Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Size: px
Start display at page:

Download "Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC"

Transcription

1 Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

2

3

4

5 Background Data Assimilation Iterative process Forecast Analysis

6 Background Data Assimilation True System Dynamics - system state - Brownian motion - deterministic evolution operator

7 Background Data Assimilation Observations - observation of system at time - Gaussian noise - observation operator

8 Background Data Assimilation Forecast and Analysis Evolve a forecasted state forward somehow Perform analysis step upon receiving observation somehow

9 Background Lagrangian Data Assimilation Consider joint state of flow (F) and drifters (D)

10

11 Background Model Point-Vortex (in complex plane) - j th vortex location - k th drifter location - vorticity of j th vortex

12 Background Model Demo

13 Background Observing System Design Deploying drifters is expensive Obtaining measurements is difficult Q: Can we design a system such that we optimally place the drifters to determine the location of the vortices?

14

15 Background Observing System Design Deploying drifters is expensive Obtaining measurements is difficult Q: Can we design a system such that we optimally place the drifters to determine the location of the vortices?

16 Phase I

17 Approach, Phase I Lagrangian Data Assimilation Fokker-Planck Equation, Forecast - probability density of - covariance matrix from SDE

18 Approach, Phase I Lagrangian Data Assimilation Bayes s Theorem, Analysis - posterior distribution - likelihood - prior distribution

19 Approach, Phase I Computational Simplicity Extended Kalman Filter Ensemble Kalman Filter Particle Filter Equation and Bayes Fidelity to Solution of Fokker-Planck

20 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF) Generalization of Kalman filter to nonlinear equations Gaussian assumptions on dynamical and observational noise matrix Represent pdf by mean and covariance

21 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF) - mean state - covariance matrix

22 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF), Forecast - covariance matrix from SDE - Jacobian of M

23 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF), Forecast - covariance matrix from SDE - Jacobian of M

24 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF), Forecast - covariance matrix from SDE - Jacobian of M

25 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF), Analysis - covariance matrix from observation - Jacobian of hk

26 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF), Analysis - covariance matrix from observation - Jacobian of hk

27 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF), Analysis - covariance matrix from observation - Jacobian of hk

28 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF), Analysis - covariance matrix from observation - Jacobian of hk

29 Approach, Phase I Lagrangian Data Assimilation Extended Kalman Filter (EKF) Weakly assumes nonlinearity Assumes Gaussianity NOT valid for nonlinear systems

30 Approach, Phase I Lagrangian Data Assimilation Ensemble Kalman Filter (EnKF) Approximate pdf by an ensemble of particles: Forecast: Evolve particles forward using SDE Analysis: Perform Kalman-like analysis

31 Approach, Phase I Lagrangian Data Assimilation Ensemble Kalman Filter (EnKF) Computing (ensemble) moments

32 Approach, Phase I Lagrangian Data Assimilation Ensemble Kalman Filter (EnKF), Analysis Stochastic: Generate ensemble of observations and perform Kalman-like analysis on combined ensemble Deterministic: Square root filters

33 Approach, Phase I Lagrangian Data Assimilation Ensemble Kalman Filter (EnKF) Better captures nonlinearity (in forecast) (up to ensemble approximation) Still assumes Gaussianity (in analysis) NOT valid for nonlinear systems

34 Approach, Phase I Lagrangian Data Assimilation Particle Filter Approximate pdf by an ensemble of weighted particles: Forecast: Evolve particles forward using SDE Analysis: Perform full Bayesian update at analysis

35 Approach, Phase I Lagrangian Data Assimilation Particle Filter, Analysis - observation of system at time - Gaussian noise - observation operator

36 Approach, Phase I Lagrangian Data Assimilation Particle Filter, Analysis Likelihood of Observation:

37 Approach, Phase I Lagrangian Data Assimilation Particle Filter, Analysis Likelihood of Observation:

38 Approach, Phase I Lagrangian Data Assimilation Particle Filter, Analysis Weight of particle i at analysis step k: Bayesian Update:

