4.4 Integration by u-sub & pattern recognition

Size: px
Start display at page:

Download "4.4 Integration by u-sub & pattern recognition"

Transcription

1 Calculus Maimus 4.4 Integration by u-sub & pattern recognition Eample 1: d 4 Evaluate tan e = Eample : 4 4 Evaluate 8 e sec e = We can think of composite functions as being a single function that, like a big bo can, contains other functions inside of it (smaller boes inside the big bo). When differentiating such functions, we are unpacking these boes, creating multiple factors in our derivative. When going in reverse, since there is no product or quotient rule for integration, we must recognize the factors in our integrand as coming from unpacking the original outer function/big bo. When integrating by pattern recognition, our job is to perform the chain rule in reverse, packing back up all the smaller factors (boes) back into the single big factor (bo). This also makes it easier to move... onto the net problem. In general, if d f g f g g ( ( )) = ( ( )) ( ) If we solve this differential equation, take the integral of both sides, we get ( ( )) + = ( ( )) ( ) f g C f g g We state this formally as a theorem for integrating a composite function. Page 1 of 1

2 Calculus Maimus Antidifferentiation of a composite function Let g be a function whose range is an interval, I, and let f be a function that is continuous on I. If g is differentiable on its domain and F is an antiderivative of f on I, then f g g = F g + C ( ( )) ( ) ( ( )) In the integrand above, the inside function, g ( ), the function whose derivative is the other factor(s) is sometimes called u, where the outside function containing u and the function determining the rule of integration, can be called f ( u ). In this case we will use differential form and call u du. If we rewrite the original integral in terms of u and du, we call it u-substitution. Rewriting the above rule, we get u g du = g Let = ( ) and ( ) f ( u) du = F ( u) + C This formal rewriting of our original integral in terms of a new, temporary, dummy variable u can be helpful, but is not always necessary, nor desirable. If you are able to identify both the inner and outer functions, with a little practice, you will be able to integrate quickly in your head, as the rule of integration will only involve the outer function, with a possible correction of a scalar multiple (only). We will work both ways. You decide which way is easier. Let s try some: Eample : 1 using u-substitution as well as by pattern recognition. Evaluate ( + 1) ( ) Page of 1

3 Calculus Maimus Eample 4: 4 Evaluate sin ( + 1) using u-substitution as well as by pattern recognition. When integrating by pattern recognition, you will collect no more than three different types of scalar/constant multiples out in front of your antiderivative: constant multiples that were there in the original integrand (I call these riders ), constant multiples generated from an integration rule like the power rule (I call these rule constants), and finally, constant multiples that correct any unwanted constant multiple generated by the derivative of the inside function. These values will always be the reciprocal of the unwanted value (I call these corrections. ) After integrating, you can combine all of these scalar multiples to get your final answer. Oh, and don t forget your + C Eample 5: Evaluate ( ) π Page of 1

4 Calculus Maimus Eample 6: Each of the following have the same inside function, but a different outside function, and hence, a different rule of integration. Evaluate each. cos( 5sin e ) 7sin cos sin cos (a) ( ) (b) ( ) ( ) (c) ( ) ( ) (e) (d) ( sin ) sin ( cos ) sin (f) 11sin ( ) cos ( ) 5 cos sin Eample 7: Evaluate sec tan two different ways. Show the antiderivatives are equivalent, but for a constant. Page 4 of 1

5 Calculus Maimus Eample 8: Evaluate cos( 5 ) (b) sin ( 5 ) e (a) 4 5 sec ( 5 ) We already know the following trig antiderivatives: Eample 9: Evaluate the following: (a) sin (b) cos (c) sec (d) csc (e) sec tan (f) csc cot We can epand our antidifferentiation repertoire by memorizing the integrals of the other four trig functions... but what ARE they? Eample 10: Find each of the following by being clever, then memorize the results. (a) tan (b) cot (c) sec (d) csc Page 5 of 1

