±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim

Size: px
Start display at page:

Download "±. Then. . x. lim g( x) = lim. cos x 1 sin x. and (ii) lim"

Transcription

1 MATH 36 L'H ˆ o pital s Rule Si of the indeterminate forms of its may be algebraically determined using L H ˆ o pital's Rule. This rule is only stated for the / and ± /± indeterminate forms, but four other indeterminate forms may be manipulated into one of these two forms. Theorem. (L H o ˆ pital's Rule) Let f ( ) and g( ) be differentiable functions such that f ( ) g( ) yields an indeterminate form of or ± ±. Then a a f ( ) g( ) = a f ʹ ( ) g ʹ ( ). sin Eample. Evaluate (i) and (ii) cos. Solution. (i) By substituting =, we obtain sin =. So we separately take the derivatives of the numerator and the denominator, and then reevaluate the it: sin d(sin ) / d = d( ) / d (ii) Likewise, for = we obtain cos cos sin have = = sin =. = cos = = =. =. By L H o ˆ pital's Rule, we then Eample. Evaluate ln. Solution. Both of the functions ln and grow very slowly to + as. So ln initially we have, =. We now separately take the derivatives of the numerator and the denominator, and we simplify the result before reevaluating the it. ln = d(ln ) / d d( ) / d = = = = =. So even though ln and both grow to + as, the function grows more quickly and therefore forces the fraction ln to.

2 Eample 3. Evaluate e. Solution. Both of the functions e and grow very quickly to + as. So e initially we have, =. We now separately take the derivatives of the numerator and the denominator, and reevaluate the it. e = d (e ) / d d( ) / d = e 9 =. We still obtain the / form. So we re-apply L H ˆ o pital's Rule over and over until we obtain a determined form: e = e 9 = e 9 8 =... = e! =! = + So even though e and both grow to + as, the function e grows more quickly and therefore forces the fraction e to +. From Eample 3, we can see the following result: Theorem. Let c > and n >. Then (a) e c n = + and (b) n e c = n c =. e In other words, eponential growth dominates polynomial growth. The ± Form The ± indeterminate form can be converted to / or ± /± by dividing by the reciprocal of one of the functions: a f ( ) g( ) = a g( ) f ( ) Thus we may obtain ± = ± = ± ± or ± = ± =.

3 Eample 4. Evaluate the it sin( ) tan. Solution. By substituting = π /, we obtain sin(π) tan(π / ) = +. We now have two choices as to how to re-write the function: sin( )tan = tan sin( ) = tan ±, which will yield a csc( ) ± form, or sin( )tan = sin( ) tan = sin( ) cot, which will yield a form. We shall apply L H ˆ o pital's Rule to both forms. In both cases, we take the derivatives of the numerator and the denominator, then simplify the result before trying to re-evaluate the it. sin( ) tan = tan csc( ) = d(tan ) / d d(csc( )) / d = sec csc( ) cot( ) = sin ( ) cos cos( ) = ( sin cos ) cos cos( ) = sin cos( ) = sin (π / ) cos( π) = =. In the second case, the simplification is a little easier and we have sin( ) tan = sin( ) cot = d(sin( )) / d d(cot ) / d = cos( ) csc = cos( ) π sin = cos(π) sin (π / ) =. Eample 5. Evaluate + n ln.