39 Approach, Phase I Lagrangian Data Assimilation Particle Filter Better captures nonlinearity (up to ensemble approximation) Does not assume Gaussianity on posterior or prior

40 Approach, Phase I Lagrangian Data Assimilation Particle Filter BUT Requires a large number of particles For large, nonlinear systems, requires frequent resampling

41 Phase II y x

42 Approach, Phase II Manifold Detection for Observing System Design Stream functions Consider the trajectories in phase space Trajectories will lie along the level curves of the stream function for steady flows Streamlines Trajectories may not cross streamlines Uniqueness

43 Stream function in corotating frame y x

44 Approach, Phase II Manifold Detection for Observing System Design Mendoza and Mancho s Lagrangian Descriptor M

45 Approach, Phase II Manifold Detection for Observing System Design Mendoza and Mancho s Lagrangian Descriptor M C. Mendoza and A.M. Mancho. Hidden geometry of ocean flows. Physical review letters, 105(3):38501, 2010.

46 Approach, Phase II Manifold Detection for Observing System Design Mendoza and Mancho s Lagrangian Descriptor M Improve Phase I by using knowledge of dynamics

47 Implementation Develop serial code for EKF, EnKF, and Particle Filter in MATLAB on MacBook Pro Parallelize the EnKF and particle filters Parallelize computation of M Use MATLAB Parallel Computing Toolbox

48 Databases Phase I Archived numerical solutions to point-vortex model Generate using stochastic 4 th -order Runge-Kutta method Phase II No databases: completely model dependent

49 Validation, Phase I Validate filter by varying noise Three stages Stage 1: Vortices positions known, low noise Stage 2: Vortices positions unknown, low noise Stage 3: Vortices positions unknown, realistic noise

50 Validation, Phase I Validate filter by varying noise Validation Metric

51 Validation, Phase I Validate filter by comparison Compare to published studies with Nv = 2 Nd = 1

52 Validation, Phase II Validate M by comparison Compare M to analytically known stream function Compare M to finite-time Lyapunov exponents

53 Testing, Phase I Failure statistic Compare EKF, EnKF, and particle filter across databases using

54 Testing, Phase II Failure statistic Compare EKF, EnKF, and particle filter, including decision of initial drifter position

55 Project Schedule and Milestones

56 Project Schedule and Milestones

57 Deliverables Database of sample trajectories used for validation and testing Suite of parallelized software for performing EKF, EnKF, and particle filtering for point-vortex model Software to compute M for point-vortex model

58 References (See Proposal for More) A.H. Jazwinski. Stochastic processes and filtering theory. Dover Publications, G. Evensen. Data assimilation: the ensemble Kalman filter. Springer Verlag, A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo methods in practice. Springer Verlag, C. Mendoza and A.M. Mancho. Hidden geometry of ocean flows. Physical review letters, 105(3):38501, 2010.

59 Questions???

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Laura Slivinski June, 3 Laura Slivinski (Brown University) Lagrangian Data Assimilation June, 3 / 3 Data Assimilation Setup:

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Lagrangian data assimilation for point vortex systems

Lagrangian data assimilation for point vortex systems JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Lagrangian data assimilation for point vortex systems Kayo Ide 1, Leonid Kuznetsov 2 and Christopher KRTJones 2 1 Department of Atmospheric Sciences and Institute

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen, Ocean Dynamics, Vol 5, No p. The Ensemble

More information

Methods of Data Assimilation and Comparisons for Lagrangian Data

Methods of Data Assimilation and Comparisons for Lagrangian Data Methods of Data Assimilation and Comparisons for Lagrangian Data Chris Jones, Warwick and UNC-CH Kayo Ide, UCLA Andrew Stuart, Jochen Voss, Warwick Guillaume Vernieres, UNC-CH Amarjit Budiraja, UNC-CH

