Unit 9: Symmetric Functions

Size: px
Start display at page:

Download "Unit 9: Symmetric Functions"

Transcription

1 Haberman MTH 111 Section I: Functions and Their Graphs Unit 9: Symmetric Functions Some functions have graphs with special types of symmetries, and we can use the reflections we just studied to analyze these symmetries EXAMPLE: The graph of y u( )? symmetry about the y-ais u( ) is given below How does it compare with the graph of The graph of u( ) Notice that if we reflect the graph of u( ) about the y-ais, we obtain the eact same graph! This can be represented algebraically with the statement u( ) u( ) We say that graphs like u( ) have symmetry about the y-ais and call functions with this type of symmetry even functions (It helps me to remember that u( ) is an eample of an even function since the power on (ie, ) is an even number) A function y f ( ) is even if its graph is symmetric about the y-ais, (which means that the graph of the function isn t changed if it is reflected about the y-ais) An algebraic test to determine if a function is even is given below: A function f is even if, for all in its domain, f ( ) f ( ) Notice that the test is an algebraic representation of the statement a function is even if a reflection about the y-ais does not change the graph

2 Haberman MTH 11 Section I: Unit 9 symmetry about the origin EXAMPLE: The graph of v( ) is given below How does the graph of y v( ) compare with the graph of y v( )? The graph of v( ) Notice that if you anchor the graph of v( ) at the origin (0, 0) and rotate it 180 in either direction, the graph ends up in the same place it started We say that graphs with this sort of symmetry have symmetry about the origin We can also study this symmetry by considering reflections Let s reflect the graph of v( ) about both the - and y-aes, ie, let s graph both y v( ) (reflection about the y-ais) and y v( ) (reflection about the -ais): The graph of y v( ) (blue) (reflection of y v( ) (grey) about y-ais) The graph of y v( ) (blue) (a reflection of y v( ) (grey) about -ais) These graphs show us that, when we reflect v( ) about the y-ais, we obtain the same graph as we do when we reflect the graph about the -ais We can summarize this fact with the following algebraic statement: v( ) v( )

3 Haberman MTH 11 Section I: Unit 9 Functions with symmetry about the origin are called odd functions (It helps me to remember that v( ) is an eample of an odd function since the power on (ie, ) is an odd number) A function y f ( ) is odd if its graph is symmetric about the origin, which means that if you rotate its graph 180 about the origin, you obtain the original graph (Equivalently, a function is odd if reflection about the y-ais gives you the same graph as reflection about the -ais) An algebraic test to determine if a graph is odd is given below: For all in its domain, f ( ) f ( ) Notice that the algebraic test is an algebraic representation of the statement a function is odd if a reflection about the y-ais produces the same graph as a reflection about the -ais EXAMPLE: Determine if the functions graphs below appear to be even, odd, or neither The graph of y a( ) The graph of y b( ) The graph of y c( ) The graph of y d( )

4 Haberman MTH 11 Section I: Unit 9 4 SOLUTION: The functions y a( ) and y d( ) appear to be ODD since they are symmetric about the origin (ie, if we rotate the graphs 180 about the origin, we ll obtain the original graphs) The function y c( ) appears to be EVEN since it is symmetric about the y-ais (ie, if we reflect the graph about the y-ais we ll obtain the original graph) The function y b( ) appears to neither even nor odd since it s not symmetric about the origin or the y-ais EXAMPLE: Perform the appropriate algebraic test to determine if the following functions are even, odd, or neither a a ( ) b b( ) c c ( ) d 6 4 d( ) 8 SOLUTIONS: It is important to notice that the algebraic tests for both even and odd symmetry start with making the input the opposite sign, so when we test for symmetry, we need to start with this step, simplify, and observe the result We only need to perform one test and observe the result, rather than performing a separate test for both even and odd a ( ) a( ) ( ) a ( ) Since a( ) a( ), we can conclude that a is an odd function

5 Haberman MTH 11 Section I: Unit 9 b b( ) ( ) ( ) Since this is neither the original function nor the opposite of the original function, ie, b( ) b( ) and b( ) b( ), we see that b is neither even nor odd c c( ) ( ) ( ) ( ) ( ) c ( ) Since c( ) c( ), we can conclude that c is an even function d 6 4 d( ) ( ) ( ) 8( ) d( ) Since d( ) d( ), we can conclude that d is an even function

9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically

9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically 9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically Use this blank page to compile the most important things you want to remember for cycle 9.5: 181 Even and Odd Functions Even Functions:

More information

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x).