6 Calculus Maimus You can now handle integrals like the following... Eample 11: Evaluate the following: (a) 5 tan ( + 1) (b) sec( ) e e Let s try some random integrals now to integrate all our integration methods. Eample 1: Evaluate the following: (a) (b) 4 5 ln (c) ln (e) 4 ( ) csc ln (d) e arctan 1+ There are some options when you are evaluating a definite integral... Eample 1: Evaluate the following two ways, using pattern recognition and u-substitution: ( + 1) 1 0 Page 6 of 1

7 Calculus Maimus Eample 14: Review the following antiderivatives: (a) = (b) 1 1+ = (c) = 1 If these antiderivatives themselves have inside functions, it is much easier to memorize the following forms than to arduously algebraically manipulate it to look like the forms above. Inverse Trig Integral forms: (MEMORIZE) For some constant a and some function of, u... a du u u = arcsin + C a du 1 u arctan C a + u = a a + u u du a 1 = arcsec u + C a a Eample 15: Evaluate each of the following. Compare and Contrast. (a) (b) (c) 4 4 (d) The arcsecant integration pattern can be a bit high-maintenance. Eample 16: Evaluate the following: (a) 9 (b) 5 16 (c) 4 9 e 1 Page 7 of 1

8 Calculus Maimus Sometimes, we need to algebraically alter the integrand to resemble something we recognize how to do. And sometimes, like parents of fighting siblings, we need to send each kid to his own room... Eample 17: Evaluate the following: + 4 Eample 18: Two of the Three integrals you can do. Evaluate the two you can do, and understand why you cannot do the third one. (a) (b) 4 5 (c) It s time to develop some more strategies of what to do when the integrand is unrecognizable... Eample 19: Find each of the following, if possible. (a) (b) (c) Page 8 of 1

9 Calculus Maimus Recall that we can use the integral to help us find the area of the region. In such cases, it is important to recognize the region, or to recognize where the region is positive and negative, because WE are in charge of making negative regions positive!!! Eample 0: Find the area of the region bounded by the graph of f ( ) 9 =. Verify on your calculator. 4 = 1, the -ais, and the lines = and Time for yet another algebraic strategy... Eample 1: Find (a) (b) Page 9 of 1

10 Calculus Maimus Here are some Triggy ones... Eample : Find (a) sin cos (b) sin cos (c) sin (d) sin Here s a simple one, serving as a confidence booster and a seque... Eample : Find 1 Sometimes we MUST use u-substitution. Eample 4: Find the following. (a) 1 (b) 1 Page 10 of 1

11 Calculus Maimus Eample 4 (continued): (c) (d) + 1 ( ) (e) 1 1+ Eample 5: Use u-substitution to answer the following: (a) If = tan + C, find 1+ cos 1 eactly where C is a constant. + cos 4 (b) If 0 e π = + 1 1, find eactly. 5 0 e + 1 (c) If π 0 π 5 0 ln( a + bcos( )) = π ln(), for some positive a and b, find the eact value of ln( a + bcos(5 )). Page 11 of 1

12 Calculus Maimus We will finish up with a discussion of how symmetry can help us evaluate an integral. Integration of Even and Odd functions Let f be an integrable function on a closed interval [ a, a]. 1. If f is an EVEN function, then ( ) = ( ) a a a f f a. If f is an ODD function, then f ( ) = 0 a 0 Eample 6: Evaluate each of the following. a) An Even function on a symmetrical interval π sin b) ( 1+ + cos ) π An Odd function on a symmetrical interval c) ( ) 1 Page 1 of 1

Trigonometric integrals by basic methods

Trigonometric integrals by basic methods Roberto s Notes on Integral Calculus Chapter : Integration methods Section 7 Trigonometric integrals by basic methods What you need to know already: Integrals of basic trigonometric functions. Basic trigonometric

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part) The Definite Integral Day 5 The Fundamental Theorem of Calculus (Evaluative Part) Practice with Properties of Integrals 5 Given f d 5 f d 3. 0 5 5. 0 5 5 3. 0 0. 5 f d 0 f d f d f d - 0 8 5 F 3 t dt