More information

A nested sampling particle filter for nonlinear data assimilation

A nested sampling particle filter for nonlinear data assimilation Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. : 14, July 2 A DOI:.2/qj.224 A nested sampling particle filter for nonlinear data assimilation Ahmed H. Elsheikh a,b *, Ibrahim

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Modified particle filter methods for assimilating Lagrangian data into a point-vortex model

Modified particle filter methods for assimilating Lagrangian data into a point-vortex model Physica D 237 (2008) 1498 1506 www.elsevier.com/locate/physd Modified particle filter methods for assimilating Lagrangian data into a point-vortex model Elaine T. Spiller a,, Amarit Budhiraa b, Kayo Ide

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

A State Space Model for Wind Forecast Correction

A State Space Model for Wind Forecast Correction A State Space Model for Wind Forecast Correction Valrie Monbe, Pierre Ailliot 2, and Anne Cuzol 1 1 Lab-STICC, Université Européenne de Bretagne, France (e-mail: valerie.monbet@univ-ubs.fr, anne.cuzol@univ-ubs.fr)

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Seminar: Data Assimilation

Seminar: Data Assimilation Seminar: Data Assimilation Jonas Latz, Elisabeth Ullmann Chair of Numerical Mathematics (M2) Technical University of Munich Jonas Latz, Elisabeth Ullmann (TUM) Data Assimilation 1 / 28 Prerequisites Bachelor:

More information

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Sensor Fusion: Particle Filter

Sensor Fusion: Particle Filter Sensor Fusion: Particle Filter By: Gordana Stojceska stojcesk@in.tum.de Outline Motivation Applications Fundamentals Tracking People Advantages and disadvantages Summary June 05 JASS '05, St.Petersburg,

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Ensemble Kalman filters, Sequential Importance Resampling and beyond

Ensemble Kalman filters, Sequential Importance Resampling and beyond Ensemble Kalman filters, Sequential Importance Resampling and beyond Peter Jan van Leeuwen Institute for Marine and Atmospheric research Utrecht (IMAU) Utrecht University, P.O.Box 80005, 3508 TA Utrecht,

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

Recap on Data Assimilation

Recap on Data Assimilation Concluding Thoughts Recap on Data Assimilation FORECAST ANALYSIS Kalman Filter Forecast Analysis Analytical projection of the ANALYSIS mean and cov from t-1 to the FORECAST mean and cov for t Update FORECAST

More information

(Extended) Kalman Filter

(Extended) Kalman Filter (Extended) Kalman Filter Brian Hunt 7 June 2013 Goals of Data Assimilation (DA) Estimate the state of a system based on both current and all past observations of the system, using a model for the system

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Sequential parameter estimation for stochastic systems

Sequential parameter estimation for stochastic systems Sequential parameter estimation for stochastic systems G. A. Kivman To cite this version: G. A. Kivman. Sequential parameter estimation for stochastic systems. Nonlinear Processes in Geophysics, European

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Stability of Ensemble Kalman Filters

Stability of Ensemble Kalman Filters Stability of Ensemble Kalman Filters Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley, Heikki Haario and Tuomo Kauranne Lappeenranta University of Technology University of

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

A nonparametric ensemble transform method for Bayesian inference

A nonparametric ensemble transform method for Bayesian inference A nonparametric ensemble transform method for Bayesian inference Article Published Version Reich, S. (2013) A nonparametric ensemble transform method for Bayesian inference. SIAM Journal on Scientific

More information

Data assimilation Schrödinger s perspective

Data assimilation Schrödinger s perspective Data assimilation Schrödinger s perspective Sebastian Reich (www.sfb1294.de) Universität Potsdam/ University of Reading IMS NUS, August 3, 218 Universität Potsdam/ University of Reading 1 Core components

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Efficient Monitoring for Planetary Rovers

Efficient Monitoring for Planetary Rovers International Symposium on Artificial Intelligence and Robotics in Space (isairas), May, 2003 Efficient Monitoring for Planetary Rovers Vandi Verma vandi@ri.cmu.edu Geoff Gordon ggordon@cs.cmu.edu Carnegie

