ELEMENTS OF PROBABILITY THEORY

Size: px
Start display at page:

Download "ELEMENTS OF PROBABILITY THEORY"

Transcription

1 ELEMENTS OF PROBABILITY THEORY

2 Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable unions of its elements. A sub-σ algebra is a collection of subsets of a σ algebra which satisfies the axioms of a σ algebra. A measurable space is a pair (Ω, F) where Ω is a set and F is a σ algebra of subsets of Ω. Let (Ω, F) and (E, G) be two measurable spaces. A function X : Ω E such that the event {ω Ω : X(ω) A} =: {X A} belongs to F for arbitrary A G is called a measurable function or random variable.

3 Elements of Probability Theory Let (Ω, F) be a measurable space. A function µ : F [0, 1] is called a probability measure if µ( ) = 1, µ(ω) = 1 and µ( k=1 A k) = k=1 µ(a k) for all sequences of pairwise disjoint sets {A k } k=1 F. The triplet (Ω, F, µ) is called a probability space. Let X be a random variable (measurable function) from (Ω, F, µ) to (E, G). If E is a metric space then we may define expectation with respect to the measure µ by E[X] = X(ω) dµ(ω). More generally, let f : E R be G measurable. Then, E[f(X)] = f(x(ω)) dµ(ω). Ω Ω

4 Elements of Probability Theory Let U be a topological space. We will use the notation B(U) to denote the Borel σ algebra of U: the smallest σ algebra containing all open sets of U. Every random variable from a probability space (Ω, F, µ) to a measurable space (E, B(E)) induces a probability measure on E: µ X (B) = PX 1 (B) = µ(ω Ω; X(ω) B), B B(E). The measure µ X is called the distribution (or sometimes the law) of X. Example 1 Let I denote a subset of the positive integers. A vector ρ 0 = {ρ 0,i, i I} is a distribution on I if it has nonnegative entries and its total mass equals 1: i I ρ 0,i = 1.

5 Elements of Probability Theory We can use the distribution of a random variable to compute expectations and probabilities: E[f(X)] = f(x) dµ X (x) and P[X G] = G S dµ X (x), G B(E). When E = R d and we can write dµ X (x) = ρ(x) dx, then we refer to ρ(x) as the probability density function (pdf), or density with respect to Lebesque measure for X. When E = R d then by L p (Ω; R d ), or sometimes L p (Ω; µ) or even simply L p (µ), we mean the Banach space of measurable functions on Ω with norm X L p = ( E X p) 1/p.

6 Elements of Probability Theory Example 2 i) Consider the random variable X : Ω R with pdf ( ) γ σ,m (x) := (2πσ) 1 (x m)2 2 exp. 2σ Such an X is termed a Gaussian or normal random variable. The mean is EX = xγ σ,m (x) dx = m and the variance is E(X m) 2 = R R (x m) 2 γ σ,m (x) dx = σ. Since the mean and variance specify completely a Gaussian random variable on R, the Gaussian is commonly denoted by N (m, σ). The standard normal random variable is N (0, 1).

7 Elements of Probability Theory ii) Let m R d and Σ R d d be symmetric and positive definite. The random variable X : Ω R d with pdf γ Σ,m (x) := ( (2π) d detσ ) ( 1 2 exp 1 ) 2 Σ 1 (x m), (x m) is termed a multivariate Gaussian or normal random variable. The mean is E(X) = m (1) and the covariance matrix is ( ) E (X m) (X m) = Σ. (2) Since the mean and covariance matrix completely specify a Gaussian random variable on R d, the Gaussian is commonly denoted by N (m, Σ).

8 Elements of Probability Theory Example 3 An exponential random variable T : Ω R + with rate λ > 0 satisfies P(T > t) = e λt, t 0. We write T exp(λ). The related pdf is f T (t) = { λe λt, t 0, 0, t < 0. (3) Notice that E T = tf T (t)dt = 1 λ 0 (λt)e λt d(λt) = 1 λ. If the times τ n = t n+1 t n are i.i.d random variables with τ 0 exp(λ) then, for t 0 = 0, t n = n 1 k=0 τ k

