Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method

Size: px
Start display at page:

Download "Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method"

Transcription

1 Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Jiachuan He University of Texas at Austin April 15, 2016 Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

2 Problem Specification of a variety of parameters, such as hydraulic conductivity, is required in models that have been widely used to analyze groundwater systems and contaminant transport. However, it is practically impossible to characterize the model parameters exhaustively due to the complex hydrogeological environment. For this reason, inverse modeling is needed to identify input parameters by incorporating observed model responses, e.g., hydraulic conductivities are derived based on observed hydraulic head. Given uncertain hydraulic head data from observation wells, the stochastic inverse problem is solved numerically to obtain a probability measure on the space of unknown parameters characterizing the heterogeneity of the hydraulic conductivity field. Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

3 Overview 1 Introduction 2 Parameterization Karhunen-Loève expansions 3 Inverse Estimation Measure-theoretic framework 4 Illustrative example Synthetic problem Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

4 Groundwater flow equation h(x, t) S + q(x, t) = g(x, t) t (1) q(x, t) = K(x) h(x, t) (2) subject to initial and boundary conditions h(x, 0) = H 0 (x), x D (3) h(x, t) = H(x, t), x Γ D (4) q(x, t) n(x) = Q(x, t), x Γ N (5) where S is specific storage (LT 1 ), h is hydraulic head (L), and g is source or sink (T 1 ). Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

5 Karhunen-Loève expansions Inverse problems are often ill-posed. Inverse estimation of permeability fields is commonly performed by reducing the number of original unknowns of a heterogeneous hydraulic conductivity field to a smaller group of unknowns. This makes the inverse problem better posed by reducing redundancy while capturing the most important features of the field. The Karhunen-Loeve Expansion (KLE) is a classical option for deriving low-dimensional parameterizations for inverse estimation applications [1]. With the knowledge of the property covariance function, the KLE can provide an accurate characterization of a complex field. In the theory of stochastic processes, the Karhunen-Loève theorem (named after Kari Karhunen and Michel Loève), also known as the KosambiKarhunenLove theorem is a representation of a stochastic process as an infinite linear combination of orthogonal functions... (wikipedia) Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

6 Let Y (x, ω) = ln[k(x, ω)] be a random process, where K is the hydraulic conductivity, x is the position vector defined over the domain D, and ω belongs to the space of random events Ω. Let Ȳ (x) denote the expected value of Y (x, ω) over all possible realizations of the process, and C(x 1, x 2 ) denote its covariance function. Being an autocovariance function, C(x 1, x 2 ) is bounded, symmetric, and positive definite. Thus, it has the spectral decomposition C(x 1, x 2 ) = λ n f n (x 1 )f n (x 2 ) (Mercer sthm) (6) n=1 where λ n and f n (x) are the solutions to the homogeneous Fredholm integral equation of the second kind: C(x 1, x 2 )f n (x 1 )dx 1 = λ n f n (x 2 ). (7) D Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

7 The eigenfunctions are orthogonal and form a complete set. They can be normalized according to the following criterion f n (x)f m (x) = δ nm. (8) Hence, Y (x, ω) can be written as Y (x, ω) = Ȳ (x) + D ξ n (ω) λ n f n (x), (Karhunen LoeveThm) (9) n=1 where {ξ n (ω)} is a set of random variables to be determined. The KLE of a Gaussian field has the further property that ξ n (ω) are independent standard normal random variables (Itô-Nisio Theorem). Truncating the series in Eq (9) at the N th term, gives N Y (x, ω) = Ȳ (x) + ξ n (ω) λ n f n (x). (10) n=1 Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

8 Inverse estimation Y (x, ω) = Ȳ (x) + N ξ n (ω) λ n f n (x). (11) n=1 The KLE provides a flexible and effective method for describing a spatially distributed hydraulic conductivity field. It represents the uncertain hydraulic conductivity field as weighted sums of predefined spatially variable basis functions. The random variables ξ n in basis function weights will be quantified with a recently developed measure-theoretic framework. The stochastic inverse estimation in this characterization of a heterogeneous hydraulic conductivity field problem is to determine a probability measure on ξ n (input parameters) such that mapping this probability measure through the model produces the same probability measure as the one defined on the observable hydraulic head. Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