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time

Why do we care? Measurements. Handling uncertainty over time: predicting, estimating, recognizing, learning. Dealing with time Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 2004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

Particle filters, the optimal proposal and high-dimensional systems

Particle filters, the optimal proposal and high-dimensional systems Particle filters, the optimal proposal and high-dimensional systems Chris Snyder National Center for Atmospheric Research Boulder, Colorado 837, United States chriss@ucar.edu 1 Introduction Particle filters

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter 6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway 6.1 Introduction Sequential data assimilation

More information

Sampling the posterior: An approach to non-gaussian data assimilation

Sampling the posterior: An approach to non-gaussian data assimilation Physica D 230 (2007) 50 64 www.elsevier.com/locate/physd Sampling the posterior: An approach to non-gaussian data assimilation A. Apte a, M. Hairer b, A.M. Stuart b,, J. Voss b a Department of Mathematics,

More information

Convergence of the Ensemble Kalman Filter in Hilbert Space

Convergence of the Ensemble Kalman Filter in Hilbert Space Convergence of the Ensemble Kalman Filter in Hilbert Space Jan Mandel Center for Computational Mathematics Department of Mathematical and Statistical Sciences University of Colorado Denver Parts based

More information

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER Zhen Zhen 1, Jun Young Lee 2, and Abdus Saboor 3 1 Mingde College, Guizhou University, China zhenz2000@21cn.com 2 Department

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

Nonlinear Ensemble Data Assimilation for the Ocean

Nonlinear Ensemble Data Assimilation for the Ocean Nonlinear Ensemble Data Assimilation for the Ocean Peter Jan van Leeuwen Institute for Marine and Atmospheric research Utrecht (IMAU) Utrecht University, P.O.Box 85, 358 TA Utrecht, The Netherlands leeuwen@phys.uu.nl

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

State Estimation Based on Nested Particle Filters

State Estimation Based on Nested Particle Filters Cleveland State University EngagedScholarship@CSU ETD Archive 2013 State Estimation Based on Nested Particle Filters Swathi Srinivasan Cleveland State University How does access to this work benefit you?

More information

Lagrangian Data Assimilation and its Applications to Geophysical Fluid Flows

Lagrangian Data Assimilation and its Applications to Geophysical Fluid Flows Lagrangian Data Assimilation and its Applications to Geophysical Fluid Flows by Laura Slivinski B.S., University of Maryland; College Park, MD, 2009 Sc.M, Brown University; Providence, RI, 2010 A dissertation

More information

Introduction to Particle Filters for Data Assimilation

Introduction to Particle Filters for Data Assimilation Introduction to Particle Filters for Data Assimilation Mike Dowd Dept of Mathematics & Statistics (and Dept of Oceanography Dalhousie University, Halifax, Canada STATMOS Summer School in Data Assimila5on,

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Data assimilation as an optimal control problem and applications to UQ

Data assimilation as an optimal control problem and applications to UQ Data assimilation as an optimal control problem and applications to UQ Walter Acevedo, Angwenyi David, Jana de Wiljes & Sebastian Reich Universität Potsdam/ University of Reading IPAM, November 13th 2017

More information

Implicit sampling for particle filters. Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins

Implicit sampling for particle filters. Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins 0/20 Implicit sampling for particle filters Alexandre Chorin, Mathias Morzfeld, Xuemin Tu, Ethan Atkins University of California at Berkeley 2/20 Example: Try to find people in a boat in the middle of

More information

Data assimilation in the geosciences An overview

Data assimilation in the geosciences An overview Data assimilation in the geosciences An overview Alberto Carrassi 1, Olivier Talagrand 2, Marc Bocquet 3 (1) NERSC, Bergen, Norway (2) LMD, École Normale Supérieure, IPSL, France (3) CEREA, joint lab École

More information

Data Assimilation for Dispersion Models

Data Assimilation for Dispersion Models Data Assimilation for Dispersion Models K. V. Umamaheswara Reddy Dept. of Mechanical and Aerospace Engg. State University of New Yor at Buffalo Buffalo, NY, U.S.A. venatar@buffalo.edu Yang Cheng Dept.