4 Solution. Initially, as +, we obtain the form. In this case we re-write the function leaving ln in the numerator, which will yield a / form. Then we apply L H o ˆ pital's Rule to obtain a it of : + n ln = ln + n = = + n n+ = d (ln ) / d + d( n ) / d n+ + n = + n n =. The Eponential Indeterminate Forms The indeterminate forms,, and can be converted to the ± form by taking the natural logarithm: ln( ) = ln = ln( ) = ln = ln( ) = ln = We then convert these forms to either / or ± /± by dividing by the reciprocal of one of the functions. Generally it is best to keep the logarithm in the numerator and divide by the reciprocal of the other function. Then we apply L H o ˆ pital's Rule to obtain a it L. Finally, we undo the natural logarithm and say that e L is the it of the original function. Eample 6. Evaluate (tan )cos. Solution. Initially we obtain the form. Taking the natural logarithm gives us the form ln( ) = ln = ln / =. Applying this result to the functions, we have ln(tan ) cos ln(tan ) = cos ln(tan ) = / cos = ln(tan ). We now apply L H o sec ˆ pital's Rule by taking the derivatives of the numerator and the denominator of this last epression: ln(tan ) sec = sec tan sec tan = sec tan = cos sin = =. Finally, we undo the logarithm with this it of to obtain (tan )cos = e =.

5 Eample 7. Evaluate (cos )/. + Solution. Initially we obtain the form. Taking the natural logarithm gives us the form ln( ) = ln = = / =. Applying this result to the functions, we have ln(cos ) / = ln(cos ) ln(cos ) =. We now apply L H o ˆ pital's Rule by taking the derivatives of the numerator and the denominator of this last epression: sin ln (cos ) + = cos = + sin + cos = =. Finally, we undo the logarithm with this it of / to obtain (cos )/ = e /. + Eample 8. Evaluate (sin(π ))ln. Solution. Initially we obtain the form. Taking the natural logarithm gives us the form ln( ) = ln = = / =. Applying this result to the functions, we have ln(sin(π )) ln ln(sin(π )) ln (sin(π )) = ln ln(sin(π )) = = (ln ). We now apply ln L H o ˆ pital's Rule by taking the derivatives of the numerator and the denominator of this last epression: ln(sin(π )) (ln ) = π cos(π ) sin(π ) (ln ) π cos(π )(ln ) = sin(π ) (ln ) = π cos(π ) = π sin(π ) (ln ) sin(π ) = π. We now apply L H ˆ o pital's Rule again: (ln ) π sin(π ) = π (ln )( / ) (ln ) = π cos( π ) cos(π ) = ln(sin(π )) (ln ) Finally, we have (sin(π ))ln = e =. = π (ln ) sin(π ) =. = ; thus,

6 We conclude with one of the most famous results in calculus. Theorem. For all real numbers a, Proof. As, we have + a + a = + a = (+ ) =, which is an indeterminate form. We now take the natural logarithm, which gives the form as follows: Net apply L H ˆ o pital's Rule to denominator: ln + a = ln + a ln + a = ln + a + a a = a + a as ln =. by taking derivatives of numerator and = a. as Finally, we undo the logarithm with this it to obtain + a For eample, + 5 = e 5 and 4 = e /4. Corollary. The number e is given by + = e. Corollary. For all real numbers a, + a Proof. We simply have + a = + a

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

2017 AP Calculus AB Summer Assignment

2017 AP Calculus AB Summer Assignment 07 AP Calculus AB Summer Assignment Mrs. Peck ( kapeck@spotsylvania.k.va.us) This assignment is designed to help prepare you to start Calculus on day and be successful. I recommend that you take off the

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim Math 0-0-RE - Calculus I Trigonometry Limits & Derivatives Page of 8 Trigonometric Limits It has been shown in class that: lim 0 sin lim 0 sin lim 0 cos cos 0 lim 0 cos lim 0 + cos + To evaluate trigonometric

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

u C = 1 18 (2x3 + 5) 3 + C This is the answer, which we can check by di erentiating: = (2x3 + 5) 2 (6x 2 )+0=x 2 (2x 3 + 5) 2

u C = 1 18 (2x3 + 5) 3 + C This is the answer, which we can check by di erentiating: = (2x3 + 5) 2 (6x 2 )+0=x 2 (2x 3 + 5) 2 Net multiply by, bring the unwanted outside the integral, and substitute in. ( + 5) d = ( + 5) {z {z d = u u We can now use Formula getting u = u + C = 8 ( + 5) + C This is the answer, which we can check