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x). [Limits at infinity eamples] Eample. The graph of a function y = f() is shown below. Compute f() and f(). y -8 As you go to the far right, the graph approaches y =, so f() =. As you go to the far left,

More information

3.1 Symmetry & Coordinate Graphs

3.1 Symmetry & Coordinate Graphs 3.1 Symmetry & Coordinate Graphs I. Symmetry Point symmetry two distinct points P and P are symmetric with respect to point M if and only is M is the midpoint of PP' When the definition is extended to

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

The letter m is used to denote the slope and we say that m = rise run = change in y change in x = 5 7. change in y change in x = 4 6 =

The letter m is used to denote the slope and we say that m = rise run = change in y change in x = 5 7. change in y change in x = 4 6 = Section 4 3: Slope Introduction We use the term Slope to describe how steep a line is as ou move between an two points on the line. The slope or steepness is a ratio of the vertical change in (rise) compared

More information

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x Algebra Notes Quadratic Systems Name: Block: Date: Last class we discussed linear systems. The only possibilities we had we 1 solution, no solution or infinite solutions. With quadratic systems we have

More information

Unit 4 Day 8 Symmetry & Compositions

Unit 4 Day 8 Symmetry & Compositions Unit 4 Day 8 Symmetry & Compositions Warm Up Day 8 1. f ( ) 4 3. g( ) 4 a. f(-1)= a. -g()= b. f(3)= b. g(+y)= c. f(-y)= c. g(-)= 3. Write and graph an equation that has the following: -Nonremovable discontinuity

More information

Graphs and Solutions for Quadratic Equations

Graphs and Solutions for Quadratic Equations Format y = a + b + c where a 0 Graphs and Solutions for Quadratic Equations Graphing a quadratic equation creates a parabola. If a is positive, the parabola opens up or is called a smiley face. If a is

More information

Algebra 2 Unit 9 (Chapter 9)

Algebra 2 Unit 9 (Chapter 9) Algebra Unit 9 (Chapter 9) 0. Spiral Review Worksheet 0. Find verte, line of symmetry, focus and directri of a parabola. (Section 9.) Worksheet 5. Find the center and radius of a circle. (Section 9.3)

More information

Unit 4: Function Composition

Unit 4: Function Composition Haberman MTH 111 Section I: Functions and Their Graphs Unit 4: Function Composition In The Algebra of Functions (Section I: Unit ) we discussed adding, subtracting, multiplying, and dividing functions.

More information

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings 978--08-8-8 Cambridge IGCSE and O Level Additional Mathematics Practice Book Ecerpt Chapter XX: : Functions XXXXXXXXXXXXXXX Chapter : Data representation This section will show you how to: understand

More information

MORE CURVE SKETCHING

MORE CURVE SKETCHING Mathematics Revision Guides More Curve Sketching Page of 3 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level MEI OCR MEI: C4 MORE CURVE SKETCHING Version : 5 Date: 05--007 Mathematics Revision

More information

UNIT 3 REASONING WITH EQUATIONS Lesson 2: Solving Systems of Equations Instruction

UNIT 3 REASONING WITH EQUATIONS Lesson 2: Solving Systems of Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: graphing equations of lines using properties of equality to solve equations Introduction Two equations that are solved together

More information

CHAPTER 1: Functions

CHAPTER 1: Functions CHAPTER : Functions SECTION.: FUNCTIONS (Answers for Chapter : Functions) A.. f x 2) f x 3) = x = x 4) Input x Output f x 3 0 4 5 2 6 5 5 + 4 π π + 4 0/3 22/3 4.7 8.7 c c + 4 a + h a + h + 4 Input x Output

More information

( ) is symmetric about the y - axis.