More information

Comparison of Ensemble Data Assimilation methods for the shallow water equations model in the presence of nonlinear observation operators

Comparison of Ensemble Data Assimilation methods for the shallow water equations model in the presence of nonlinear observation operators Comparison of Ensemble Data Assimilation methods for the shallow water equations model in the presence of nonlinear observation operators M. Jardak Laboratoire de Métórologie Dynamique École Normale Supérieure,

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations

Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Lecture 6: Multiple Model Filtering, Particle Filtering and Other Approximations Department of Biomedical Engineering and Computational Science Aalto University April 28, 2010 Contents 1 Multiple Model

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Application of the Ensemble Kalman Filter to History Matching

Application of the Ensemble Kalman Filter to History Matching Application of the Ensemble Kalman Filter to History Matching Presented at Texas A&M, November 16,2010 Outline Philosophy EnKF for Data Assimilation Field History Match Using EnKF with Covariance Localization

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

What do we know about EnKF?

What do we know about EnKF? What do we know about EnKF? David Kelly Kody Law Andrew Stuart Andrew Majda Xin Tong Courant Institute New York University New York, NY April 10, 2015 CAOS seminar, Courant. David Kelly (NYU) EnKF April

More information

Implicit sampling, with application to data assimilation

Implicit sampling, with application to data assimilation Implicit sampling, with application to data assimilation Alexandre J. Chorin 1,2, Matthias Morzfeld 2, and Xuemin Tu 3 1 Department of Mathematics, University of California, Berkeley, CA, 94720, USA. 2

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

The Unscented Particle Filter

The Unscented Particle Filter The Unscented Particle Filter Rudolph van der Merwe (OGI) Nando de Freitas (UC Bereley) Arnaud Doucet (Cambridge University) Eric Wan (OGI) Outline Optimal Estimation & Filtering Optimal Recursive Bayesian

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH

NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH J. V. Candy (tsoftware@aol.com) University of California, Lawrence Livermore National Lab. & Santa Barbara Livermore CA 94551 USA

More information

Constrained State Estimation Using the Unscented Kalman Filter

Constrained State Estimation Using the Unscented Kalman Filter 16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France June 25-27, 28 Constrained State Estimation Using the Unscented Kalman Filter Rambabu Kandepu, Lars Imsland and

More information

Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo

Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo Available online at www.sciencedirect.com Journal of Marine Systems 68 (2007) 439 456 www.elsevier.com/locate/jmarsys Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

Lagrangian Analysis of 2D and 3D Ocean Flows from Eulerian Velocity Data

Lagrangian Analysis of 2D and 3D Ocean Flows from Eulerian Velocity Data Flows from Second-year Ph.D. student, Applied Math and Scientific Computing Project Advisor: Kayo Ide Department of Atmospheric and Oceanic Science Center for Scientific Computation and Mathematical Modeling

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Sensing Networking Leonidas Guibas Stanford University Computation CS428 Sensor systems are about sensing, after all... System State Continuous and Discrete Variables The quantities

More information

Data Assimilation Research Testbed Tutorial

Data Assimilation Research Testbed Tutorial Data Assimilation Research Testbed Tutorial Section 2: How should observations of a state variable impact an unobserved state variable? Multivariate assimilation. Single observed variable, single unobserved

More information

CSC487/2503: Foundations of Computer Vision. Visual Tracking. David Fleet

CSC487/2503: Foundations of Computer Vision. Visual Tracking. David Fleet CSC487/2503: Foundations of Computer Vision Visual Tracking David Fleet Introduction What is tracking? Major players: Dynamics (model of temporal variation of target parameters) Measurements (relation

More information

A Moment Matching Particle Filter for Nonlinear Non-Gaussian. Data Assimilation. and Peter Bickel

