A Stochastic Collocation based. for Data Assimilation

Size: px
Start display at page:

Download "A Stochastic Collocation based. for Data Assimilation"

Transcription

1 A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles

2 Outline Introduction SCKF Algorithm Case studies Conclusions

3 Introduction Purpose: To estimate system parameters from direct or indirect measurements. Traditional approach: Gradient based methods Use observations in the entire history; Require access to the simulator source code and substantial code development and maintenance Recent method: Ensemble Kalman filter

4 Noisy observations True state Initial state with uncertainty Illustrative diagram for EnKF (Geir Evensen) Time

5 Noisy observations True state Model prediction with errors Illustrative diagram for EnKF (Geir Evensen) Time

6 Noisy observations True state Model prediction with errors Updated estimate with errors Illustrative diagram for EnKF (Geir Evensen) Time

7 Noisy observations True state New model prediction with errors Updated estimate with errors Illustrative diagram for EnKF (Geir Evensen) Time

8 Noisy observations True state Updated estimate with errors Illustrative diagram for EnKF (Geir Evensen) Time

9 Ensemble Kalman filter For two-phase flow problem. The joint state vector: T y j = ln K T, ΦT, PT, SatT, dt, j = 1, 2,K N e j The EnKF analysis: y aj = y jf + K[d obs, j Hy fj ], j = 1, 2,K N e 1 K = C y H [HC y H + R ] T T MC Realizations 2 η = 4.0, σy = 1.0 MC: 1000 realizations The cross covariance: 6.2 Head, h 1 Ne {[y fj < y f >][y jf < y f >]T }, Cy N e 1 j = x

10 Ensemble Kalman filter Remarks Easy to implement, independent of simulator. Slow convergence with ensemble size. Requirements for possible new methods Non-intrusive, no need to modify codes. Efficient to propagate uncertainty during updating.

11 PCE based Kalman filter Joint state vector in Polynomial Chaos Expansion (PCE) Q S = S Ψ j= 0 j j ( ξ ) S T T T T T j = S ln, S k, S P, S φ Sat, S d, j = 0,1, L, Q T j SC Representations 2 nd 2 Covariance represented by PCE order PCM: 28 representations, η = 4.0, σ Y = Q Q C f f f s = S jψ j S jψ j j= 1 j= 1 Q j= 1 f T 2 ( S ) = S Ψ f j j j T Head d, h x

12 PCE based Kalman filter Analysis approach 1 S a f f j = S j + K d 0δ 0 j HS j, j = 0,1, L, Q d = d 0 obs f T f T K = C H + S HCS H R Observations are treated as deterministic. Relaxation term are added to the diagonal terms of R to improve filter stability. 1

13 PCE based Kalman filter Analysis approach 2 (Square root filter) Updating mean S a f f 0 = S0 + K d HS0, Updating deviations a f f S = % j S j KHS j, j = 12 1, 2, K Q 1 f T f T K = C H + S HCS H R, 1 T 1 f T f T f T S S S ( ) ( ) K% = C H HC H + R HC H + R + R,

14 Algorithm of SCKF Solving the forwarding problem with the collocation method. Recover PCE coefficients from the representations (on the basis of collocation sets). According to observations, update each of the PCE coefficients, then get the updated representations Forward each representation to the next time when the observations are available.

15 Flowchart of SCKF Parameterize the prior uncertainty with PCE or KL expansion Forward each collocation member (representation) with time Recover PCE coefficients from collocation results, update joint coefficient vectors according to observations, update each collocation member. END

16 Remarks Use PCE for efficient uncertainty representation and propagation. Use collocation method, non-intrusive as EnKF. Continuously update PCE coefficients: The zeroth order provides mean estimation, and higher order terms give uncertainty estimation. Main computational efforts are spent on solving flow equations at collocation point sets: The number of times needed to run the simulator is the same as the number of collocation point sets.

17 Single phase 2D flow problem (, ) [ K ( ) (, ) ] (, ) = hxt s x h x t + g x t Ss t Wells: The filled and empty triangles are the pumping and injection wells, respectively. No flow boundary at top and bottom, fixed head boundary condition at the left and right. Measurements: 25 pressure head measurements at all squares with Gaussian error N(0,0.05).