9 Inverse problem Figure : Illustrations of the inverse problem for a general two-to-one map Left: The set-valued inverse of a single output value. Middle: The representation of L as a transverse parameterization. Right: A probability measure described as a density on D maps uniquely to a probability density on L. Figures adopted from [2] P L (A) = A ρ L dµ L = Q L (A) ρ D dµ D = P D (Q L (A)) (12) Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

10 Inverse problem To calculate the probability of more arbitrary events in Λ, we make use of the Disintegration Theorem and a standard ansatz to compute a probability measure P Λ in terms of an approximate density ρ Λ that is consistent with P D. By saying P Λ is consistent with P D, we mean that if B is any event in D (so Q 1 (B) is a generalized contour event in Λ), then ρ Λ (λ)dµ Λ = P Λ (Q 1 (B)) = P D (B) = ρ D dµ D. (13) Q 1 (B) B Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

11 Numerical Approximation of Inverse Probability Suppose the probability density function ρ D associated with P D is known. Let {D k } M k=1 be a partition of D, and let p k be the probability of D k. Let A be an event in Λ. We thus have the approximation ρ D dµ D p k. (14) Q(A) D k Q(A) Let {λ (j) } N j=1 be a collection of N points in Λ, which implicitly defines an n-dimensional Voronoi tessellation {V j } N j=1 associated with the points. For example, given λ Λ, λ V k if λ (k) is the closest λ (j) to λ. Using the implicitly defined Voronoi tessellation and the partitioning of D, we can calculate the probability p Λ,j associated with the implicitly defined Voronoi cell V j. Then we can approximate the probability of any event A Λ using a counting measure P Λ (A) P Λ,N (A) = p Λ,j. (15) λ (j) A Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

12 Numerical Approximation of Inverse Probability Algorithm: Choose points {λ (j) } N j=1 Λ. Denote the associated Voronoi tessellation {V j } N j=1 Λ. Evaluate Q j = Q(λ (j) ) for all λ (j), j = 1,.., N. Choose a partitioning of D, {D k } M k=1 D. Compute p k D k ρ D dµ D, for k = 1,..., M. Let C k = {j Q j D k } for k = 1,..., M. Let O j = {k Q j D k }, for j = 1,.., N. Let V j be the approximate measure of V j, i.e. V j V j dµ(v j ) for j = 1,.., N. Set p Λ,j = (V j / i C Oj V i )p D,Oj, j = 1,.., N. Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

13 Illustrative example Figure : The domain with observation wells shown as red dots Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

14 Forward model q(x) = 0 (16) q(x) = K(x) h(x) (17) subject to boundary conditions h(x) = H(x), x Γ D (18) q(x) n(x) = Q(x), x Γ N (19) Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

15 Special types of covariance functions C(x 1, y 1 ) = σ 2 exp( x 1 y 1 η 1 ) Eigenvalues and eigenfunctions of a covariance function can be solved from the following Fredholm equation: C(x 1, x 2 )f n (x 1 )dx 1 = λ n f n (x 2 ) (20) λ n and f n (x) can be found analytically: D λ n = 2ησ2 η 2 w 2 n + 1 (21) f n (x) = 1 (η 2 w 2 n + 1)L/2 + η [ηw ncos(w n x) + sin(w n x)] (22) where w n are positive roots of the characteristic equation (η 2 w 2 1)sin(wL) = 2ηwcos(wL). Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

16 Separable covariance function For problems in multidimension, if the covariance [ function is separable, ] for example, C(x, y) = C(x 1, x 2 ; y 1, y 2 ) = σ 2 exp x 1 y 1 η 1 x 2 y 2 η 2 (Gaussian random field with the exponential covariance function) for a rectangular domain D = {(x 1, x 2 ) : 0 x 1 L 1, 0 x 2 L 2 } Eq.(20) can be solved independently for x 1 and x 2 directions to obtain eigenvalues λ (1) n and λ (2) n, and eigenfunctions f (1) n (x 1 ) and f (2) n (x 2 ). λ n = λ (1) n λ (2) n (23) f n (x) = f n (x 1, x 2 ) = f (1) n (x 1 )f (2) n (x 2 ) (24) Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

