the International Conference on Mechanical Engineering 3 (ICME3) 6-8 December 3, Dhaka, Bangladesh ICME3-FL- UNIFIED DESIGN AND COMPARATIVE PERFORMANCE EVALUATION OF FORWARD AND BACKWARD

More information

International Journal of Research in Advent Technology Available Online at:

International Journal of Research in Advent Technology Available Online at: A COMPUTER PROGRAMMED DESIGN OPTIMISATION AND ANALYSIS OF COMPRESSOR IMPELLER G. Naga Malleshwar Rao 1, Dr. S.L.V. Prasad 2, Dr. S. Sudhakarbabu 3 1, 2 Professor of Mechanical Engineering, Shri Shirdi

More information

SOE2156: Fluids Lecture 4

SOE2156: Fluids Lecture 4 Turbo SOE2156: s Lecture 4 machine { a device exchanging energy (work) between a uid and a mechanical system. In particular : a turbomachine is a device using a rotating mechanical system. The ow of energy

More information

Chapter 7 The Energy Equation

Chapter 7 The Energy Equation Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

Chapter 7. Introduction to Fluid Machinery

Chapter 7. Introduction to Fluid Machinery Chapter 7 Introduction to Fluid Machinery 1 Classification of Fluid Machines Positive diplacement machines (static type) Turbomachines (dynamic type) Turbines: extract energy to the flow :the fluid does

More information

CIVE HYDRAULIC ENGINEERING PART II Pierre Julien Colorado State University

CIVE HYDRAULIC ENGINEERING PART II Pierre Julien Colorado State University 1 CIVE 401 - HYDRAULIC ENGINEERING PART II Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems

More information

CHAPTER 12 Turbomachinery

CHAPTER 12 Turbomachinery CAER urbomachinery Chapter / urbomachinery 800 / 0 8 8 rad /s, u r 8 8 0 0 m /s, u r 8 8 0 0 8 m /s, rbv, but V u since, n n 0 0 0 0 0 0 m / s V V 0 0 m /s, rb 0 0 0 Vn u 0 8 6 77 m /s, tan tan 0 n t V

More information

BUCKINGHAM PI THEOREM

BUCKINGHAM PI THEOREM BUCKINGHAM PI THEOREM Dimensional Analysis It is used to determine the equation is right or wrong. The calculation is depends on the unit or dimensional conditions of the equations. For example; F=ma F=MLT

More information

Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG

Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG umping Stations Design For Infrastructure Master rogram Engineering Faculty-IUG Lecture : umping Hydraulics Dr. Fahid Rabah Water and environment Engineering frabah@iugaza.edu The main items that will

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 07 Analysis of Force on the Bucket of Pelton

More information

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Lect- 3 In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Centrifugal compressors Centrifugal compressors were used in the first

More information

CLASS Fourth Units (Second part)

CLASS Fourth Units (Second part) CLASS Fourth Units (Second part) Energy analysis of closed systems Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. MOVING BOUNDARY WORK Moving boundary work (P

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

ME 316: Thermofluids Laboratory

ME 316: Thermofluids Laboratory ME 316 Thermofluid Laboratory 6.1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ME 316: Thermofluids Laboratory PELTON IMPULSE TURBINE 1) OBJECTIVES a) To introduce the operational principle of an impulse

More information

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

BME-A PREVIOUS YEAR QUESTIONS

BME-A PREVIOUS YEAR QUESTIONS BME-A PREVIOUS YEAR QUESTIONS CREDITS CHANGE ACCHA HAI TEAM UNIT-1 Introduction: Introduction to Thermodynamics, Concepts of systems, control volume, state, properties, equilibrium, quasi-static process,

More information

Optimizing Centrifugal Pump Performance by Different Blade Configuration Patterns

Optimizing Centrifugal Pump Performance by Different Blade Configuration Patterns American Journal of Mechanical and Industrial Engineering 2018; 3(1): 1-14 http://www.sciencepublishinggroup.com/j/ajmie doi: 10.11648/j.ajmie.20180301.11 ISSN: 2575-6079 (Print); ISSN: 2575-6060 (Online)

More information

nozzle which is fitted to a pipe through which the liquid is flowing under pressure.