18 Single phase 2D flow problem Random fields: log permeability 0.20 Initial statistics: Gaussian random field with separable exponential covariance function n 2 x1 x2 y1 y 2 Cx ( 1, y1; x2, y2) = σ exp, (a) n=1 10 λx λy λ = 200 m, λ = 100 m, σ = 1.0 x y Y λ n x (b) n=4 10 x Use Karhunen-Loeve expansion to parameterize the Gaussian random field with independent Gaussian random variables. Use collocation points based on Stroud-2 rule, up to 1st order of PCE (Xiu, 2008) x (c) 10 n=10 x x 1 N = n= x (d) 10 n=20 x x 1 Y (, xω) ξ ( ω) λ f () x n n n

19 Single phase 2D flow problem Computational efforts to solve the governing equation EnKF: number of ensemble size SCKF: number of collocation sets, (M+1) for M-dimensional problem with Stroud-2 rule. Performance measure Mean estimation Uncertainty estimation N 1 t 2 RMSE= EY ( ( xi)) Y ( xi), N i = 1 N 1 SPREAD = VAR( xi ). N i = 1 Match between RMSE and SPREAD, involved with 1st two moments estimation 2 1 N t t { } { } N RMSE SPREAD = E[ Y ( x )] E[ Y x )] Y x Y x E[ Y x ] + i ( i ( i) ( i) ( i) N i= 1 N i= 1

20 Performance comparison EnKF with 100 realizations EnKF with 100 realizations EnKF with 200 realizations EnKF with 200 realizations

21 Performance comparison EnKF with 1000 realizations SCKF with different modes SCKF with different modes

22 Mean estimation Reference EnKF 1000 realizations SCKF with 100 modes SCKF with 200 modes

23 Variance estimation EnKF 1000 realizations SCKF with 100 modes SCKF with 200 modes

24 Pressure prediction Head prediction at day 20 0 solid line are reference dashed lines Head prediction at day 20.0, solid line are reference, dashed lines are computed from mean estimation of SCKF with 100 modes

25 Larger Variance a σ 2 = 2.0 (a) RMSE for EnKF with 200 realizations (b) SPREAD for EnKF with 200 realizations (c) RMSE and SPREAD for SCKF with 200 modes.

26 Shorter correlation eato length λ x = 80 m, λ y = 80m (a) RMSE for EnKF with 200 realizations (b) SPREAD for EnKF with 200 realizations (c) RMSE and SPREAD for SCKF with 200 modes.

27 Fewer e observations o s at 9 filled squares (a) RMSE for EnKF with 200 realizations (b) SPREAD for EnKF with 200 realizations (c) RMSE and SPREAD for SCKF with 200 modes.

28 Discussion Under certain conditions, SCKF performs better than EnKF with similar computational efforts The superiority is decreased with increase of variance, decrease of correlation ratio, or reduction of observations. SCKF suffers from curse of dimensionality. ( M + d )! Q + 1 =. M! d!

29 Two phase flow problem: history matching Water-oil two-phase system: subject to the constraint S o + S = 1 w Stronger nonlinearity, up to 2 nd order PCE are used; Probabilistic collocation method (Li & Zhang 2007) is used to obtain PCE coefficients from collocation representations.

30 Case study 2D two phase problem Prior statistics of log K: mean 5.0, variance 1.0, correlation length 600 in both directions. Updating step is at every 100 days, from day 0 to day The PCE terms are up to 2nd order. The KL terms are truncated up to the first 20 terms, 80% energy. Similar Computational efforts: The ensemble size and the number of collocation point sets are the same as 231.

31 Performance comparison RMSE SPREAD Blue solid lines are for SCKF, red dashed lines are for EnKF. Both filters are of similar computational efforts.

32 Match to production data SCKF EnKF EnKF Oil production rate of production well 2

33 Match to production data SCKF EnKF EnKF Oil production rate of production well 4

34 Match to production data SCKF EnKF EnKF Water cut of production well 4

35 Match to production data SCKF EnKF EnKF Bottom hole pressure of injection well

36 Non-Gaussianality caused by conditioning Although the unconditional field is assumed to be a Gaussian random field (KL expansion), higher PCE coefficients of log permeability will be produced d during the updating (non-gaussian conditional field represented by PCE) At one node, PCE coefficients before and after the first analysis.

37 Conclusions EnKF or SCKF? It depends EnKF: Slow convergence with ensemble size, realization dependent before convergence, but independent of random dimensionality. SCKF: Efficient than EnKF under certain conditions, but impractical when the random dimensionality is huge. Both are suboptimal for nonlinear problems Ways for Improvement: iteration, reparameterization, ation etc.