17 Figure : Examples of eigenfunctions f n. Figures adopted from [6] Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

18 7 Y (x, ω) = Ȳ (x) + ξ n (ω) λ n f n (x). (25) n=1 Figure : The domain and true lnk Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

19 ρ ρ ρ ρ pred_qoi_ref pred_qoi_ref pred_qoi_ref pred_qoi_ref Figure : 1D pdf of predicted hydraulic heads at blue dots Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

20 Figure : Log hydraulic conductivity fields generated using samples with the highest probability densities Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

21 References Ghanem, Roger G., and Pol D. Spanos. Stochastic finite elements: a spectral approach. Courier Corporation, Breidt, J., T. Butler, and D. Estep. A measure-theoretic computational method for inverse sensitivity problems I: Method and analysis. SIAM journal on numerical analysis 49.5 (2011): Butler, T., D. Estep, and J. Sandelin. A computational measure theoretic approach to inverse sensitivity problems II: a posteriori error analysis. SIAM journal on numerical analysis 50.1 (2012): Butler, T., et al. A measure-theoretic computational method for inverse sensitivity problems III: Multiple quantities of interest. SIAM/ASA Journal on Uncertainty Quantification 2.1 (2014): Butler, Troy, et al. Solving stochastic inverse problems using sigma-algebras on contour maps. arxiv preprint arxiv: (2014). Zhang, Dongxiao, and Zhiming Lu. An efficient, high-order perturbation approach for flow in random porous media via KarhunenLoeve and polynomial expansions. Journal of Computational Physics (2004): Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

22 Thank You Jiachuan He (UT Austin) Spring 2016 group meeting April 15, / 22

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 26, No. 2, pp. 558 577 c 2004 Society for Industrial and Applied Mathematics A COMPARATIVE STUDY ON UNCERTAINTY QUANTIFICATION FOR FLOW IN RANDOMLY HETEROGENEOUS MEDIA USING MONTE

More information

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Y. Huang 1,2, and X.S. Qin 1,2* 1 School of Civil & Environmental Engineering, Nanyang Technological University,

More information

Measure-Theoretic parameter estimation and prediction for contaminant transport and coastal ocean modeling

Measure-Theoretic parameter estimation and prediction for contaminant transport and coastal ocean modeling Measure-Theoretic parameter estimation and prediction for contaminant transport and coastal ocean modeling Steven Mattis and Lindley Graham RMSWUQ 2015 July 17, 2015 Collaborators 2/45 The University of

More information

Notes Regarding the Karhunen Loève Expansion

Notes Regarding the Karhunen Loève Expansion Notes Regarding the Karhunen Loève Expansion 1 Properties of the Karhunen Loève Expansion As noted in Section 5.3 of [3], the Karhunen Loève expansion for a correlated second-order random field α(x, ω),

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT

More information

Stochastic simulation of Advection-Diffusion equation considering uncertainty in input variables

Stochastic simulation of Advection-Diffusion equation considering uncertainty in input variables INTERNATIONAL JOURNAL OF MATEMATICAL MODELS AND METODS IN APPLIED SCIENCES Volume, 7 Stochastic simulation of Advection-Diffusion equation considering uncertainty in input variables ossein Khorshidi, Gholamreza

More information

arxiv: v2 [math.pr] 27 Oct 2015

arxiv: v2 [math.pr] 27 Oct 2015 A brief note on the Karhunen-Loève expansion Alen Alexanderian arxiv:1509.07526v2 [math.pr] 27 Oct 2015 October 28, 2015 Abstract We provide a detailed derivation of the Karhunen Loève expansion of a stochastic

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Random Fields in Bayesian Inference: Effects of the Random Field Discretization