nozzle which is fitted to a pipe through which the liquid is flowing under pressure. Impact of Jets 1. The liquid comes out in the form of a jet from the outlet of a nozzle which is fitted to a pipe through which the liquid is flowing under pressure. The following cases of the impact of

More information

mywbut.com Hydraulic Turbines

mywbut.com Hydraulic Turbines Hydraulic Turbines Hydro-electric power accounts for up to 0% of the world s electrical generation. Hydraulic turbines come in a variety of shapes determined by the available head and a number of sizes

More information

Unified Propulsion Quiz May 7, 2004

Unified Propulsion Quiz May 7, 2004 Unified Propulsion Quiz May 7, 2004 Closed Book no notes other than the equation sheet provided with the exam Calculators allowed. Put your name on each page of the exam. Read all questions carefully.

More information

Dynamic centrifugal compressor model for system simulation

Dynamic centrifugal compressor model for system simulation Journal of Power Sources xxx (2005) xxx xxx Dynamic centrifugal compressor model for system simulation Wei Jiang, Jamil Khan, Roger A. Dougal Department of Mechanical Engineering, University of South Carolina,

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

ASSESSMENT OF DESIGN METHODOLOGY AND THREE DIMENSIONAL NUMERICAL (CFD) ANALYSIS OF CENTRIFUGAL BLOWER

ASSESSMENT OF DESIGN METHODOLOGY AND THREE DIMENSIONAL NUMERICAL (CFD) ANALYSIS OF CENTRIFUGAL BLOWER ASSESSMENT OF DESIGN METHODOLOGY AND THREE DIMENSIONAL NUMERICAL (CFD) ANALYSIS OF CENTRIFUGAL BLOWER D. R. Chaudhari 1, H. N. Patel 2 1,2 Mechanical Department, Government Engineering College Dahod, (India)

More information

Conservation of Angular Momentum

Conservation of Angular Momentum 10 March 2017 Conservation of ngular Momentum Lecture 23 In the last class, we discussed about the conservation of angular momentum principle. Using RTT, the angular momentum principle was given as DHo

More information

HYDRAULIC TURBINES. Hydraulics and Hydraulic Machines

HYDRAULIC TURBINES. Hydraulics and Hydraulic Machines HYDRAULIC TURBINES Introduction: The device which converts h ydraulic energy into mechanical energy or vice versa is known as Hydraulic Machines. The h ydraulic machines which convert h ydraulic energy

More information

COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS

COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS 4 th International Conference on Mechanical Engineering, December 26-28, 21, Dhaka, Bangladesh/pp. IV 55-6 COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS Nitin N. Vibhakar* and S.

More information

An improved theory for regenerative pump performance

An improved theory for regenerative pump performance 213 An improved theory for regenerative pump performance T Meakhail and S O Park Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Taejon, Republic of Korea The manuscript

More information

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps

More information

Principles of Turbomachinery

Principles of Turbomachinery Principles of Turbomachinery To J. M. T. Principles of Turbomachinery R. K. Turton Lecturer in Mechanical Engineering Loughborough University of Technology London New York E. & F. N. Spon ISBN 978-94-010-9691-1

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

DESIGN AND CFD ANALYSIS OF A CENTRIFUGAL PUMP

DESIGN AND CFD ANALYSIS OF A CENTRIFUGAL PUMP DESIGN AND CFD ANALYSIS OF A CENTRIFUGAL PUMP 1 CH.YADAGIRI, 2 P.VIJAYANAND 1 Pg Scholar, Department of MECH, Holymary Institute of Technology, Ranga Reddy, Telangana, India. 2 Assistant Professor, Department

More information

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook.

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Basics (pressure head, efficiency, working point, stability) Pumps

More information

Interaction of impeller and guide vane in a seriesdesigned

Interaction of impeller and guide vane in a seriesdesigned IOP Conference Series: Earth and Environmental Science Interaction of impeller and guide vane in a seriesdesigned axial-flow pump To cite this article: S Kim et al 212 IOP Conf. Ser.: Earth Environ. Sci.