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

Integration by Triangle Substitutions

Integration by Triangle Substitutions Integration by Triangle Substitutions The Area of a Circle So far we have used the technique of u-substitution (ie, reversing the chain rule) and integration by parts (reversing the product rule) to etend

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

192 Calculus and Structures

192 Calculus and Structures 9 Calculus and Structures CHAPTER PRODUCT, QUOTIENT, CHAIN RULE, AND TRIG FUNCTIONS Calculus and Structures 9 Copyright Chapter PRODUCT, QUTIENT, CHAIN RULE AND TRIG FUNTIONS. NEW FUNCTIONS FROM OLD ONES

More information

6.6 Substitution with All Basic Forms

6.6 Substitution with All Basic Forms 670 CHAPTER 6. BASIC INTEGRATION 6.6 Substitution with All Basic Forms In this section we will add to our forms for substitution and recall some rather general guidelines for substitution. Ecept for our

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

Notes 3.2: Properties of Limits

Notes 3.2: Properties of Limits Calculus Maimus Notes 3.: Properties of Limits 3. Properties of Limits When working with its, you should become adroit and adept at using its of generic functions to find new its of new functions created

More information

2 (x 2 + a 2 ) x 2. is easy. Do this first.

2 (x 2 + a 2 ) x 2. is easy. Do this first. MAC 3 INTEGRATION BY PARTS General Remark: Unless specified otherwise, you will solve the following problems using integration by parts, combined, if necessary with simple substitutions We will not explicitly

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

u C = 1 18 (2x3 + 5) 3 + C This is the answer, which we can check by di erentiating: = (2x3 + 5) 2 (6x 2 )+0=x 2 (2x 3 + 5) 2

u C = 1 18 (2x3 + 5) 3 + C This is the answer, which we can check by di erentiating: = (2x3 + 5) 2 (6x 2 )+0=x 2 (2x 3 + 5) 2 Net multiply by, bring the unwanted outside the integral, and substitute in. ( + 5) d = ( + 5) {z {z d = u u We can now use Formula getting u = u + C = 8 ( + 5) + C This is the answer, which we can check

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Summer Assignment for AP Calculus AB

Summer Assignment for AP Calculus AB This assignment is a review of Pre-calculus and Algebraic concepts that you need to be familiar with in order to make a smooth transition into AP Calculus AB. It will be due when you return to school on

More information

Evaluating Limits Analytically. By Tuesday J. Johnson

Evaluating Limits Analytically. By Tuesday J. Johnson Evaluating Limits Analytically By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Rationalizing numerators and/or denominators Trigonometric skills reviews

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

( ) is symmetric about the y - axis.

( ) is symmetric about the y - axis. (Section 1.5: Analyzing Graphs of Functions) 1.51 PART F: FUNCTIONS THAT ARE EVEN / ODD / NEITHER; SYMMETRY A function f is even f ( x) = f ( x) x Dom( f ) The graph of y = f x for every x in the domain

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Calculus 2 - Examination

Calculus 2 - Examination Calculus - Eamination Concepts that you need to know: Two methods for showing that a function is : a) Showing the function is monotonic. b) Assuming that f( ) = f( ) and showing =. Horizontal Line Test:

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3)

Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3) Odd Answers: Chapter Eight Contemporary Calculus PROBLEM ANSWERS Chapter Eight Section 8.. lim { A 0 } lim { ( A ) ( 00 ) } lim { 00 A } 00.. lim {. arctan() A } lim {. arctan(a). arctan() } ( π ). arctan()

More information

Fitting Integrands to Basic Rules

Fitting Integrands to Basic Rules 6_8.qd // : PM Page 8 8 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u.