Random Fields in Bayesian Inference: Effects of the Random Field Discretization Random Fields in Bayesian Inference: Effects of the Random Field Discretization Felipe Uribe a, Iason Papaioannou a, Wolfgang Betz a, Elisabeth Ullmann b, Daniel Straub a a Engineering Risk Analysis Group,

More information

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 569 PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD Riki Honda

More information

Probabilistic collocation and Lagrangian sampling for tracer transport in randomly heterogeneous porous media

Probabilistic collocation and Lagrangian sampling for tracer transport in randomly heterogeneous porous media Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich Probabilistic collocation and Lagrangian sampling

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Groundwater permeability

Groundwater permeability Groundwater permeability Easy to solve the forward problem: flow of groundwater given permeability of aquifer Inverse problem: determine permeability from flow (usually of tracers With some models enough

More information

Microstructurally-Informed Random Field Description: Case Study on Chaotic Masonry

Microstructurally-Informed Random Field Description: Case Study on Chaotic Masonry Microstructurally-Informed Random Field Description: Case Study on Chaotic Masonry M. Lombardo 1 J. Zeman 2 M. Šejnoha 2,3 1 Civil and Building Engineering Loughborough University 2 Department of Mechanics

More information

Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion

Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion Wolfgang Betz, Iason Papaioannou, Daniel Straub Engineering Risk Analysis Group, Technische Universität

More information

Stochastic Solvers for the Euler Equations

Stochastic Solvers for the Euler Equations 43rd AIAA Aerospace Sciences Meeting and Exhibit 1-13 January 5, Reno, Nevada 5-873 Stochastic Solvers for the Euler Equations G. Lin, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics Brown

More information

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields Sous la co-tutelle de : LABORATOIRE DE MODÉLISATION ET SIMULATION MULTI ÉCHELLE CNRS UPEC UNIVERSITÉ PARIS-EST CRÉTEIL UPEM UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE Stochastic representation of random positive-definite

More information

Recovering point sources in unknown environment with differential data

Recovering point sources in unknown environment with differential data Recovering point sources in unknown environment with differential data Yimin Zhong University of Texas at Austin April 29, 2013 Introduction Introduction The field u satisfies u(x) + k 2 (1 + n(x))u(x)

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION P. DOSTERT, Y. EFENDIEV, AND T.Y. HOU Abstract. In this paper, we study multiscale

More information

Karhunen-Loève Expansions of Lévy Processes

Karhunen-Loève Expansions of Lévy Processes Karhunen-Loève Expansions of Lévy Processes Daniel Hackmann June 2016, Barcelona supported by the Austrian Science Fund (FWF), Project F5509-N26 Daniel Hackmann (JKU Linz) KLE s of Lévy Processes 0 / 40

More information

A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest

A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest SIAM/ASA J. UNCERTAINTY QUANTIFICATION Vol., pp. 74 c 4 Society for Industrial and Applied Mathematics and American Statistical Association A Measure-Theoretic Computational Method for Inverse Sensitivity

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Numerical Approximation of Stochastic Elliptic Partial Differential Equations Numerical Approximation of Stochastic Elliptic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach

Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach WATER RESOURCES RESEARCH, VOL. 43,, doi:10.1029/2006wr005193, 2007 Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach

More information

Sampling and Low-Rank Tensor Approximations

Sampling and Low-Rank Tensor Approximations Sampling and Low-Rank Tensor Approximations Hermann G. Matthies Alexander Litvinenko, Tarek A. El-Moshely +, Brunswick, Germany + MIT, Cambridge, MA, USA wire@tu-bs.de http://www.wire.tu-bs.de $Id: 2_Sydney-MCQMC.tex,v.3

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 1 / 23 Lecture outline

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

Practical unbiased Monte Carlo for Uncertainty Quantification

Practical unbiased Monte Carlo for Uncertainty Quantification Practical unbiased Monte Carlo for Uncertainty Quantification Sergios Agapiou Department of Statistics, University of Warwick MiR@W day: Uncertainty in Complex Computer Models, 2nd February 2015, University

More information

Dynamic Data Driven Simulations in Stochastic Environments

Dynamic Data Driven Simulations in Stochastic Environments Computing 77, 321 333 (26) Digital Object Identifier (DOI) 1.17/s67-6-165-3 Dynamic Data Driven Simulations in Stochastic Environments C. Douglas, Lexington, Y. Efendiev, R. Ewing, College Station, V.