( ) is symmetric about the y - axis. (Section 1.5: Analyzing Graphs of Functions) 1.51 PART F: FUNCTIONS THAT ARE EVEN / ODD / NEITHER; SYMMETRY A function f is even f ( x) = f ( x) x Dom( f ) The graph of y = f x for every x in the domain

More information

Rewriting Absolute Value Functions as Piece-wise Defined Functions

Rewriting Absolute Value Functions as Piece-wise Defined Functions Rewriting Absolute Value Functions as Piece-wise Defined Functions Consider the absolute value function f ( x) = 2x+ 4-3. Sketch the graph of f(x) using the strategies learned in Algebra II finding the

More information

Introduction to Exponential Functions (plus Exponential Models)

Introduction to Exponential Functions (plus Exponential Models) Haberman MTH Introduction to Eponential Functions (plus Eponential Models) Eponential functions are functions in which the variable appears in the eponent. For eample, f( ) 80 (0.35) is an eponential function

More information

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs In the previous set of notes we covered how to transform a graph by stretching or compressing it vertically. In this lesson we will focus on stretching or compressing a graph horizontally, which like the

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

Lesson 4.1 Exercises, pages

Lesson 4.1 Exercises, pages Lesson 4.1 Eercises, pages 57 61 When approimating answers, round to the nearest tenth. A 4. Identify the y-intercept of the graph of each quadratic function. a) y = - 1 + 5-1 b) y = 3-14 + 5 Use mental

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions SMH Secondary Math Honors Unit 4 Graphing Quadratic Functions 4.0 Forms of Quadratic Functions Form: ( ) f = a + b + c, where a 0. There are no parentheses. f = 3 + 7 Eample: ( ) Form: f ( ) = a( p)( q),

More information

Chapter 2. Polynomial and Rational Functions. 2.3 Polynomial Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 2. Polynomial and Rational Functions. 2.3 Polynomial Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter Polynomial and Rational Functions.3 Polynomial Functions and Their Graphs Copyright 014, 010, 007 Pearson Education, Inc. 1 Objectives: Identify polynomial functions. Recognize characteristics

More information

LEARN ABOUT the Math

LEARN ABOUT the Math 1.5 Inverse Relations YOU WILL NEED graph paper graphing calculator GOAL Determine the equation of an inverse relation and the conditions for an inverse relation to be a function. LEARN ABOUT the Math

More information

4.5 Rational functions.

4.5 Rational functions. 4.5 Rational functions. We have studied graphs of polynomials and we understand the graphical significance of the zeros of the polynomial and their multiplicities. Now we are ready to etend these eplorations

More information

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits as Approaches Infinity At times you ll need to know the behavior of a function or an epression as the inputs get increasingly

More information

Lecture Notes Basic Functions and their Properties page 1

Lecture Notes Basic Functions and their Properties page 1 Lecture Notes Basic Functions and their Properties page De nition: A function f is (or injective) if for all a and b in its domain, if a = b, then f (a) = f (b). Alternative de nition: A function f is

More information

Section 2.7 Notes Name: Date: Polynomial and Rational Inequalities

Section 2.7 Notes Name: Date: Polynomial and Rational Inequalities Section.7 Notes Name: Date: Precalculus Polynomial and Rational Inequalities At the beginning of this unit we solved quadratic inequalities by using an analysis of the graph of the parabola combined with

More information

x 4 D: (4, ); g( f (x)) = 1

x 4 D: (4, ); g( f (x)) = 1 Honors Math 4 Describing Functions One Giant Review Name Answer Key 1. Let f (x) = x, g(x) = 6x 3, h(x) = x 3 a. f (g(h(x))) = 2x 3 b. h( f (g(x))) = 1 3 6x 3 c. f ( f ( f (x))) = x 1 8 2. Let f (x) =

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

6.6 General Form of the Equation for a Linear Relation

6.6 General Form of the Equation for a Linear Relation 6.6 General Form of the Equation for a Linear Relation FOCUS Relate the graph of a line to its equation in general form. We can write an equation in different forms. y 0 6 5 y 10 = 0 An equation for this