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u. 58 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8 Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration rules Fitting Integrands

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS SOLUTIONS TO THE FINAL - PART MATH 5 FALL 6 KUNIYUKI PART : 5 POINTS, PART : 5 POINTS, TOTAL: 5 POINTS No notes, books, or calculators allowed. 5 points: 45 problems, pts. each. You do not have to algebraically

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

Algebra/Trigonometry Review Notes

Algebra/Trigonometry Review Notes Algebra/Trigonometry Review Notes MAC 41 Calculus for Life Sciences Instructor: Brooke Quinlan Hillsborough Community College ALGEBRA REVIEW FOR CALCULUS 1 TOPIC 1: POLYNOMIAL BASICS, POLYNOMIAL END BEHAVIOR,

More information

Integration. Section 8: Using partial fractions in integration

Integration. Section 8: Using partial fractions in integration Integration Section 8: Using partial fractions in integration Notes and Eamples These notes contain subsections on Using partial fractions in integration Putting all the integration techniques together

More information

±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim

±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim MATH 36 L'H ˆ o pital s Rule Si of the indeterminate forms of its may be algebraically determined using L H ˆ o pital's Rule. This rule is only stated for the / and ± /± indeterminate forms, but four other

More information

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETR Some Key Concepts:. The slope and the equation of a straight line. Functions and functional notation. The average rate of change of a function and the DIFFERENCE-

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010 Fitting Integrals to Basic Rules Basic Integration Rules Lesson 8.1 Consider these similar integrals Which one uses The log rule The arctangent rule The rewrite with long division principle Try It Out

More information

2017 AP Calculus AB Summer Assignment

2017 AP Calculus AB Summer Assignment 07 AP Calculus AB Summer Assignment Mrs. Peck ( kapeck@spotsylvania.k.va.us) This assignment is designed to help prepare you to start Calculus on day and be successful. I recommend that you take off the

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB 07-08 Summer Assignment Welcome to AP Calculus AB! You are epected to complete the attached homework assignment during the summer. This is because of class time constraints and the amount

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

Integration Techniques for the BC exam

Integration Techniques for the BC exam Integration Techniques for the B eam For the B eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

The Chain Rule. The Chain Rule. dy dy du dx du dx. For y = f (u) and u = g (x)

The Chain Rule. The Chain Rule. dy dy du dx du dx. For y = f (u) and u = g (x) AP Calculus Mrs. Jo Brooks The Chain Rule To find the derivative of more complicated functions, we use something called the chain rule. It can be confusing unless you keep yourself organized as you go

More information

AP Calculus AB Unit 6 Packet Antiderivatives. Antiderivatives

AP Calculus AB Unit 6 Packet Antiderivatives. Antiderivatives Antiderivatives Name In mathematics, we use the inverse operation to undo a process. Let s imagine undoing following everyday processes. Process Locking your car Going to sleep Taking out your calculator

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

AP Calculus AB Mrs. Mills Carlmont High School

AP Calculus AB Mrs. Mills Carlmont High School AP Calculus AB 015-016 Mrs. Mills Carlmont High School AP CALCULUS AB SUMMER ASSIGNMENT NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY! Read through the notes & eamples for each page and then solve all

More information

3.3 Limits and Infinity

3.3 Limits and Infinity Calculus Maimus. Limits Infinity Infinity is not a concrete number, but an abstract idea. It s not a destination, but a really long, never-ending journey. It s one of those mind-warping ideas that is difficult

More information

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4 Inverse Functions Inverse Relations The inverse of a relation is the set of ordered pairs obtained by switching the input with the output of each ordered pair in the original relation. (The domain of the

More information

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

* A graphing calculator is highly recommended for this class!!!