More information

Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^

Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^ Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^ Milano, Italy; ^Department of. Hydrology & Water Resources, The University ofarizona,

More information

On the Application of Intervening Variables for Stochastic Finite Element Analysis

On the Application of Intervening Variables for Stochastic Finite Element Analysis On the Application of Intervening Variables for Stochastic Finite Element Analysis M.A. Valdebenito a,, A.A. Labarca a, H.A. Jensen a a Universidad Tecnica Federico Santa Maria, Dept. de Obras Civiles,

More information

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Hermann G. Matthies with Andreas Keese Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Kernel Principal Component Analysis

Kernel Principal Component Analysis Kernel Principal Component Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Assessment of Hydraulic Conductivity Upscaling Techniques and. Associated Uncertainty

Assessment of Hydraulic Conductivity Upscaling Techniques and. Associated Uncertainty CMWRXVI Assessment of Hydraulic Conductivity Upscaling Techniques and Associated Uncertainty FARAG BOTROS,, 4, AHMED HASSAN 3, 4, AND GREG POHLL Division of Hydrologic Sciences, University of Nevada, Reno

More information

Stochastic Dimension Reduction

Stochastic Dimension Reduction Stochastic Dimension Reduction Roger Ghanem University of Southern California Los Angeles, CA, USA Computational and Theoretical Challenges in Interdisciplinary Predictive Modeling Over Random Fields 12th

More information

Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation

Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation M. Jardak, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics Brown University October 29, 21 Abstract We present a new

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

QUANTITATIVE ASSESSMENT OF RANDOM FIELD MODELS IN FE BUCKLING ANALYSES OF COMPOSITE CYLINDERS

QUANTITATIVE ASSESSMENT OF RANDOM FIELD MODELS IN FE BUCKLING ANALYSES OF COMPOSITE CYLINDERS European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) J. Eberhardsteiner et.al. (eds.) Vienna, Austria, September 10-14, 2012 QUANTITATIVE ASSESSMENT OF RANDOM FIELD

More information

What Should We Do with Radioactive Waste?

What Should We Do with Radioactive Waste? What Should We Do with Radioactive Waste? Andrew Cliffe School of Mathematical Sciences University of Nottingham Simulation of Flow in Porous Media and Applications in Waste Management and CO 2 Sequestration

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) Each of the six questions is worth 10 points. 1) Let H be a (real or complex) Hilbert space. We say

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen PARAMetric UNCertainties, Budapest STOCHASTIC PROCESSES AND FIELDS Noémi Friedman Institut für Wissenschaftliches Rechnen, wire@tu-bs.de

More information

Nonlinear and robust MPC with applications in robotics

Nonlinear and robust MPC with applications in robotics Nonlinear and robust MPC with applications in robotics Boris Houska, Mario Villanueva, Benoît Chachuat ShanghaiTech, Texas A&M, Imperial College London 1 Overview Introduction to Robust MPC Min-Max Differential

More information

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

New Developments in LS-OPT - Robustness Studies

New Developments in LS-OPT - Robustness Studies 5. LS-DYNA - Anwenderforum, Ulm 2006 Robustheit / Optimierung I New Developments in LS-OPT - Robustness Studies Ken Craig, Willem Roux 2, Nielen Stander 2 Multidisciplinary Design Optimization Group University

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

ICES REPORT A posteriori error control for partial differential equations with random data

ICES REPORT A posteriori error control for partial differential equations with random data ICES REPORT 13-8 April 213 A posteriori error control for partial differential equations with random data by Corey M. Bryant, Serge Prudhomme, and Timothy Wildey The Institute for Computational Engineering