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

CHAPTER 5: FOURIER SERIES PROPERTIES OF EVEN & ODD FUNCTION PLOT PERIODIC GRAPH

CHAPTER 5: FOURIER SERIES PROPERTIES OF EVEN & ODD FUNCTION PLOT PERIODIC GRAPH CHAPTER : FOURIER SERIES PROPERTIES OF EVEN & ODD FUNCTION POT PERIODIC GRAPH PROPERTIES OF EVEN AND ODD FUNCTION Fuctio is said to be a eve uctio i: Fuctio is said to be a odd uctio i: Fuctio is said

More information

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs AQA Level Further mathematics Number & algebra Section : Functions and their graphs Notes and Eamples These notes contain subsections on: The language of functions Gradients The equation of a straight

More information

Chapter 5: Double-Angle and Half-Angle Identities

Chapter 5: Double-Angle and Half-Angle Identities Haberman MTH Section II: Trigonometric Identities Chapter 5: Double-Angle and Half-Angle Identities In this chapter we will find identities that will allow us to calculate sin( ) and cos( ) if we know

More information

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S) Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),.-.5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual

More information

1.1 Functions and Their Representations

1.1 Functions and Their Representations Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan 1.1 Functions and Their Representations Functions play a crucial role in mathematics. A function describes how one quantity depends on

More information

UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS

UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS Answer Key Name: Date: UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS Part I Questions. Which of the following is the value of 6? () 6 () 4 () (4). The epression is equivalent to 6 6 6 6 () () 6

More information

Common Core State Standards for Activity 14. Lesson Postal Service Lesson 14-1 Polynomials PLAN TEACH

Common Core State Standards for Activity 14. Lesson Postal Service Lesson 14-1 Polynomials PLAN TEACH Postal Service Lesson 1-1 Polynomials Learning Targets: Write a third-degree equation that represents a real-world situation. Graph a portion of this equation and evaluate the meaning of a relative maimum.

More information

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient Chapter 1 PRE-TEST REVIEW Polynomial Functions MHF4U Jensen Section 1: 1.1 Power Functions 1) State the degree and the leading coefficient of each polynomial Polynomial Degree Leading Coefficient y = 2x

More information

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1. Algebra - Problem Drill 19: Basic Trigonometry - Right Triangle No. 1 of 10 1. Which of the following points lies on the unit circle? (A) 1, 1 (B) 1, (C) (D) (E), 3, 3, For a point to lie on the unit circle,

More information

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part) The Definite Integral Day 5 The Fundamental Theorem of Calculus (Evaluative Part) Practice with Properties of Integrals 5 Given f d 5 f d 3. 0 5 5. 0 5 5 3. 0 0. 5 f d 0 f d f d f d - 0 8 5 F 3 t dt

More information

Complete your Parent Function Packet!!!!

Complete your Parent Function Packet!!!! PARENT FUNCTIONS Pre-Ap Algebra 2 Complete your Parent Function Packet!!!! There are two slides per Parent Function. The Parent Functions are numbered in the bottom right corner of each slide. The Function

More information

P1 Chapter 4 :: Graphs & Transformations

P1 Chapter 4 :: Graphs & Transformations P1 Chapter 4 :: Graphs & Transformations jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 14 th September 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

MATH 126 TEST 1 SAMPLE

MATH 126 TEST 1 SAMPLE NAME: / 60 = % MATH 16 TEST 1 SAMPLE NOTE: The actual exam will only have 13 questions. The different parts of each question (part A, B, etc.) are variations. Know how to do all the variations on this

More information

Section II: Exponential and Logarithmic Functions. Module 6: Solving Exponential Equations and More

Section II: Exponential and Logarithmic Functions. Module 6: Solving Exponential Equations and More Haberman MTH 111c Section II: Eponential and Logarithmic Functions Module 6: Solving Eponential Equations and More EXAMPLE: Solve the equation 10 = 100 for. Obtain an eact solution. This equation is so