* A graphing calculator is highly recommended for this class!!! AP Calculus AB Summer Packet 08-09 Ms. Febus - García marlene_febus@gwinnett.k.ga.us This packet includes a sampling of problems that students entering AP Calculus AB should be able to answer. The questions

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment Name: AP Calculus AB Summer Assignment Due Date: The beginning of class on the last class day of the first week of school. The purpose of this assignment is to have you practice the mathematical skills

More information

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity Andrew s handout Trig identities. Fundamental identities These are the most fundamental identities, in the sense that ou should probabl memorize these and use them to derive the rest (or, if ou prefer,

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

PreCalculus First Semester Exam Review

PreCalculus First Semester Exam Review PreCalculus First Semester Eam Review Name You may turn in this eam review for % bonus on your eam if all work is shown (correctly) and answers are correct. Please show work NEATLY and bo in or circle

More information

Integration by substitution

Integration by substitution Roberto s Notes on Integral Calculus Chapter : Integration methods Section 1 Integration by substitution or by change of variable What you need to know already: What an indefinite integral is. The chain

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

Calculus II (Fall 2015) Practice Problems for Exam 1

Calculus II (Fall 2015) Practice Problems for Exam 1 Calculus II (Fall 15) Practice Problems for Exam 1 Note: Section divisions and instructions below are the same as they will be on the exam, so you will have a better idea of what to expect, though I will

More information

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS SECTION 7.5 STRATEGY FOR INTEGRATION 483 6. 2 sin 2 2 cos CAS 67. (a) Use a computer algebra sstem to find the partial fraction decomposition of the function 62 63 Find the area of the region under the

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

Preface. Computing Definite Integrals. 3 cos( x) dx. x 3

Preface. Computing Definite Integrals. 3 cos( x) dx. x 3 Preface Here are the solutions to the practice problems for my Calculus I notes. Some solutions will have more or less detail than other solutions. The level of detail in each solution will depend up on

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2 AP Calculus Students: Welcome to AP Calculus. Class begins in approimately - months. In this packet, you will find numerous topics that were covered in your Algebra and Pre-Calculus courses. These are

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below.

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below. Name 1) Constant: choose a value or the constant that can be graphed on the coordinate grid below a y Toolkit Functions Lab Worksheet thru inverse trig ) Identity: y ) Reciprocal: 1 ( ) y / 1/ 1/1 1/ 1

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Department of Mathematical x 1 x 2 1

Department of Mathematical x 1 x 2 1 Contents Limits. Basic Factoring Eample....................................... One-Sided Limit........................................... 3.3 Squeeze Theorem.......................................... 4.4

More information

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '(

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '( Rules for Differentiation Finding the Derivative of a Product of Two Functions Rewrite the function f( = ( )( + 1) as a cubic function. Then, find f '(. What does this equation of f '( represent, again?

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Section 1 Section 2 Section 3 Section 4 Section 5 Using Fundamental Identities Verifying Trigonometric Identities Solving Trigonometric Equations Sum and Difference Formulas

More information

Unit #10 : Graphs of Antiderivatives; Substitution Integrals

Unit #10 : Graphs of Antiderivatives; Substitution Integrals Unit #10 : Graphs of Antiderivatives; Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

4181H Problem Set 10 Selected Solutions. Chapter 15. = lim. (by L Hôpital s Rule) (0) = lim. x 2, = lim x 3 ( sin x)x + cos x cos x = lim

4181H Problem Set 10 Selected Solutions. Chapter 15. = lim. (by L Hôpital s Rule) (0) = lim. x 2, = lim x 3 ( sin x)x + cos x cos x = lim 48H Problem Set 0 Selected Solutions Chapter 5 # 3(a From the definition of the derivative we have sin f f( f(0 (0 sin 0 0 0 0 = cos (by L Hôpital s Rule = sin (by L Hôpital s Rule = 0 (b From the definition

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

AP Calculus I Summer Packet

AP Calculus I Summer Packet AP Calculus I Summer Packet This will be your first grade of AP Calculus and due on the first day of class. Please turn in ALL of your work and the attached completed answer sheet. I. Intercepts The -intercept

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Finding Limits Analytically

Finding Limits Analytically Finding Limits Analytically Most of this material is take from APEX Calculus under terms of a Creative Commons License In this handout, we explore analytic techniques to compute its. Suppose that f(x)

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information