3.5 Derivatives of Trig Functions

Size: px
Start display at page:

Download "3.5 Derivatives of Trig Functions"

Transcription

1 3.5 Derivatives of Trig Functions Problem 1 (a) Suppose we re given the right triangle below. Epress sin( ) and cos( ) in terms of the sides of the triangle. sin( ) = B C = B and cos( ) = A C = A (b) Suppose we are given the triangle below. (i) Find the length of the sides A and B. This is an isosceles triangle. A = B Using the Pythagorean Theorem: A 2 + B 2 =1 2 2A 2 =1 A 2 = 1 r 2 p 1 2 A = 2 = 2 r p 1 2 B = 2 = 2 (ii) Epress sin and cos in terms of the sides of the triangle. 4 4 sin = B p 2 4 C = 2 and cos = A p 2 4 C = 2 1

2 (c) Suppose we are given the triangle below. (i) Find the length of the sides A and B. You might remember this as a 30/60/90 triangle. To find the lengths of the sides of the triangle, we create a triangle as in the figure below. All the angles in this triangle are of 60 degrees, therefore, this is an equilateral triangle Now that we have an equilateral triangle, we have C = C =2A. Thus,1=2A =) A = 1 2 To find B, we use the Pythagorean Theorem B 2 = B2 =1 B 2 = 3 r 4 p 3 3 B = 4 = 2 2

3 (ii) Epress sin and cos in terms of the sides of the triangle. 3 3 sin = B p 3 3 C = 2 and cos = A 3 C = 1 2 (d) Suppose we are given the triangle below. (i) Find the length of the sides A and B. r We ve p actually already found the lengths of the sides for this type of triangle in part 3 3 c. B = 4 = 2 and A = 1 2 (ii) Write sin and cos in terms of the sides of the triangle. 6 6 sin = A 6 C = 1 2 and cos = B p 3 6 C = 2 (e) For any point P(,y) on the unit circle, we can epress its coordinates in terms of sin( ) and cos( ). Here is the radian measure of the angle in standard position whose terminal side is the line through the origin and the point P (, y). (, y) = (cos( ), sin( )) (f) Use all of the above information to label the given points on the unit circle. That is, for each point on the unit circle, provide the angle measure in radians and degrees, and give the (,y) coordinate for the point. 3

4 4

5 Problem 2 Find all real numbers which satisfy each of the equations. In the previous problem, we used to denote the radian measure of the angle. However, we can use any variable to represent the angle measure. For eample, in part a, is the variable representing the radian measure of the angle. (a) cos() =1 This is asking for the collection of all angles such that cosine of that angle equals 1. The unit circle shows that one such angle is 0 (since cos(0) = 1). There is a slight trick here: since cosine has period 2 we actually have cos(0 + 2 n) = 1 for every integer n. In summary, = 2 n, where n is any integer, gives all the solutions to this equation. (b) sin(3 ) = p 3/2 for 0 apple apple 2 5

6 Finding all numbers with 0 apple apple 2 that satisfy sin(3 ) = p 3/2 is a bit tricky. We first perform a useful trick from algebra variable substitution. Let =3. So, we are trying to find all numbers such that sin() = p 3/2 for 0 apple /3 apple 2. Then = 3 +2 n or = 2 +2 n for n any integer as long as 0 apple apple 2 Since =3, we can solve 3 for to obtain = /9 +(2 n)/3 or =(2 )/9 +(2 n)/3, wheren is again any integer as long as 0 apple apple 2. We are only looking for solutions of in [0, 2 ], and so our solutions are = 9, 2 9, 7 9, 8 9, 13 9, Problem 3 (a) Graph f( ) =sin( ) and g( ) = cos( ) from [ 8, ] (b) For 0 apple apple 2, find the following values or intervals. (i) Where does f 0 ( ) =0? f 0 ( ) =0at = 2, 3 2 (ii) Where is f 0 negative? Where is it positive? 6