More information

Summer Mathematics Prep

Summer Mathematics Prep Summer Mathematics Prep Entering Calculus Chesterfield County Public Schools Department of Mathematics SOLUTIONS Domain and Range Domain: All Real Numbers Range: {y: y } Domain: { : } Range:{ y : y 0}

More information

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department Updated 6/015 The problems in this packet are designed to help ou review topics from previous math courses that are important to our success in AP Calculus AB / BC. It is important that ou take time during

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

R3.6 Solving Linear Inequalities. 3) Solve: 2(x 4) - 3 > 3x ) Solve: 3(x 2) > 7-4x. R8.7 Rational Exponents

R3.6 Solving Linear Inequalities. 3) Solve: 2(x 4) - 3 > 3x ) Solve: 3(x 2) > 7-4x. R8.7 Rational Exponents Level D Review Packet - MMT This packet briefly reviews the topics covered on the Level D Math Skills Assessment. If you need additional study resources and/or assistance with any of the topics below,

More information

The stationary points will be the solutions of quadratic equation x

The stationary points will be the solutions of quadratic equation x Calculus 1 171 Review In Problems (1) (4) consider the function f ( ) ( ) e. 1. Find the critical (stationary) points; establish their character (relative minimum, relative maimum, or neither); find intervals

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018 Calculus (AP, Honors, Academic) Summer Assignment 08 The summer assignments for Calculus will reinforce some necessary Algebra and Precalculus skills. In order to be successful in Calculus, you must have

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

Methods of Integration

Methods of Integration Methods of Integration Essential Formulas k d = k +C sind = cos +C n d = n+ n + +C cosd = sin +C e d = e +C tand = ln sec +C d = ln +C cotd = ln sin +C + d = tan +C lnd = ln +C secd = ln sec + tan +C cscd

More information

Calculus 2 - Examination

Calculus 2 - Examination Calculus - Eamination Concepts that you need to know: Two methods for showing that a function is : a) Showing the function is monotonic. b) Assuming that f( ) = f( ) and showing =. Horizontal Line Test:

More information

6.1: Reciprocal, Quotient & Pythagorean Identities

6.1: Reciprocal, Quotient & Pythagorean Identities Math Pre-Calculus 6.: Reciprocal, Quotient & Pythagorean Identities A trigonometric identity is an equation that is valid for all values of the variable(s) for which the equation is defined. In this chapter

More information

AP CALCULUS AB - SUMMER ASSIGNMENT 2018

AP CALCULUS AB - SUMMER ASSIGNMENT 2018 Name AP CALCULUS AB - SUMMER ASSIGNMENT 08 This packet is designed to help you review and build upon some of the important mathematical concepts and skills that you have learned in your previous mathematics

More information

Summer Packet Greetings Future AP Calculus Scholar,

Summer Packet Greetings Future AP Calculus Scholar, Summer Packet 2017 Greetings Future AP Calculus Scholar, I am excited about the work that we will do together during the 2016-17 school year. I do not yet know what your math capability is, but I can assure

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5).

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5). Mathematics 6 HWK 4 Solutions Section 4.5 p305 Note: This set of solutions also includes 3 problems from HWK 2 (5,7, from 4.5). Find the indicated it. Use l Hospital s Rule where appropriate. Consider

More information

AP Calculus BC Summer Assignment 2018

AP Calculus BC Summer Assignment 2018 AP Calculus BC Summer Assignment 018 Name: When you come back to school, I will epect you to have attempted every problem. These skills are all different tools that we will pull out of our toolbo at different

More information

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules Sec 3. Eponential Functions A. Limit Rules. r lim a a r. I a, then lim a and lim a 0 3. I 0 a, then lim a 0 and lim a 4. lim e 0 5. e lim and lim e 0 Eamples:. Starting with the graph o a.) Shiting 9 units