38 Thanks

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 26, No. 2, pp. 558 577 c 2004 Society for Industrial and Applied Mathematics A COMPARATIVE STUDY ON UNCERTAINTY QUANTIFICATION FOR FLOW IN RANDOMLY HETEROGENEOUS MEDIA USING MONTE

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information

Convergence of the Ensemble Kalman Filter in Hilbert Space

Convergence of the Ensemble Kalman Filter in Hilbert Space Convergence of the Ensemble Kalman Filter in Hilbert Space Jan Mandel Center for Computational Mathematics Department of Mathematical and Statistical Sciences University of Colorado Denver Parts based

More information

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits Hyperbolic Polynomial Chaos Expansion HPCE and its Application to Statistical Analysis of Nonlinear Circuits Majid Ahadi, Aditi Krishna Prasad, Sourajeet Roy High Speed System Simulations Laboratory Department

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

Cross-validation methods for quality control, cloud screening, etc.

Cross-validation methods for quality control, cloud screening, etc. Cross-validation methods for quality control, cloud screening, etc. Olaf Stiller, Deutscher Wetterdienst Are observations consistent Sensitivity functions with the other observations? given the background

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Parametric Problems, Stochastics, and Identification

Parametric Problems, Stochastics, and Identification Parametric Problems, Stochastics, and Identification Hermann G. Matthies a B. Rosić ab, O. Pajonk ac, A. Litvinenko a a, b University of Kragujevac c SPT Group, Hamburg wire@tu-bs.de http://www.wire.tu-bs.de

More information

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Jiachuan He University of Texas at Austin April 15, 2016 Jiachuan

More information

Parameter Estimation in Reservoir Engineering Models via Data Assimilation Techniques

Parameter Estimation in Reservoir Engineering Models via Data Assimilation Techniques Parameter Estimation in Reservoir Engineering Models via Data Assimilation Techniques Mariya V. Krymskaya TU Delft July 6, 2007 Ensemble Kalman Filter (EnKF) Iterative Ensemble Kalman Filter (IEnKF) State

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

Asynchronous data assimilation

Asynchronous data assimilation Ensemble Kalman Filter, lecture 2 Asynchronous data assimilation Pavel Sakov Nansen Environmental and Remote Sensing Center, Norway This talk has been prepared in the course of evita-enkf project funded

More information

Application of the Ensemble Kalman Filter to History Matching

Application of the Ensemble Kalman Filter to History Matching Application of the Ensemble Kalman Filter to History Matching Presented at Texas A&M, November 16,2010 Outline Philosophy EnKF for Data Assimilation Field History Match Using EnKF with Covariance Localization

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

Adaptive Collocation with Kernel Density Estimation

Adaptive Collocation with Kernel Density Estimation Examples of with Kernel Density Estimation Howard C. Elman Department of Computer Science University of Maryland at College Park Christopher W. Miller Applied Mathematics and Scientific Computing Program

More information

Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter

Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter WATER RESOURCES RESEARCH, VOL. 45,, doi:10.1029/2008wr007148, 2009 Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter George Saad 1 and Roger Ghanem 1

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Y. Huang 1,2, and X.S. Qin 1,2* 1 School of Civil & Environmental Engineering, Nanyang Technological University,

More information

Bayesian Inverse problem, Data assimilation and Localization

Bayesian Inverse problem, Data assimilation and Localization Bayesian Inverse problem, Data assimilation and Localization Xin T Tong National University of Singapore ICIP, Singapore 2018 X.Tong Localization 1 / 37 Content What is Bayesian inverse problem? What is

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Uncertainty Quantification in Computational Science

Uncertainty Quantification in Computational Science DTU 2010 - Lecture I Uncertainty Quantification in Computational Science Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu Objective of lectures The main objective of these lectures are To offer

More information

Hierarchical Bayes Ensemble Kalman Filter

Hierarchical Bayes Ensemble Kalman Filter Hierarchical Bayes Ensemble Kalman Filter M Tsyrulnikov and A Rakitko HydroMetCenter of Russia Wrocław, 7 Sep 2015 M Tsyrulnikov and A Rakitko (HMC) Hierarchical Bayes Ensemble Kalman Filter Wrocław, 7

More information

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Laura Slivinski June, 3 Laura Slivinski (Brown University) Lagrangian Data Assimilation June, 3 / 3 Data Assimilation Setup:

More information

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations Boris Jeremić 1 Kallol Sett 2 1 University of California, Davis 2 University of Akron, Ohio ICASP Zürich, Switzerland August