7 (iii) Where is f 0 : f 0 is negative on i. negative and increasing? (, 3 2 ) ii. negative and decreasing? ( 2, ) iii. positive and increasing? ( 3 2, 2 ) iv. positive and decreasing? (0, 2 ) 2, 3. f 0 is positive on 0, 3, 2 2 2, 2 (iv) Estimate the slope of f at the points =0(i.e. f 0 (0)), = (i.e. f 0 ( )), =2 (i.e. f 0 (2 )). The slope of f at =0and =2 is 1. The slope of f at = is -1 (v) Where does g 0 ( ) =0? g 0 ( =0at =0,, 2 (vi) Where is g 0 negative? Where is it positive? g 0 is negative on (0, ) and positive on (, 2 ) (vii) Where is g 0 : i. negative and increasing? ( 2, ) ii. negative and decreasing? (0, 2 ) iii. positive and increasing? (, 3 2 ) iv. positive and decreasing? ( 3 2, 2 ) (viii) Estimate the slope of g at the points = 2 (i.e. g0 ( 2 )), = 3 2 (i.e. g0 ( 3 2 i)). The slope of g at = 2 is -1. The slope of g at = 3 2 is 1. (c) Use the above information to sketch a graph of f 0 and g 0 7

8 (d) Based on the graphs of f 0 and g 0, what might the equation for f 0 and g 0 be? It appears f 0 ( ) = cos( ) and g 0 ( ) = sin( ) Problem 4 Find the following its: (a) sin(8) where u =8. (b) tan(5) sin(8) sin(8) = 8 8 =8 sin(8) 8 =8 u!0 sin(u) u =8 1=8 8

9 tan(5) = sin(5) cos(5) = 1 cos(5) sin(5) = cos(5) sin(5) 5 5 = 1 5 cos(5) 5 sin(5) = 1 5 (1)(1) = 1 5 Problem 5 Find the derivative of the following functions: (a) f() = cot() (b) f() =sin() cos() f 0 () = (76 + cot())(1) ( + 5)(42 5 csc 2 ()) (7 6 + cot()) 2 = 76 + cot() ( + 5)(42 5 csc 2 ()) (7 6 + cot()) 2. f 0 () = (cos())(cos()) + (sin())( sin()) = cos 2 () sin 2 (). (c) f() = e tan() sec()+2 (d) f() =sin() cos()e 3 f 0 () = (sec() + 2)(e tan()+e sec 2 ()) e tan()(sec() tan()) (sec() + 2) 2 = e [(sec() + 2)(tan()+sec 2 ()) sec() tan 2 ()] (sec() + 2) 2. f 0 () = d d [sin() cos()]e3 +(sin() cos()) d d (e3 ) = (cos 2 () sin 2 ())e 3 +3e 3 sin() cos() = e 3 (cos 2 ()+3sin() cos() sin 2 ()). 9

10 Problem 6 Let f() =sin() and g() = cos(). Can you compute f (48) (), g (42) (), and g (39) ()? Let s find the first several derivatives of f() =sin(). f (0) () =sin() f (1) () = cos() f (2) () = sin() f (3) () = cos() f (4) () =sin() Recall that, for n a nonnegative integer, f (4n) () =f() =sin() and g (4n) () =g() = cos(). Thus: f (48) () =f() =sin() g (42) () =g (40+2) () =g (40)(2) () =g (2) () =g 00 () = cos() g (39) () =g (36+3) () =g (36)(3) () =g (3) () =g 000 () =sin() Problem 7 5 (a) Let f() = ( + 5) sin(). Compute f 0 () 2 f 0 () = (2 5)( + 5) sin() (2 5)(sin()+( + 5) cos()) ( + 5) 2 sin 2 () (b) Evaluate the it.!5 2 5 sin( 5) 10

11 !5 2 sin( 5 5) = ( 5)!5 sin( 5) =!5 ()!5 5 sin( 5) 1 =()!5!5 sin( 5) 5 =!5 ()!5 1 sin( 5) 5 if we let u = =!5 () u!0 5 we have: 1 sin(u) u = 5(1) = 5 Problem 8 Find values for a, b, and c so that the following function is di erentiable everywhere. a sin()+bcos() if <0 f() = a 2 + b + c if 0 The function f is di erentiable for < 0 since f is a combination of trigonometric functions. f is also di erentiable >0 since f is a polynomial on that interval. We need to focus on =0.Sincefis di erentiable everywhere, f must also be di erentiable at =0and therefore continuous at =0. Therefore: We need that f() = f() = f() =f(0). Observe that + f() = (a sin()+b cos()) = b(1) = b. f() = + b + c) =c. + +(a2 Thus, we must have that b = c Net, if f 0 (0) eists, then: f 0 (0) = f() f(0) 0 since f(0) = a b 0+c = c f() f(0) 0 = f() c 11