More information

Algebra Final Exam Review Packet

Algebra Final Exam Review Packet Algebra 1 00 Final Eam Review Packet UNIT 1 EXPONENTS / RADICALS Eponents Degree of a monomial: Add the degrees of all the in the monomial together. o Eample - Find the degree of 5 7 yz Degree of a polynomial:

More information

1-1. Expressions and Formulas. Lesson 1-1. What You ll Learn. Active Vocabulary

1-1. Expressions and Formulas. Lesson 1-1. What You ll Learn. Active Vocabulary 1-1 Expressions and Formulas What You ll Learn Skim the lesson. Write two things you already know about expressions and formulas. 1. Active Vocabulary 2. Review Vocabulary Identify the four grouping symbols

More information

Inverse & Joint Variations. Unit 4 Day 9

Inverse & Joint Variations. Unit 4 Day 9 Inverse & Joint Variations Unit 4 Da 9 Warm-Up: Released Eam Items & Practice. Show our work to complete these problems. Do NOT just circle an answer! 1. The equation 2 5 can be used to estimate speed,

More information

Section 1.2 A Catalog of Essential Functions

Section 1.2 A Catalog of Essential Functions Page 1 of 6 Section 1. A Catalog of Essential Functions Linear Models: All linear equations have the form y = m + b. rise change in horizontal The letter m is the slope of the line, or. It can be positive,

More information

Chapter 6: Inverse Trig Functions

Chapter 6: Inverse Trig Functions Haberman MTH Section I: The Trigonometric Functions Chapter 6: Inverse Trig Functions As we studied in MTH, the inverse of a function reverses the roles of the inputs and the outputs (For more information

More information

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs Sample Questions to the Final Eam in Math 1111 Chapter Section.1: Basics of Functions and Their Graphs 1. Find the range of the function: y 16. a.[-4,4] b.(, 4],[4, ) c.[0, ) d.(, ) e.. Find the domain

More information

4-1 Graphing Quadratic Functions

4-1 Graphing Quadratic Functions 4-1 Graphing Quadratic Functions Quadratic Function in standard form: f() a b c The graph of a quadratic function is a. y intercept Ais of symmetry -coordinate of verte coordinate of verte 1) f ( ) 4 a=

More information

Functions & Graphs. Section 1.2

Functions & Graphs. Section 1.2 Functions & Graphs Section 1.2 What you will remember Functions Domains and Ranges Viewing and Interpreting Graphs Even Functions and Odd Functions Symmetry Functions Defined in Pieces Absolute Value Functions

More information

+ = + + = x = + = + = 36x

+ = + + = x = + = + = 36x Ch 5 Alg L Homework Worksheets Computation Worksheet #1: You should be able to do these without a calculator! A) Addition (Subtraction = add the opposite of) B) Multiplication (Division = multipl b the

More information

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8 MAC 1147 Exam #1a Answer Key Name: Answer Key ID# Summer 2012 HONOR CODE: On my honor, I have neither given nor received any aid on this examination. Signature: Instructions: Do all scratch work on the

More information

Unit 3: Polynomial Functions. By: Anika Ahmed, Pavitra Madala, and Varnika Kasu

Unit 3: Polynomial Functions. By: Anika Ahmed, Pavitra Madala, and Varnika Kasu Unit 3: Polynomial Functions By: Anika Ahmed, Pavitra Madala, and Varnika Kasu Polynomial Function A polynomial function of degree n in standard form is where the a s are real numbers and the n s are nonnegative

More information

7.8 Improper Integrals

7.8 Improper Integrals CHAPTER 7. TECHNIQUES OF INTEGRATION 65 7.8 Improper Integrals Eample. Find Solution. Z Z e d. e d = lim F () F (), where F () = e! = lim e! = (e ) = Eample. Find the volume of the shape known as Gabriel

More information

4.4 Integration by u-sub & pattern recognition

4.4 Integration by u-sub & pattern recognition Calculus Maimus 4.4 Integration by u-sub & pattern recognition Eample 1: d 4 Evaluate tan e = Eample : 4 4 Evaluate 8 e sec e = We can think of composite functions as being a single function that, like