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Kody Law Andy Majda Andrew Stuart Xin Tong Courant Institute New York University New York NY www.dtbkelly.com February 3, 2016 DPMMS, University of Cambridge

More information

INVERSE MODELING AND UNCERTAINTY QUANTIFICATION OF NONLINEAR FLOW IN POROUS MEDIA MODELS

INVERSE MODELING AND UNCERTAINTY QUANTIFICATION OF NONLINEAR FLOW IN POROUS MEDIA MODELS INVERSE MODELING AND UNCERTAINTY QUANTIFICATION OF NONLINEAR FLOW IN POROUS MEDIA MODELS by Weixuan Li A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA

More information

EnKF-based particle filters

EnKF-based particle filters EnKF-based particle filters Jana de Wiljes, Sebastian Reich, Wilhelm Stannat, Walter Acevedo June 20, 2017 Filtering Problem Signal dx t = f (X t )dt + 2CdW t Observations dy t = h(x t )dt + R 1/2 dv t.

More information

What do we know about EnKF?

What do we know about EnKF? What do we know about EnKF? David Kelly Kody Law Andrew Stuart Andrew Majda Xin Tong Courant Institute New York University New York, NY April 10, 2015 CAOS seminar, Courant. David Kelly (NYU) EnKF April

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Short tutorial on data assimilation

Short tutorial on data assimilation Mitglied der Helmholtz-Gemeinschaft Short tutorial on data assimilation 23 June 2015 Wolfgang Kurtz & Harrie-Jan Hendricks Franssen Institute of Bio- and Geosciences IBG-3 (Agrosphere), Forschungszentrum

More information

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen PARAMetric UNCertainties, Budapest STOCHASTIC PROCESSES AND FIELDS Noémi Friedman Institut für Wissenschaftliches Rechnen, wire@tu-bs.de

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 569 PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD Riki Honda

More information

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error Georg Gottwald, Lewis Mitchell, Sebastian Reich* University of Sydney, *Universität Potsdam Durham,

More information

Stochastic Dimension Reduction

Stochastic Dimension Reduction Stochastic Dimension Reduction Roger Ghanem University of Southern California Los Angeles, CA, USA Computational and Theoretical Challenges in Interdisciplinary Predictive Modeling Over Random Fields 12th

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation A. Shah 1,2, M. E. Gharamti 1, L. Bertino 1 1 Nansen Environmental and Remote Sensing Center 2 University of Bergen

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control Lessons in Estimation Theory for Signal Processing, Communications, and Control Jerry M. Mendel Department of Electrical Engineering University of Southern California Los Angeles, California PRENTICE HALL

More information

New Fast Kalman filter method

New Fast Kalman filter method New Fast Kalman filter method Hojat Ghorbanidehno, Hee Sun Lee 1. Introduction Data assimilation methods combine dynamical models of a system with typically noisy observations to obtain estimates of the

More information

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW 7 VIII. BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW A wide variety of natural processes are described using physical laws. A physical law may be expressed by means of an

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments

11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments 11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments M. Camporese (University of Padova), G. Cassiani* (University of Padova), R. Deiana

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields Sous la co-tutelle de : LABORATOIRE DE MODÉLISATION ET SIMULATION MULTI ÉCHELLE CNRS UPEC UNIVERSITÉ PARIS-EST CRÉTEIL UPEM UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE Stochastic representation of random positive-definite

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya .. Frobenius-Perron Operator 2014 ACC Workshop on Uncertainty Analysis & Estimation Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. uq.tamu.edu

More information

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION P. DOSTERT, Y. EFENDIEV, AND T.Y. HOU Abstract. In this paper, we study multiscale

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Hong Li, Junjie Liu, and Elana Fertig E. Kalnay I. Szunyogh, E. J. Kostelich Weather and Chaos Group

More information

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Random fields

More information

Modeling uncertainty in metric space. Jef Caers Stanford University Stanford, California, USA

Modeling uncertainty in metric space. Jef Caers Stanford University Stanford, California, USA Modeling uncertainty in metric space Jef Caers Stanford University Stanford, California, USA Contributors Celine Scheidt (Research Associate) Kwangwon Park (PhD student) Motivation Modeling uncertainty

More information

Aspects of the practical application of ensemble-based Kalman filters

Aspects of the practical application of ensemble-based Kalman filters Aspects of the practical application of ensemble-based Kalman filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center