12 Since this it eists, the left and right its must be equal. f() c a 2 + b + c c = + + a 2 + b = + = +(a + b) = b f() c = = a sin()+bcos() c a sin() b cos() + c we already found b = c so we have a sin() = a + sin() sin() since a sin() c cos() + c c cos() 1 cos() 1 =1and + c This means in order for the derivative to eist, a = b = c. cos() 1 = a =0we have 12

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

12) y = -2 sin 1 2 x - 2

12) y = -2 sin 1 2 x - 2 Review -Test 1 - Unit 1 and - Math 41 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find and simplify the difference quotient f(x + h) - f(x),

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK:

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: Name: Class Period: DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: An identity is an equation that is valid for all values of the variable for which the epressions in the equation are defined. You

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Notes on Radian Measure

Notes on Radian Measure MAT 170 Pre-Calculus Notes on Radian Measure Radian Angles Terri L. Miller Spring 009 revised April 17, 009 1. Radian Measure Recall that a unit circle is the circle centered at the origin with a radius

More information

Exercise Set 4.3: Unit Circle Trigonometry

Exercise Set 4.3: Unit Circle Trigonometry Eercise Set.: Unit Circle Trigonometr Sketch each of the following angles in standard position. (Do not use a protractor; just draw a quick sketch of each angle. Sketch each of the following angles in

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

Lesson 5.3. Solving Trigonometric Equations

Lesson 5.3. Solving Trigonometric Equations Lesson 5.3 Solving To solve trigonometric equations: Use standard algebraic techniques learned in Algebra II. Look for factoring and collecting like terms. Isolate the trig function in the equation. Use

More information

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 12 TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. 12.2 The Trigonometric Functions Copyright Cengage Learning. All rights reserved. The Trigonometric Functions and Their Graphs

More information

Unit Circle. Return to. Contents

Unit Circle. Return to. Contents Unit Circle Return to Table of Contents 32 The Unit Circle The circle x 2 + y 2 = 1, with center (0,0) and radius 1, is called the unit circle. Quadrant II: x is negative and y is positive (0,1) 1 Quadrant

More information

The American School of Marrakesh. AP Calculus AB Summer Preparation Packet

The American School of Marrakesh. AP Calculus AB Summer Preparation Packet The American School of Marrakesh AP Calculus AB Summer Preparation Packet Summer 2016 SKILLS NEEDED FOR CALCULUS I. Algebra: *A. Exponents (operations with integer, fractional, and negative exponents)

More information

Chapter 06: Analytic Trigonometry

Chapter 06: Analytic Trigonometry Chapter 06: Analytic Trigonometry 6.1: Inverse Trigonometric Functions The Problem As you recall from our earlier work, a function can only have an inverse function if it is oneto-one. Are any of our trigonometric

More information

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETR Some Key Concepts:. The slope and the equation of a straight line. Functions and functional notation. The average rate of change of a function and the DIFFERENCE-

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

1 The six trigonometric functions

1 The six trigonometric functions Spring 017 Nikos Apostolakis 1 The six trigonometric functions Given a right triangle, once we select one of its acute angles, we can describe the sides as O (opposite of ), A (adjacent to ), and H ().

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 1.1 Pythagorean Theorem and its Converse 1. 194. 6. 5 4. c = 10 5. 4 10 6. 6 5 7. Yes 8. No 9. No 10. Yes 11. No 1. No 1 1 1. ( b+ a)( a+ b) ( a + ab+ b ) 1 1 1 14. ab + c ( ab + c ) 15. Students must

More information

Name: Top Ten Things You ve Learned #10: Graphing Lines, Parabolas, and other Functions I. No Calculator: Sketch a graph of each equation

Name: Top Ten Things You ve Learned #10: Graphing Lines, Parabolas, and other Functions I. No Calculator: Sketch a graph of each equation Name: #: Graphing Lines, Parabolas, and other Functions I. No Calculator: Sketch a graph of each equation... - - - - - -.. 6. - - - - - - 7. 8. 9. - - - - - - ... a f - - - - - - II. Use a graphing calculator