More information

Probabilistic Structural Dynamics: Parametric vs. Nonparametric Approach

Probabilistic Structural Dynamics: Parametric vs. Nonparametric Approach Probabilistic Structural Dynamics: Parametric vs. Nonparametric Approach S Adhikari School of Engineering, Swansea University, Swansea, UK Email: S.Adhikari@swansea.ac.uk URL: http://engweb.swan.ac.uk/

More information

Midterm Solution

Midterm Solution 18303 Midterm Solution Problem 1: SLP with mixed boundary conditions Consider the following regular) Sturm-Liouville eigenvalue problem consisting in finding scalars λ and functions v : [0, b] R b > 0),

More information

Uncertainty quantification for flow in highly heterogeneous porous media

Uncertainty quantification for flow in highly heterogeneous porous media 695 Uncertainty quantification for flow in highly heterogeneous porous media D. Xiu and D.M. Tartakovsky a a Theoretical Division, Los Alamos National Laboratory, Mathematical Modeling and Analysis Group

More information

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Lecture 1: Introduction Course Objectives: The focus of this course is on gaining understanding on how to make an

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 6, No., pp. 578 59 c Society for Industrial and Applied Mathematics STOCHASTIC SOLUTIONS FOR THE TWO-DIMENSIONAL ADVECTION-DIFFUSION EQUATION XIAOLIANG WAN, DONGBIN XIU, AND GEORGE

More information

Stochastic collocation and mixed finite elements for flow in porous media

Stochastic collocation and mixed finite elements for flow in porous media Stochastic collocation and mixed finite elements for flow in porous media Benjamin Ganis a, Hector Klie b, Mary F. Wheeler b, Tim Wildey b, Ivan Yotov a, and Dongxiao Zhang c a Department of Mathematics,

More information

11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments

11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments 11280 Electrical Resistivity Tomography Time-lapse Monitoring of Three-dimensional Synthetic Tracer Test Experiments M. Camporese (University of Padova), G. Cassiani* (University of Padova), R. Deiana

More information

Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Karhunen-Loève decomposition of Gaussian measures on Banach spaces Karhunen-Loève decomposition of Gaussian measures on Banach spaces Jean-Charles Croix jean-charles.croix@emse.fr Génie Mathématique et Industriel (GMI) First workshop on Gaussian processes at Saint-Etienne

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Bayesian inference of random fields represented with the Karhunen-Loève expansion

Bayesian inference of random fields represented with the Karhunen-Loève expansion Bayesian inference of random fields represented with the Karhunen-Loève expansion Felipe Uribe a,, Iason Papaioannou a, Wolfgang Betz a, Daniel Straub a a Engineering Risk Analysis Group, Technische Universität

More information

Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media

Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media WATER RESOURCES RESEARCH, VOL. 4,, doi:0.029/2005wr00443, 2005 Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media Chuen-Fa Ni and Shu-Guang

More information

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW 7 VIII. BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW A wide variety of natural processes are described using physical laws. A physical law may be expressed by means of an

More information

Introduction to Computational Stochastic Differential Equations

Introduction to Computational Stochastic Differential Equations Introduction to Computational Stochastic Differential Equations Gabriel J. Lord Catherine E. Powell Tony Shardlow Preface Techniques for solving many of the differential equations traditionally used by

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

Downloaded 08/15/18 to Redistribution subject to SIAM license or copyright; see

Downloaded 08/15/18 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 40, No. 4, pp. A2152 A2173 c 2018 Society for Industrial and Applied Mathematics STOCHASTIC DOMAIN DECOMPOSITION VIA MOMENT MINIMIZATION DONGKUN ZHANG, HESSAM BABAEE, AND GEORGE

More information

Fast Algorithm for Computing Karhunen-Loève Expansion

Fast Algorithm for Computing Karhunen-Loève Expansion Fast Algorithm for Computing Karhunen-Loève Expansion Qian-Yong Chen Abstract Karhunen Loève expansion has been proven to be an efficient way to approximate second-order random processes. But numerical