More information

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher Ensemble forecasting and flow-dependent estimates of initial uncertainty Martin Leutbecher acknowledgements: Roberto Buizza, Lars Isaksen Flow-dependent aspects of data assimilation, ECMWF 11 13 June 2007

More information

EnKF and filter divergence

EnKF and filter divergence EnKF and filter divergence David Kelly Andrew Stuart Kody Law Courant Institute New York University New York, NY dtbkelly.com December 12, 2014 Applied and computational mathematics seminar, NIST. David

More information

Dynamic Data Driven Simulations in Stochastic Environments

Dynamic Data Driven Simulations in Stochastic Environments Computing 77, 321 333 (26) Digital Object Identifier (DOI) 1.17/s67-6-165-3 Dynamic Data Driven Simulations in Stochastic Environments C. Douglas, Lexington, Y. Efendiev, R. Ewing, College Station, V.

More information

Review of Covariance Localization in Ensemble Filters

Review of Covariance Localization in Ensemble Filters NOAA Earth System Research Laboratory Review of Covariance Localization in Ensemble Filters Tom Hamill NOAA Earth System Research Lab, Boulder, CO tom.hamill@noaa.gov Canonical ensemble Kalman filter update

More information

DETERMINATION OF MODEL VALID PREDICTION PERIOD USING THE BACKWARD FOKKER-PLANCK EQUATION

DETERMINATION OF MODEL VALID PREDICTION PERIOD USING THE BACKWARD FOKKER-PLANCK EQUATION .4 DETERMINATION OF MODEL VALID PREDICTION PERIOD USING THE BACKWARD FOKKER-PLANCK EQUATION Peter C. Chu, Leonid M. Ivanov, and C.W. Fan Department of Oceanography Naval Postgraduate School Monterey, California.

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Ensemble Kalman filter for automatic history matching of geologic facies

Ensemble Kalman filter for automatic history matching of geologic facies Journal of Petroleum Science and Engineering 47 (2005) 147 161 www.elsevier.com/locate/petrol Ensemble Kalman filter for automatic history matching of geologic facies Ning LiuT, Dean S. Oliver School of

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Gaussian Filters Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile robot

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter 6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway 6.1 Introduction Sequential data assimilation

More information

State Estimation of Linear and Nonlinear Dynamic Systems

State Estimation of Linear and Nonlinear Dynamic Systems State Estimation of Linear and Nonlinear Dynamic Systems Part I: Linear Systems with Gaussian Noise James B. Rawlings and Fernando V. Lima Department of Chemical and Biological Engineering University of

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen, Ocean Dynamics, Vol 5, No p. The Ensemble

More information

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 WeC17.1 Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 (1) Graduate Student, (2) Assistant

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

NEW ALGORITHMS FOR UNCERTAINTY QUANTIFICATION AND NONLINEAR ESTIMATION OF STOCHASTIC DYNAMICAL SYSTEMS. A Dissertation PARIKSHIT DUTTA

NEW ALGORITHMS FOR UNCERTAINTY QUANTIFICATION AND NONLINEAR ESTIMATION OF STOCHASTIC DYNAMICAL SYSTEMS. A Dissertation PARIKSHIT DUTTA NEW ALGORITHMS FOR UNCERTAINTY QUANTIFICATION AND NONLINEAR ESTIMATION OF STOCHASTIC DYNAMICAL SYSTEMS A Dissertation by PARIKSHIT DUTTA Submitted to the Office of Graduate Studies of Texas A&M University

More information

COMPUTATIONAL MULTI-POINT BME AND BME CONFIDENCE SETS

COMPUTATIONAL MULTI-POINT BME AND BME CONFIDENCE SETS VII. COMPUTATIONAL MULTI-POINT BME AND BME CONFIDENCE SETS Until now we have considered the estimation of the value of a S/TRF at one point at the time, independently of the estimated values at other estimation

More information

Methods of Data Assimilation and Comparisons for Lagrangian Data

Methods of Data Assimilation and Comparisons for Lagrangian Data Methods of Data Assimilation and Comparisons for Lagrangian Data Chris Jones, Warwick and UNC-CH Kayo Ide, UCLA Andrew Stuart, Jochen Voss, Warwick Guillaume Vernieres, UNC-CH Amarjit Budiraja, UNC-CH

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter A data-driven method for improving the correlation estimation in serial ensemble Kalman filter Michèle De La Chevrotière, 1 John Harlim 2 1 Department of Mathematics, Penn State University, 2 Department

More information