More information

AP Calculus I Summer Packet

AP Calculus I Summer Packet AP Calculus I Summer Packet This will be your first grade of AP Calculus and due on the first day of class. Please turn in ALL of your work and the attached completed answer sheet. I. Intercepts The -intercept

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions SECTION 4.1 Special Right Triangles and Trigonometric Ratios Chapter 4 Trigonometric Functions Section 4.1: Special Right Triangles and Trigonometric Ratios Special Right Triangles Trigonometric Ratios

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1. Algebra - Problem Drill 19: Basic Trigonometry - Right Triangle No. 1 of 10 1. Which of the following points lies on the unit circle? (A) 1, 1 (B) 1, (C) (D) (E), 3, 3, For a point to lie on the unit circle,

More information

Chapter 7, Continued

Chapter 7, Continued Math 150, Fall 008, c Benjamin Aurispa Chapter 7, Continued 7.3 Double-Angle, Half-Angle, and Product-Sum Formulas Double-Angle Formulas Formula for Sine: Formulas for Cosine: Formula for Tangent: sin

More information

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities Chapter 6: Trigonometric Identities 1 Chapter 6 Complete the following table: 6.1 Reciprocal, Quotient, and Pythagorean Identities Pages 290 298 6.3 Proving Identities Pages 309 315 Measure of

More information

A.P. Calculus Summer Assignment

A.P. Calculus Summer Assignment A.P. Calculus Summer Assignment This assignment is due the first day of class at the beginning of the class. It will be graded and counts as your first test grade. This packet contains eight sections and

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

MATH 109 TOPIC 3 RIGHT TRIANGLE TRIGONOMETRY. 3a. Right Triangle Definitions of the Trigonometric Functions

MATH 109 TOPIC 3 RIGHT TRIANGLE TRIGONOMETRY. 3a. Right Triangle Definitions of the Trigonometric Functions Math 09 Ta-Right Triangle Trigonometry Review Page MTH 09 TOPIC RIGHT TRINGLE TRIGONOMETRY a. Right Triangle Definitions of the Trigonometric Functions a. Practice Problems b. 5 5 90 and 0 60 90 Triangles

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

Honors Pre-Calculus Summer Work

Honors Pre-Calculus Summer Work Honors Pre-Calculus Summer Work Attached you will find a variety of review work based on the prerequisites needed for the Honors Pre-Calculus curriculum. The problems assigned should be the minimum you

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 116 Test Review sheet SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Find the complement of an angle whose measure

More information

Pre-Exam. 4 Location of 3. 4 sin 3 ' = b Location of 180 ' = c Location of 315

Pre-Exam. 4 Location of 3. 4 sin 3 ' = b Location of 180 ' = c Location of 315 MATH-330 Pre-Exam Spring 09 Name Rocket Number INSTRUCTIONS: You must show enough work to justify your answer on ALL problems except for Problem 6. Correct answers with no work or inconsistent work shown

More information

Unit 2 - The Trigonometric Functions - Classwork

Unit 2 - The Trigonometric Functions - Classwork Unit 2 - The Trigonometric Functions - Classwork Given a right triangle with one of the angles named ", and the sides of the triangle relative to " named opposite, adjacent, and hypotenuse (picture on

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block:

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block: Algebra /Trig AIIT.7 Trig Identities Notes Mrs. Grieser Name: Date: Block: Trigonometric Identities When two trig expressions can be proven to be equal to each other, the statement is called a trig identity

More information

Summer Review Packet AP Calculus

Summer Review Packet AP Calculus Summer Review Packet AP Calculus ************************************************************************ Directions for this packet: On a separate sheet of paper, show your work for each problem in this

More information

Trigonometric integrals by basic methods

Trigonometric integrals by basic methods Roberto s Notes on Integral Calculus Chapter : Integration methods Section 7 Trigonometric integrals by basic methods What you need to know already: Integrals of basic trigonometric functions. Basic trigonometric

More information

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes LESSON SIX - Trigonometric Identities I Example Understanding Trigonometric Identities. a) Why are trigonometric identities considered to be a special type of trigonometric equation? Trigonometric Identities