9 Elements of Probability Theory and it is possible to show that P(0 t k t < t k+1 ) = e λt (λt) k. (4) k!

10 Elements of Probability Theory Assume that E X < and let G be a sub σ algebra of F. The conditional expectation of X with respect to G is defined to be the function E[X G] : Ω E which is G measurable and satisfies E[X G] dµ = X dµ G G. G We can define E[f(X) G] and the conditional probability P[X F G] = E[I F (X) G], where I F is the indicator function of F, in a similar manner. G

11 ELEMENTS OF THE THEORY OF STOCHASTIC PROCESSES

12 Definition of a Stochastic Process Let T be an ordered set. A stochastic process is a collection of random variables X = {X t ; t T } where, for each fixed t T, X t is a random variable from (Ω, F) to (E, G). The measurable space {Ω, F} is called the sample space. The space (E, G) is called the state space. In this course we will take the set T to be [0, + ). The state space E will usually be R d equipped with the σ algebra of Borel sets. A stochastic process X may be viewed as a function of both t T and ω Ω. We will sometimes write X(t), X(t, ω) or X t (ω) instead of X t. For a fixed sample point ω Ω, the function X t (ω) : T E is called a sample path (realization, trajectory) of the process X.

13 Definition of a Stochastic Process The finite dimensional distributions (fdd) of a stochastic process are the E k valued random variables (X(t 1 ), X(t 2 ),..., X(t k )) for arbitrary positive integer k and arbitrary times t i T, i {1,..., k}. We will say that two processes X t and Y t are equivalent if they have same finite dimensional distributions. From experiments or numerical simulations we can only obtain information about the (fdd) of a process.

14 Stationary Processes A process is called (strictly) stationary if all fdd are invariant under are time translation: for any integer k and times t i T, the distribution of (X(t 1 ), X(t 2 ),..., X(t k )) is equal to that of (X(s + t 1 ), X(s + t 2 ),..., X(s + t k )) for any s such that s + t i T for all i {1,..., k}. Let X t be a stationary stochastic process with finite second moment (i.e. X t L 2 ). Stationarity implies that EX t = µ, E((X t µ)(x s µ)) = C(t s). The converse is not true. A stochastic process X t L 2 is called second-order stationary (or stationary in the wide sense) if the first moment EX t is a constant and the second moment depends only on the difference t s: EX t = µ, E((X t µ)(x s µ)) = C(t s).

15 Stationary Processes The function C(t) is called the correlation (or covariance) function of X t. Let X t L 2 be a mean zero second order stationary process on R which is mean square continuous, i.e. lim E X t X s 2 = 0. t s Then the correlation function admits the representation C(t) = e itx f(x) dx, t R. the function f(x) is called the spectral density of the process X t. In many cases, the experimentally measured quantity is the spectral density (or power spectrum) of the stochastic process.

16 Stationary Processes Given the correlation function of X t, and assuming that C(t) L 1 (R), we can calculate the spectral density through its Fourier transform: f(x) = 1 2π e itx C(t) dt. The correlation function of a second order stationary process enables us to associate a time scale to X t, the correlation time τ cor : τ cor = 1 C(0) 0 C(τ) dτ = 0 E(X τ X 0 )/E(X 2 0 ) dτ. The slower the decay of the correlation function, the larger the correlation time is. We have to assume sufficiently fast decay of correlations so that the correlation time is finite.

17 Stationary Processes Example 4 Consider a second stationary process with correlation function C(t) = C(0)e γ t. The spectral density of this process is The correlation time is f(x) = 1 2π C(0) = C(0) 1 π τ cor = 0 γ γ 2 + x 2. e itx e γ t dt e γt dt = γ 1.

18 Gaussian Processes The most important class of stochastic processes is that of Gaussian processes: Definition 5 A Gaussian process is one for which E = R d and all the finite dimensional distributions are Gaussian. A Gaussian process x(t) is characterized by its mean and the covariance function m(t) := Ex(t) C(t, s) = E( (x(t) m(t) ) ( x(s) m(s) ) ). Thus, the first two moments of a Gaussian process are sufficient for a complete characterization of the process. A corollary of this is that a second order stationary Gaussian process is also a stationary process.