More information

A multiscale preconditioner for stochastic mortar mixed finite elements

A multiscale preconditioner for stochastic mortar mixed finite elements A multiscale preconditioner for stochastic mortar mixed finite elements Mary F. Wheeler b, Tim Wildey b, and Ivan Yotov a a Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 b The

More information

Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Karhunen-Loève decomposition of Gaussian measures on Banach spaces Karhunen-Loève decomposition of Gaussian measures on Banach spaces Jean-Charles Croix GT APSSE - April 2017, the 13th joint work with Xavier Bay. 1 / 29 Sommaire 1 Preliminaries on Gaussian processes 2

More information

STOCHASTIC FINITE ELEMENTS WITH MULTIPLE RANDOM NON-GAUSSIAN PROPERTIES

STOCHASTIC FINITE ELEMENTS WITH MULTIPLE RANDOM NON-GAUSSIAN PROPERTIES STOCHASTIC FIITE ELEMETS WITH MULTIPLE RADOM O-GAUSSIA PROPERTIES By Roger Ghanem, 1 Member, ASCE ABSTRACT: The spectral formulation of the stochastic finite-element method is applied to the problem of

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS Stochastics and Dynamics c World Scientific Publishing Company OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS BRIAN F. FARRELL Division of Engineering and Applied Sciences, Harvard University Pierce Hall, 29

More information

Kernel principal component analysis for stochastic input model generation

Kernel principal component analysis for stochastic input model generation Kernel principal component analysis for stochastic input model generation Xiang Ma, Nicholas Zabaras Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering,

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

CHAPTER 5. THE KERNEL METHOD 138

CHAPTER 5. THE KERNEL METHOD 138 CHAPTER 5. THE KERNEL METHOD 138 Chapter 5 The Kernel Method Before we can mine data, it is important to first find a suitable data representation that facilitates data analysis. For example, for complex

More information

Point spread function reconstruction from the image of a sharp edge

Point spread function reconstruction from the image of a sharp edge DOE/NV/5946--49 Point spread function reconstruction from the image of a sharp edge John Bardsley, Kevin Joyce, Aaron Luttman The University of Montana National Security Technologies LLC Montana Uncertainty

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS

OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS Stochastics and Dynamics, Vol. 2, No. 3 (22 395 42 c World Scientific Publishing Company OPTIMAL PERTURBATION OF UNCERTAIN SYSTEMS Stoch. Dyn. 22.2:395-42. Downloaded from www.worldscientific.com by HARVARD

More information

Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos

Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos Noname manuscript No. (will be inserted by the editor) Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos Umamaheswara Konda Puneet Singla Tarunraj Singh Peter Scott Received: date

More information

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3 1 M 13-Lecture Contents: 1) Taylor Polynomials 2) Taylor Series Centered at x a 3) Applications of Taylor Polynomials Taylor Series The previous section served as motivation and gave some useful expansion.

More information

Parametric Problems, Stochastics, and Identification

Parametric Problems, Stochastics, and Identification Parametric Problems, Stochastics, and Identification Hermann G. Matthies a B. Rosić ab, O. Pajonk ac, A. Litvinenko a a, b University of Kragujevac c SPT Group, Hamburg wire@tu-bs.de http://www.wire.tu-bs.de

More information

Homogenization with stochastic differential equations

Homogenization with stochastic differential equations Homogenization with stochastic differential equations Scott Hottovy shottovy@math.arizona.edu University of Arizona Program in Applied Mathematics October 12, 2011 Modeling with SDE Use SDE to model system

More information

Kernel Methods. Charles Elkan October 17, 2007

Kernel Methods. Charles Elkan October 17, 2007 Kernel Methods Charles Elkan elkan@cs.ucsd.edu October 17, 2007 Remember the xor example of a classification problem that is not linearly separable. If we map every example into a new representation, then

More information

A stochastic mixed finite element heterogeneous multiscale method for flow in porous media

A stochastic mixed finite element heterogeneous multiscale method for flow in porous media A stochastic mixed finite element heterogeneous multiscale method for flow in porous media Xiang Ma, Nicholas Zabaras Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part III Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information