More information

Lesson #33 Solving Incomplete Quadratics

Lesson #33 Solving Incomplete Quadratics Lesson # Solving Incomplete Quadratics A.A.4 Know and apply the technique of completing the square ~ 1 ~ We can also set up any quadratic to solve it in this way by completing the square, the technique

More information

Distance and Midpoint Formula 7.1

Distance and Midpoint Formula 7.1 Distance and Midpoint Formula 7.1 Distance Formula d ( x - x ) ( y - y ) 1 1 Example 1 Find the distance between the points (4, 4) and (-6, -). Example Find the value of a to make the distance = 10 units

More information

Chapter 4: Graphing Sinusoidal Functions

Chapter 4: Graphing Sinusoidal Functions Haberman MTH 2 Section I: The Trigonometric Functions Chapter : Graphing Sinusoidal Functions DEFINITION: A sinusoidal function is function of the form sinw or y A t h k where A, w, h, k. y Acosw t h k,

More information

Further factorising, simplifying, completing the square and algebraic proof

Further factorising, simplifying, completing the square and algebraic proof Further factorising, simplifying, completing the square and algebraic proof 8 CHAPTER 8. Further factorising Quadratic epressions of the form b c were factorised in Section 8. by finding two numbers whose

More information

MCF3MI Unit 3: Solving Quadratic Equations

MCF3MI Unit 3: Solving Quadratic Equations MCF3MI Unit 3: Solving Quadratic Equations MCF3MI Unit 3: Solving Quadratic Equations Lesson 1 Date: Quadratic Functions vs. Quadratic Equations A Quadratic Function of the form f() = a 2 + b + c, where

More information

2. Jan 2010 qu June 2009 qu.8

2. Jan 2010 qu June 2009 qu.8 C3 Functions. June 200 qu.9 The functions f and g are defined for all real values of b f() = 4 2 2 and g() = a + b, where a and b are non-zero constants. (i) Find the range of f. [3] Eplain wh the function

More information

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions QUIZ AND TEST INFORMATION: The material in this chapter is on Quiz 3 and Exam 2. You should complete at least one attempt of Quiz 3 before taking Exam 2. This material is also on the final exam and used

More information

Chapter 1- Polynomial Functions

Chapter 1- Polynomial Functions Chapter 1- Polynomial Functions WORKBOOK MHF4U W1 1.1 Power Functions MHF4U Jensen 1) Identify which of the following are polynomial functions: a) p x = cos x b) h x = 7x c) f x = 2x, d) y = 3x / 2x 0

More information

112. x x 114. y x

112. x x 114. y x Section. Analyzing Graphs of Functions.. 9 9 8 8., and,. m 6 y y Slope 9 9 9 m y y y y y. 6, and, 6. m 6 9 y 6 9 9y 6 9y Slope 6 9 m 9 y 9 y 9 8 8y 8y 9 Section. Analyzing Graphs of Functions You should

More information

3.5 Graphs of Polynomial Functions

3.5 Graphs of Polynomial Functions . Graphs of olynomial Functions Symmetry of olynomial Functions: This information is a review of symmetry from the unit on graphs of functions. We W will be considering two types of symmetry in this lesson;

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

AP Calculus AB Summer Assignment School Year

AP Calculus AB Summer Assignment School Year AP Calculus AB Summer Assignment School Year 018-019 Objective of the summer assignment: The AP Calculus summer assignment is designed to serve as a review for many of the prerequisite math skills required

More information

3.1 Graphs of Polynomials

3.1 Graphs of Polynomials 3.1 Graphs of Polynomials Three of the families of functions studied thus far: constant, linear and quadratic, belong to a much larger group of functions called polynomials. We begin our formal study of

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power Precalculus Notes: Section. Modeling High Degree Polnomial Functions Graphs of Polnomials Polnomial Notation f ( ) a a a... a a a is a polnomial function of degree n. n n 1 n n n1 n 1 0 n is the degree

More information

Chapter 8: Trig Equations and Inverse Trig Functions

Chapter 8: Trig Equations and Inverse Trig Functions Haberman MTH Section I: The Trigonometric Functions Chapter 8: Trig Equations and Inverse Trig Functions EXAMPLE : Solve the equations below: a sin( t) b sin( t) 0 sin a Based on our experience with the