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part) The Definite Integral Day 5 The Fundamental Theorem of Calculus (Evaluative Part) Practice with Properties of Integrals 5 Given f d 5 f d 3. 0 5 5. 0 5 5 3. 0 0. 5 f d 0 f d f d f d - 0 8 5 F 3 t dt

More information

Lesson 28 Working with Special Triangles

Lesson 28 Working with Special Triangles Lesson 28 Working with Special Triangles Pre-Calculus 3/3/14 Pre-Calculus 1 Review Where We ve Been We have a new understanding of angles as we have now placed angles in a circle on a coordinate plane

More information

3.8 Limits At Infinity

3.8 Limits At Infinity 3.8. LIMITS AT INFINITY 53 Figure 3.5: Partial graph of f = /. We see here that f 0 as and as. 3.8 Limits At Infinity The its we introduce here differ from previous its in that here we are interested in

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x)

Math RE - Calculus I Exponential & Logarithmic Functions Page 1 of 9. y = f(x) = 2 x. y = f(x) Math 20-0-RE - Calculus I Eponential & Logarithmic Functions Page of 9 Eponential Function The general form of the eponential function equation is = f) = a where a is a real number called the base of the

More information

Essential Question How can you verify a trigonometric identity?

Essential Question How can you verify a trigonometric identity? 9.7 Using Trigonometric Identities Essential Question How can you verify a trigonometric identity? Writing a Trigonometric Identity Work with a partner. In the figure, the point (, y) is on a circle of

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac Basic Math Formulas Arithmetic operations (ab means ab) Powers and roots a(b + c)= ab + ac a+b c = a b c + c a b + c d = ad+bc bd a b = a c d b d c a c = ac b d bd a b = a+b ( a ) b = ab (y) a = a y a

More information

MATH 2 - PROBLEM SETS

MATH 2 - PROBLEM SETS MATH - PROBLEM SETS Problem Set 1: 1. Simplify and write without negative eponents or radicals: a. c d p 5 y cd b. 5p 1 y. Joe is standing at the top of a 100-foot tall building. Mike eits the building

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below.

1/100 Range: 1/10 1/ 2. 1) Constant: choose a value for the constant that can be graphed on the coordinate grid below. Name 1) Constant: choose a value or the constant that can be graphed on the coordinate grid below a y Toolkit Functions Lab Worksheet thru inverse trig ) Identity: y ) Reciprocal: 1 ( ) y / 1/ 1/1 1/ 1

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Numbers Content Points. Reference sheet (1 pt. each) 1-7 Linear Equations (1 pt. each) / Factoring (2 pt. each) /28

Numbers Content Points. Reference sheet (1 pt. each) 1-7 Linear Equations (1 pt. each) / Factoring (2 pt. each) /28 Summer Packet 2015 Your summer packet will be a major test grade for the first nine weeks. It is due the first day of school. You must show all necessary solutions. You will be tested on ALL material;

More information

Extra Fun: The Indeterminate Forms 1, 0, and 0 0

Extra Fun: The Indeterminate Forms 1, 0, and 0 0 math 30, day 38 its: l hôpital s rule, part 7 Etra Fun: The Indeterminate Forms, 0, and 0 0 Some of the most interesting its in elementary calculus have the indeterminate forms,0 0, or 0 0. All of these

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2 AP Calculus Students: Welcome to AP Calculus. Class begins in approimately - months. In this packet, you will find numerous topics that were covered in your Algebra and Pre-Calculus courses. These are

More information

AP Calculus AB Summer Assignment School Year

AP Calculus AB Summer Assignment School Year AP Calculus AB Summer Assignment School Year 018-019 Objective of the summer assignment: The AP Calculus summer assignment is designed to serve as a review for many of the prerequisite math skills required

More information

Analytic Trigonometry

Analytic Trigonometry Chapter 5 Analytic Trigonometry Course Number Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

4.4 Integration by u-sub & pattern recognition

4.4 Integration by u-sub & pattern recognition Calculus Maimus 4.4 Integration by u-sub & pattern recognition Eample 1: d 4 Evaluate tan e = Eample : 4 4 Evaluate 8 e sec e = We can think of composite functions as being a single function that, like