More information

Institute of Aeronautical Engineering

Institute of Aeronautical Engineering Institute of Aeronautical Engineering Hydraulics & Hydraulic Machinery (ACE011) R16 B.Tech III Year V Semester Prepared by Dr. G. Venkata Ramana Professor& HOD Civil Engineering 1 Unit I OPEN CHANNEL FLOW

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

Angular momentum equation

Angular momentum equation Angular momentum equation For angular momentum equation, B =H O the angular momentum vector about point O which moments are desired. Where β is The Reynolds transport equation can be written as follows:

More information

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University Introduction Hasan Ozcan, Ph.D, (Assistant Professor) B.Sc :Erciyes University,

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

Investigations on the Performance of Centrifugal Pumps In Conjunction With Inducers

Investigations on the Performance of Centrifugal Pumps In Conjunction With Inducers Investigations on the Performance of Centrifugal Pumps In Conjunction With Inducers Mohammed A. El Samanody, (1) Ashraf Ghorab (2 ) and Mamdouh A. Mostafa, (3) 1-Prof. of Hydropower & Fluid Mechanics,

More information

Hydraulic Turbines. Table 6.1 Parameters of hydraulic turbines. Power P (kw) Speed N (rpm)

Hydraulic Turbines. Table 6.1 Parameters of hydraulic turbines. Power P (kw) Speed N (rpm) 6 Hydraulic Turbines Problem 1 There are 10 solved examples and 7 exercise problems (exclude Problems 1, 2, and 10) in this chapter. Prepare a table to mention the values of all the parameters, such as

More information

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex. Chapter 5 Fluid in Motion The Bernoulli Equation BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence

More information

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Rate of Flow Quantity of fluid passing through any section (area) per unit time Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

A SIMPLE ACOUSTIC MODEL TO SIMULATE THE BLADE-PASSING FREQUENCY SOUND PRESSURE GENERATED IN THE VOLUTE OF CENTRIFUGAL PUMPS

A SIMPLE ACOUSTIC MODEL TO SIMULATE THE BLADE-PASSING FREQUENCY SOUND PRESSURE GENERATED IN THE VOLUTE OF CENTRIFUGAL PUMPS A SIMPLE ACOUSTIC MODEL TO SIMULATE THE BLADE-PASSING FREQUENCY SOUND PRESSURE GENERATED IN THE VOLUTE OF CENTRIFUGAL PUMPS PACS REFERENCE: 43.28.Ra Parrondo Gayo, Jorge; Pérez Castillo, Javier; Fernández

More information

ISO 9906 INTERNATIONAL STANDARD. Rotodynamic pumps Hydraulic performance acceptance tests Grades 1 and 2

ISO 9906 INTERNATIONAL STANDARD. Rotodynamic pumps Hydraulic performance acceptance tests Grades 1 and 2 INTERNATIONAL STANDARD ISO 9906 First edition 1999-1-15 Rotodynamic pumps Hydraulic performance acceptance tests Grades 1 and Pompes rotodynamiques Essais de fonctionnement hydraulique pour la réception

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING LECTURE NOTES ON Hydraulics and Hydraulic Machines Department of Civil Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal 500 043, Hyderabad mechanis m COURTESY IARE Governors for Turbines Pendulum

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

More information

WATER DISTRIBUTION NETWORKS

WATER DISTRIBUTION NETWORKS WATER DISTRIBUTION NETWORKS CE 370 1 Components of Water Supply System 2 1 Water Distribution System Water distribution systems are designed to adequately satisfy the water requirements for a combinations

More information

ANNAI MATHAMMAL SHEELA ENGINEERING COLLEGE, NAMAKKAL DEPARTMENT OF MECHANICAL ENGINEERING COLLEGE CE6451 FLUID MECHANICS AND MACHINERY

ANNAI MATHAMMAL SHEELA ENGINEERING COLLEGE, NAMAKKAL DEPARTMENT OF MECHANICAL ENGINEERING COLLEGE CE6451 FLUID MECHANICS AND MACHINERY ANNAI MATHAMMAL SHEELA ENGINEERING COLLEGE, NAMAKKAL DEPARTMENT OF MECHANICAL ENGINEERING COLLEGE CE6451 FLUID MECHANICS AND MACHINERY 1 UNIT I : INTRODUCTION TWO MARKS 1. Define density or mass density.

More information

CONTENTS CHAPTER (II) DIMENSIONAL ANALYSIS AND SIMILITUDE OF TURBOMACHINES

CONTENTS CHAPTER (II) DIMENSIONAL ANALYSIS AND SIMILITUDE OF TURBOMACHINES CONTENTS CHAPTER (I) BASIC THEORY Historical Review.............. General Introduction............ 4. Velocity Diagram.............. 5.3 Momentum Transfer Principles........ 6.4 Energy Equation..............