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)(3 + 5)

More information

Unit 2 Notes Packet on Quadratic Functions and Factoring

Unit 2 Notes Packet on Quadratic Functions and Factoring Name: Period: Unit Notes Packet on Quadratic Functions and Factoring Notes #: Graphing quadratic equations in standard form, verte form, and intercept form. A. Intro to Graphs of Quadratic Equations: a

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens Section.1 Graphing Quadratics Objectives: 1. Graph Quadratic Functions. Find the ais of symmetry and coordinates of the verte of a parabola.. Model data using a quadratic function. y = 5 I. Think and Discuss

More information

Gauss Law. In this chapter, we return to the problem of finding the electric field for various distributions of charge.

Gauss Law. In this chapter, we return to the problem of finding the electric field for various distributions of charge. Gauss Law In this chapter, we return to the problem of finding the electric field for various distributions of charge. Question: A really important field is that of a uniformly charged sphere, or a charged

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Performing well in calculus is impossible without a solid algebra foundation. Many calculus

Performing well in calculus is impossible without a solid algebra foundation. Many calculus Chapter Algebra Review Performing well in calculus is impossible without a solid algebra foundation. Many calculus problems that you encounter involve a calculus concept but then require many, many steps

More information

Even and odd functions

Even and odd functions Connexions module: m15279 1 Even and odd functions Sunil Kumar Singh This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Even and odd functions are

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Chapter 6. Systems of Equations and Inequalities

Chapter 6. Systems of Equations and Inequalities Chapter 6 Systems of Equations and Inequalities 6.1 Solve Linear Systems by Graphing I can graph and solve systems of linear equations. CC.9-12.A.CED.2, CC.9-12.A.CED.3, CC.9-12.A.REI.6 What is a system

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f() 8 6 4 8 6-3 - - 3 4 5 6 f().9.8.7.6.5.4.3.. -4-3 - - 3 f() 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D.

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D. 1.2 Functions and Their Properties PreCalculus 1.2 FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1.2 1. Determine whether a set of numbers or a graph is a function 2. Find the domain of a function

More information

Section 1.2 A Catalog of Essential Functions

Section 1.2 A Catalog of Essential Functions Chapter 1 Section Page 1 of 6 Section 1 A Catalog of Essential Functions Linear Models: All linear equations have the form rise change in horizontal The letter m is the of the line, or It can be positive,

More information

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1 Week #6 - Talor Series, Derivatives and Graphs Section 4.1 From Calculus, Single Variable b Hughes-Hallett, Gleason, McCallum et. al. Copright 2005 b John Wile & Sons, Inc. This material is used b permission

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Solving Trigonometric Equations

Solving Trigonometric Equations Solving Trigonometric Equations CHAT Pre-Calculus Section 5. The preliminary goal in solving a trig equation is to isolate the trig function first. Eample: Solve 1 cos. Isolate the cos term like you would

More information

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile.

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile. Functions Definition: A function f, defined from a set A to a set B, is a rule that associates with each element of the set A one, and onl one, element of the set B. Eamples: a) Graphs: b) Tables: 0 50

More information

8.2 Graphs of Polar Equations

8.2 Graphs of Polar Equations 8. Graphs of Polar Equations Definition: A polar equation is an equation whose variables are polar coordinates. One method used to graph a polar equation is to convert the equation to rectangular form.

More information

3.4. Properties of Logarithmic Functions

3.4. Properties of Logarithmic Functions 310 CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.4 Properties of Logarithmic Functions What you ll learn about Properties of Logarithms Change of Base Graphs of Logarithmic Functions with

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a nx n + a n-1x n-1 + + a 1x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

The Graphs of Mixed Functions (Day 13 1)

The Graphs of Mixed Functions (Day 13 1) The Graphs of Mied Functions (Day 3 ) In this unit, we will remember how to graph some old functions and discover how to graph lots of new functions. Eercise : Graph and label the parent function f( )

More information