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

1.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS

1.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS .6 Continuit of Trigonometric, Eponential, and Inverse Functions.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS In this section we will discuss the continuit properties of trigonometric

More information

df dx = + Phys 23, Spring 2012a Basic Math Print LAST Name: RJ Bieniek Rec Sec Letter MiniTest Print First Name: Answers

df dx = + Phys 23, Spring 2012a Basic Math Print LAST Name: RJ Bieniek Rec Sec Letter MiniTest Print First Name: Answers Phs 23, Spring 2012a asic Math Print ST Name: RJ ieniek Rec Sec etter MiniTest Print First Name: nswers When ou answer, put the requested quantit on the left side of an equal sign & O it and our answer

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

Fox Lane High School Department of Mathematics

Fox Lane High School Department of Mathematics Fo Lane High School Department of Mathematics June 08 Hello Future AP Calculus AB Student! This is the summer assignment for all students taking AP Calculus AB net school year. It contains a set of problems

More information

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique MS2: IT Mathematics Integration Two Techniques of Integration John Carroll School of Mathematical Sciences Dublin City University Integration by Substitution: The Technique Integration by Substitution:

More information

Announcements. Related Rates (last week), Linear approximations (today) l Hôpital s Rule (today) Newton s Method Curve sketching Optimization problems

Announcements. Related Rates (last week), Linear approximations (today) l Hôpital s Rule (today) Newton s Method Curve sketching Optimization problems Announcements Assignment 4 is now posted. Midterm results should be available by the end of the week (assuming the scantron results are back in time). Today: Continuation of applications of derivatives:

More information

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002 171, Calculus 1 Summer 1, 018 CRN 5048, Section 001 Time: MTWR, 6:0 p.m. 8:0 p.m. Room: BR-4 CRN 5048, Section 00 Time: MTWR, 11:0 a.m. 1:0 p.m. Room: BR-4 CONTENTS Syllabus Reviews for tests 1 Review

More information

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f Warm-Up: Solve sinx = 2 for x 0,2π 5 (a) graphically (approximate to three decimal places) y (b) algebraically BY HAND EXACTLY (do NOT approximate except to verify your solutions) x x 0,2π, xscl = π 6,y,,

More information

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx.

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx. Unit 3. Integration 3A. Differentials, indefinite integration 3A- a) 7 6 d. (d(sin ) = because sin is a constant.) b) (/) / d c) ( 9 8)d d) (3e 3 sin + e 3 cos)d e) (/ )d + (/ y)dy = implies dy = / d /

More information

Overview. Properties of the exponential. The natural exponential e x. Lesson 1 MA Nick Egbert

Overview. Properties of the exponential. The natural exponential e x. Lesson 1 MA Nick Egbert Overview This lesson should alread be familiar to ou from precalculus. But for the sake of completeness and because of their crucial importance, we review some basic properties of the eponential and logarithm

More information

Fundamental Trigonometric Identities

Fundamental Trigonometric Identities Fundamental Trigonometric Identities MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and write the fundamental trigonometric

More information

Exercise Set 4.3: Unit Circle Trigonometry

Exercise Set 4.3: Unit Circle Trigonometry Eercise Set.: Unit Circle Trigonometr Sketch each of the following angles in standard position. (Do not use a protractor; just draw a quick sketch of each angle. Sketch each of the following angles in

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400 2 6A: Special Trig Limits Math 400 This section focuses entirely on the its of 2 specific trigonometric functions. The use of Theorem and the indeterminate cases of Theorem are all considered. a The it

More information

Calculus Integration

Calculus Integration Calculus Integration By Norhafizah Md Sarif & Norazaliza Mohd Jamil Faculty of Instrial Science & Technology norhafizah@ump.e.my, norazaliza@ump.e.my Description Aims This chapter is aimed to : 1. introce