More information

A2T Trig Packet Unit 1

A2T Trig Packet Unit 1 A2T Trig Packet Unit 1 Name: Teacher: Pd: Table of Contents Day 1: Right Triangle Trigonometry SWBAT: Solve for missing sides and angles of right triangles Pages 1-7 HW: Pages 8 and 9 in Packet Day 2:

More information

The Other Trigonometric

The Other Trigonometric The Other Trigonometric Functions By: OpenStaxCollege A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground whose tangent is or less, regardless

More information

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order)

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order) 1 of 6 UNIT P.I. 1 - INTEGERS 1 A2.A.1 Solve absolute value equations and inequalities involving linear expressions in one variable 1 A2.A.4 * Solve quadratic inequalities in one and two variables, algebraically

More information

Review of Topics in Algebra and Pre-Calculus I. Introduction to Functions function Characteristics of a function from set A to set B

Review of Topics in Algebra and Pre-Calculus I. Introduction to Functions function Characteristics of a function from set A to set B Review of Topics in Algebra and Pre-Calculus I. Introduction to Functions A function f from a set A to a set B is a relation that assigns to each element x in the set A exactly one element y in set B.

More information

Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions Derivatives of Trigonometric Functions 9-8-28 In this section, I ll iscuss its an erivatives of trig functions. I ll look at an important it rule first, because I ll use it in computing the erivative of

More information

More with Angles Reference Angles

More with Angles Reference Angles More with Angles Reference Angles A reference angle is the angle formed by the terminal side of an angle θ, and the (closest) x axis. A reference angle, θ', is always 0 o

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think:

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think: PART F: EVALUATING INVERSE TRIG FUNCTIONS Think: (Section 4.7: Inverse Trig Functions) 4.82 A trig function such as sin takes in angles (i.e., real numbers in its domain) as inputs and spits out outputs

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

Crash Course in Trigonometry

Crash Course in Trigonometry Crash Course in Trigonometry Dr. Don Spickler September 5, 003 Contents 1 Trigonometric Functions 1 1.1 Introduction.................................... 1 1. Right Triangle Trigonometry...........................

More information

6.1: Reciprocal, Quotient & Pythagorean Identities

6.1: Reciprocal, Quotient & Pythagorean Identities Math Pre-Calculus 6.: Reciprocal, Quotient & Pythagorean Identities A trigonometric identity is an equation that is valid for all values of the variable(s) for which the equation is defined. In this chapter

More information

Section 5.4 The Other Trigonometric Functions

Section 5.4 The Other Trigonometric Functions Section 5.4 The Other Trigonometric Functions Section 5.4 The Other Trigonometric Functions In the previous section, we defined the e and coe functions as ratios of the sides of a right triangle in a circle.

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department Updated 6/015 The problems in this packet are designed to help ou review topics from previous math courses that are important to our success in AP Calculus AB / BC. It is important that ou take time during

More information

MATH 100 REVIEW PACKAGE

MATH 100 REVIEW PACKAGE SCHOOL OF UNIVERSITY ARTS AND SCIENCES MATH 00 REVIEW PACKAGE Gearing up for calculus and preparing for the Assessment Test that everybody writes on at. You are strongly encouraged not to use a calculator

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment Name: AP Calculus AB Summer Assignment Due Date: The beginning of class on the last class day of the first week of school. The purpose of this assignment is to have you practice the mathematical skills

More information

Find the domain and range of each function. Use interval notation (parenthesis or square brackets).

Find the domain and range of each function. Use interval notation (parenthesis or square brackets). Page of 10 I. Functions & Composition of Functions A function is a set of points (x, y) such that for every x, there is one and only one y. In short, in a function, the x-values cannot repeat while the

More information

Chapter 5: Double-Angle and Half-Angle Identities

Chapter 5: Double-Angle and Half-Angle Identities Haberman MTH Section II: Trigonometric Identities Chapter 5: Double-Angle and Half-Angle Identities In this chapter we will find identities that will allow us to calculate sin( ) and cos( ) if we know

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Section 1 Section 2 Section 3 Section 4 Section 5 Using Fundamental Identities Verifying Trigonometric Identities Solving Trigonometric Equations Sum and Difference Formulas

More information

Welcome to AP Calculus!!!