A Moment Matching Particle Filter for Nonlinear Non-Gaussian. Data Assimilation. and Peter Bickel Generated using version 3.0 of the official AMS L A TEX template A Moment Matching Particle Filter for Nonlinear Non-Gaussian Data Assimilation Jing Lei and Peter Bickel Department of Statistics, University

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Evolution Strategies Based Particle Filters for Fault Detection

Evolution Strategies Based Particle Filters for Fault Detection Evolution Strategies Based Particle Filters for Fault Detection Katsuji Uosaki, Member, IEEE, and Toshiharu Hatanaka, Member, IEEE Abstract Recent massive increase of the computational power has allowed

More information

Accepted in Tellus A 2 October, *Correspondence

Accepted in Tellus A 2 October, *Correspondence 1 An Adaptive Covariance Inflation Error Correction Algorithm for Ensemble Filters Jeffrey L. Anderson * NCAR Data Assimilation Research Section P.O. Box 3000 Boulder, CO 80307-3000 USA Accepted in Tellus

More information

I. INTRODUCTION 338 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 1 JANUARY 1997

I. INTRODUCTION 338 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 1 JANUARY 1997 VI. CONCLUSION We have shown that dilution of precision terms for relative positioning, using double-difference processing of GPS satellite signals, are bounded by the corresponding dilution of precision

More information

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Shu-Chih Yang 1*, Eugenia Kalnay, and Brian Hunt 1. Department of Atmospheric Sciences, National Central

More information

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Simo Särkkä E-mail: simo.sarkka@hut.fi Aki Vehtari E-mail: aki.vehtari@hut.fi Jouko Lampinen E-mail: jouko.lampinen@hut.fi Abstract

More information

Environment Canada s Regional Ensemble Kalman Filter

Environment Canada s Regional Ensemble Kalman Filter Environment Canada s Regional Ensemble Kalman Filter May 19, 2014 Seung-Jong Baek, Luc Fillion, Kao-Shen Chung, and Peter Houtekamer Meteorological Research Division, Environment Canada, Dorval, Quebec

More information

Why do we care? Examples. Bayes Rule. What room am I in? Handling uncertainty over time: predicting, estimating, recognizing, learning

Why do we care? Examples. Bayes Rule. What room am I in? Handling uncertainty over time: predicting, estimating, recognizing, learning Handling uncertainty over time: predicting, estimating, recognizing, learning Chris Atkeson 004 Why do we care? Speech recognition makes use of dependence of words and phonemes across time. Knowing where

More information

Local Positioning with Parallelepiped Moving Grid

Local Positioning with Parallelepiped Moving Grid Local Positioning with Parallelepiped Moving Grid, WPNC06 16.3.2006, niilo.sirola@tut.fi p. 1/?? TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Local Positioning with Parallelepiped

More information

Robust Ensemble Filtering With Improved Storm Surge Forecasting

Robust Ensemble Filtering With Improved Storm Surge Forecasting Robust Ensemble Filtering With Improved Storm Surge Forecasting U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, I.Hoteit Meteo France, Toulouse, Nov 13, 2012 Project Ensemble data assimilation for storm

More information

Tuning of Extended Kalman Filter for nonlinear State Estimation

Tuning of Extended Kalman Filter for nonlinear State Estimation OSR Journal of Computer Engineering (OSR-JCE) e-ssn: 78-0661,p-SSN: 78-877, Volume 18, ssue 5, Ver. V (Sep. - Oct. 016), PP 14-19 www.iosrjournals.org Tuning of Extended Kalman Filter for nonlinear State

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

Implicit Sampling, with Application to Data Assimilation

Implicit Sampling, with Application to Data Assimilation Chin. Ann. Math. 34B(1), 2013, 89 98 DOI: 10.1007/s11401-012-0757-5 Chinese Annals of Mathematics, Series B c The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2013 Implicit Sampling, with

More information

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes

Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes Ellida M. Khazen * 13395 Coppermine Rd. Apartment 410 Herndon VA 20171 USA Abstract

More information