More information

Avon High School Name AP Calculus AB Summer Review Packet Score Period

Avon High School Name AP Calculus AB Summer Review Packet Score Period Avon High School Name AP Calculus AB Summer Review Packet Score Period f 4, find:.) If a.) f 4 f 4 b.) Topic A: Functions f c.) f h f h 4 V r r a.) V 4.) If, find: b.) V r V r c.) V r V r.) If f and g

More information

7.3 Inverse Trigonometric Functions

7.3 Inverse Trigonometric Functions 58 transcendental functions 73 Inverse Trigonometric Functions We now turn our attention to the inverse trigonometric functions, their properties and their graphs, focusing on properties and techniques

More information

A: Super-Basic Algebra Skills. A1. True or false. If false, change what is underlined to make the statement true. a.

A: Super-Basic Algebra Skills. A1. True or false. If false, change what is underlined to make the statement true. a. A: Super-Basic Algebra Skills A1. True or false. If false, change what is underlined to make the statement true. 1 T F 1 b. T F c. ( + ) = + 9 T F 1 1 T F e. ( + 1) = 16( + ) T F f. 5 T F g. If ( + )(

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

Lesson 7.3 Exercises, pages

Lesson 7.3 Exercises, pages Lesson 7. Exercises, pages 8 A. Write each expression in terms of a single trigonometric function. cos u a) b) sin u cos u cot U tan U P DO NOT COPY. 7. Reciprocal and Quotient Identities Solutions 7 c)

More information

Lecture 5: Finding limits analytically Simple indeterminate forms

Lecture 5: Finding limits analytically Simple indeterminate forms Lecture 5: Finding its analytically Simple indeterminate forms Objectives: (5.) Use algebraic techniques to resolve 0/0 indeterminate forms. (5.) Use the squeeze theorem to evaluate its. (5.3) Use trigonometric

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

Denition and some Properties of Generalized Elementary Functions of a Real Variable

Denition and some Properties of Generalized Elementary Functions of a Real Variable Denition and some Properties of Generalized Elementary Functions of a Real Variable I. Introduction The term elementary function is very often mentioned in many math classes and in books, e.g. Calculus

More information

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK:

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: Name: Class Period: DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: An identity is an equation that is valid for all values of the variable for which the epressions in the equation are defined. You

More information

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud Basics Concepts and Ideas First Order Differential Equations Dr. Omar R. Daoud Differential Equations Man Phsical laws and relations appear mathematicall in the form of Differentia Equations The are one

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

Preparation for Advanced Placement Calculus

Preparation for Advanced Placement Calculus Tappan Zee High School Mathematics Department June 07 Preparation for Advanced Placement Calculus Dear Advanced Placement Calculus Student, We hope that you have had a successful year! Before you leave

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

Section: I. u 4 du. (9x + 1) + C, 3

Section: I. u 4 du. (9x + 1) + C, 3 EXAM 3 MAT 168 Calculus II Fall 18 Name: Section: I All answers must include either supporting work or an eplanation of your reasoning. MPORTANT: These elements are considered main part of the answer and

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Lesson 50 Integration by Parts

Lesson 50 Integration by Parts 5/3/07 Lesson 50 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

3.5 Derivatives of Trig Functions

3.5 Derivatives of Trig Functions 3.5 Derivatives of Trig Functions Problem 1 (a) Suppose we re given the right triangle below. Epress sin( ) and cos( ) in terms of the sides of the triangle. sin( ) = B C = B and cos( ) = A C = A (b) Suppose

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

Derivative of a Function

Derivative of a Function Derivative of a Function (x+δx,f(x+δx)) f ' (x) = (x,f(x)) provided the limit exists Can be interpreted as the slope of the tangent line to the curve at any point (x, f(x)) on the curve. This generalizes

More information

A summary of factoring methods

A summary of factoring methods Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 A summary of factoring methods What you need to know already: Basic algebra notation and facts. What you can learn here: What

More information