Welcome to AP Calculus!!! Welcome to AP Calculus!!! In preparation for next year, you need to complete this summer packet. This packet reviews & expands upon the concepts you studied in Algebra II and Pre-calculus. Make sure you

More information

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018 Calculus (AP, Honors, Academic) Summer Assignment 08 The summer assignments for Calculus will reinforce some necessary Algebra and Precalculus skills. In order to be successful in Calculus, you must have

More information

AMB121F Trigonometry Notes

AMB121F Trigonometry Notes AMB11F Trigonometry Notes Trigonometry is a study of measurements of sides of triangles linked to the angles, and the application of this theory. Let ABC be right-angled so that angles A and B are acute

More information

2. Pythagorean Theorem:

2. Pythagorean Theorem: Chapter 4 Applications of Trigonometric Functions 4.1 Right triangle trigonometry; Applications 1. A triangle in which one angle is a right angle (90 0 ) is called a. The side opposite the right angle

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11)

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11) AP Calculus Summer Packet Answer Key Reminders:. This is not an assignment.. This will not be collected.. You WILL be assessed on these skills at various times throughout the course.. You are epected to

More information

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle. 2.24 Tanz and the Reciprocals Derivatives of Other Trigonometric Functions One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

AP Calculus AB Information and Summer Assignment

AP Calculus AB Information and Summer Assignment AP Calculus AB Information and Summer Assignment General Information: Competency in Algebra and Trigonometry is absolutely essential. The calculator will not always be available for you to use. Knowing

More information

Essential Question How can you verify a trigonometric identity?

Essential Question How can you verify a trigonometric identity? 9.7 Using Trigonometric Identities Essential Question How can you verify a trigonometric identity? Writing a Trigonometric Identity Work with a partner. In the figure, the point (, y) is on a circle of

More information

From now on angles will be drawn with their vertex at the. The angle s initial ray will be along the positive. Think of the angle s

From now on angles will be drawn with their vertex at the. The angle s initial ray will be along the positive. Think of the angle s Fry Texas A&M University!! Math 150!! Chapter 8!! Fall 2014! 1 Chapter 8A Angles and Circles From now on angles will be drawn with their vertex at the The angle s initial ray will be along the positive.

More information

Math 144 Activity #7 Trigonometric Identities

Math 144 Activity #7 Trigonometric Identities 144 p 1 Math 144 Activity #7 Trigonometric Identities What is a trigonometric identity? Trigonometric identities are equalities that involve trigonometric functions that are true for every single value

More information

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017 Math 2 Lesieutre; 9: Polar coordinates; November 22, 207 Plot the point 2, 2 in the plane If you were trying to describe this point to a friend, how could you do it? One option would be coordinates, but

More information

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS 4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS MR. FORTIER 1. Trig Functions of Any Angle We now extend the definitions of the six basic trig functions beyond triangles so that we do not have to restrict

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4 NYS Performance Indicators Chapter Learning Objectives Text Sections Days A.N. Perform arithmetic operations with polynomial expressions containing rational coefficients. -, -5 A.A. Solve absolute value

More information

The Other Trigonometric Functions

The Other Trigonometric Functions OpenStax-CNX module: m4974 The Other Trigonometric Functions OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you

More information

Math 143 Final Exam Practice Problems - Part 2

Math 143 Final Exam Practice Problems - Part 2 1. Find the exact value of the following: (a) sin( π 1 ) sin( 1 ) sin(30 ) Math Final Exam Practice Problems - Part sin(30 ) cos( ) sin( ) cos(30 ) ( 1 ) ( ) ( ) ( 3 ) (b) cos(10 ) cos(60 + ) cos(60 )

More information

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts Introduction Math 11: Calculus 1 - Winter 01/01 Review of Precalculus Concepts Welcome to Math 11 - Calculus 1, Winter 01/01! This problems in this packet are designed to help you review the topics from

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9 Chapter Review. Lines Eample. Find the equation of the line that goes through the point ( 2, 9) and has slope 4/5. Using the point-slope form of the equation we have the answer immediately: y = 4 5 ( (

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x Precalculus Final Review 1. Given the following values, evaluate (if possible) the other four trigonometric functions using the fundamental trigonometric identities or triangles csc = - 3 5, tan = 4 3.

More information