More information

THEORETICAL MODEL FOR PREDICTING AXIAL FANS/BLOWERS PERFORMANCE CHARACTERISTICS

THEORETICAL MODEL FOR PREDICTING AXIAL FANS/BLOWERS PERFORMANCE CHARACTERISTICS International Journal of Mechanical And Production Engineering, ISSN: 30-09, Volume- 3, Issue-, Feb.-015 THEORETICAL MODEL FOR PREDICTING AXIAL FANS/BLOWERS PERFORMANCE CHARACTERISTICS OMBOR PEREOWEI GARRICK

More information

Research on energy conversion mechanism of a screw centrifugal pump under the water

Research on energy conversion mechanism of a screw centrifugal pump under the water IOP Conference Series: Materials Science and Engineering OPEN ACCESS Research on energy conversion mechanism of a screw centrifugal pump under the water To cite this article: H Quan et al 213 IOP Conf.

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Specific Speed, Governing and Limitation

More information

Pressure and Flow Characteristics

Pressure and Flow Characteristics Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to

More information

MASS, MOMENTUM, AND ENERGY EQUATIONS

MASS, MOMENTUM, AND ENERGY EQUATIONS MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the

More information

MECA-H-402: Turbomachinery course Axial compressors

MECA-H-402: Turbomachinery course Axial compressors MECA-H-40: Turbomachinery course Axial compressors Pr. Patrick Hendrick Aero-Thermo-Mecanics Year 013-014 Contents List of figures iii 1 Axial compressors 1 1.1 Introduction...............................

More information

1) Specific Gravity It is the ratio of specific weight of fluid to the specific weight of water.

1) Specific Gravity It is the ratio of specific weight of fluid to the specific weight of water. Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Hydraulic modeling assessment Copyright 2010, Optimized Technical Solutions, LLC

Hydraulic modeling assessment Copyright 2010, Optimized Technical Solutions, LLC Hydraulic modeling assessment Copyright 2010, Optimized Technical Solutions, LLC Name: Date: Please answer the following questions with the complete piping configuration shown in Figure 1 below. Assume

More information

A fluid machine is a device either for converting the energy held by a fluid into mechanical energy or vice versa.

A fluid machine is a device either for converting the energy held by a fluid into mechanical energy or vice versa. FLUID MACHINE A fluid machine is a device either for converting the energy held by a fluid into mechanical energy or vice versa. Fluid machine may be divided into two groups; 1. Positive displacement group

More information

Problem 1 (From the reservoir to the grid)

Problem 1 (From the reservoir to the grid) ÈÖÓ º ĺ ÙÞÞ ÐÐ ÈÖÓ º ʺ ³ Ò Ö ½ ½¹¼ ¼¹¼¼ ËÝ Ø Ñ ÅÓ Ð Ò ÀË ¾¼½ µ Ü Ö ÌÓÔ ÀÝ ÖÓ Ð ØÖ ÔÓÛ Ö ÔÐ ÒØ À Èȵ ¹ È ÖØ ÁÁ Ð ÖÒ Ø Þº ÇØÓ Ö ½ ¾¼½ Problem (From the reservoir to the grid) The causality diagram of the

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Department of Mechanical Engineering Name Matr.- Nr. Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination:

More information

Problem 1 (From the reservoir to the grid)

Problem 1 (From the reservoir to the grid) ÈÖÓ º ĺ ÙÞÞ ÐÐ ÈÖÓ º ʺ ³ Ò Ö ½ ½¹¼ ¹¼¼ ËÝ Ø Ñ ÅÓ Ð Ò ÀË ¾¼½ µ Ü Ö ËÓÐÙØ ÓÒ ÌÓÔ ÀÝ ÖÓ Ð ØÖ ÔÓÛ Ö ÔÐ ÒØ À Èȵ ¹ È ÖØ ÁÁ Ð ÖÒ Ø Þº ÇØÓ Ö ¾ ¾¼½ Problem 1 (From the reservoir to the grid) The causality diagram

More information

Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics

Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics IOP Conference Series: Earth and Environmental Science Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics To cite this article: J H Kim et al 2012 IOP Conf.

More information