19 Brownian Motion The most important continuous time stochastic process is Brownian motion. Brownian motion is a mean zero, continuous (i.e. it has continuous sample paths: for a.e ω Ω the function X t is a continuous function of time) process with independent Gaussian increments. A process X t has independent increments if for every sequence t 0 < t 1...t n the random variables are independent. X t1 X t0, X t2 X t1,..., X tn X tn 1 If, furthermore, for any t 1, t 2 and Borel set B R P(X t2 +s X t1 +s B) is independent of s, then the process X t has stationary independent increments.

20 Brownian Motion Definition 6 i) A one dimensional standard Brownian motion W (t) : R + R is a real valued stochastic process with the following properties: (a) W (0) = 0; (b) W (t) is continuous; (c) W (t) has independent increments. (d) For every t > s 0 W (t) W (s) has a Gaussian distribution with mean 0 and variance t s. That is, the density of the random variable W (t) W (s) is g(x; t, s) = ( ) 1 2 2π(t s) exp ( x2 2(t s) ) ; (5)

21 Brownian Motion ii) A d dimensional standard Brownian motion W (t) : R + R d is a collection of d independent one dimensional Brownian motions: W (t) = (W 1 (t),..., W d (t)), where W i (t), i = 1,..., d are independent one dimensional Brownian motions. The density of the Gaussian random vector W (t) W (s) is thus g(x; t, s) = ( ) d/2 2π(t s) exp ( x 2 2(t s) Brownian motion is sometimes referred to as the Wiener process. ).

22 Brownian Motion W(t) t Figure 1: Brownian sample paths

23 Brownian Motion It is possible to prove rigorously the existence of the Wiener process (Brownian motion): Theorem 1 (Wiener) There exists an almost-surely continuous process W t with independent increments such and W 0 = 0, such that for each t the random variable W t is N (0, t). Furthermore, W t is almost surely locally Hölder continuous with exponent α for any α (0, 1 2 ). Notice that Brownian paths are not differentiable.

24 Brownian Motion Brownian motion is a Gaussian process. For the d dimensional Brownian motion, and for I the d d dimensional identity, we have (see (1) and (2)) EW (t) = 0 t 0 and ( ) E (W (t) W (s)) (W (t) W (s)) = (t s)i. (6) Moreover, ( ) E W (t) W (s) = min(t, s)i. (7)

25 Brownian Motion From the formula for the Gaussian density g(x, t s), eqn. (5), we immediately conclude that W (t) W (s) and W (t + u) W (s + u) have the same pdf. Consequently, Brownian motion has stationary increments. Notice, however, that Brownian motion itself is not a stationary process. Since W (t) = W (t) W (0), the pdf of W (t) is g(x, t) = 1 2πt e x2 /2t. We can easily calculate all moments of the Brownian motion: E(x n (t)) = = 1 + 2πt x n e x2 /2t dx { (n 1)t n/2, n even, 0, n odd.

26 The Poisson Process Another fundamental continuous time process is the Poisson process : Definition 7 The Poisson process with intensity λ, denoted by N(t), is an integer-valued, continuous time, stochastic process with independent increments satisfying P[(N(t) N(s)) = k] = e λ(t s)( λ(t s) ) k, t > s 0, k N. k! Notice the connection to exponential random variables via (4). Both Brownian motion and the Poisson process are homogeneous (or time-homogeneous): the increments between successive times s and t depend only on t s.

27 The Path Space Let (Ω, F, µ) be a probability space, (E, ρ) a metric space and let T = [0, ). Let {X t } be a stochastic process from (Ω, F, µ) to (E, ρ) with continuous sample paths. The above means that for every ω Ω we have that X t C E := C([0, ); E). The space of continuous functions C E is called the path space of the stochastic process. We can put a metric on E as follows: ρ E (X 1, X 2 ) := n=1 1 2 n max 0 t n min( ρ(x 1 t, X 2 t ), 1 ). We can then define the Borel sets on C E, using the topology induced by this metric, and {X t } can be thought of as a random variable on (Ω, F, µ) with state space (C E, B(C E )).

28 The Path Space The probability measure PXt 1 law of {X t }. on (C E, B(C E )) is called the The law of a stochastic process is a probability measure on its path space. Example 8 The space of continuous functions C E is the path space of Brownian motion (the Wiener process). The law of Brownian motion, that is the measure that it induces on C([0, ), R d ), is known as the Wiener measure.

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

APPLIED STOCHASTIC PROCESSES

APPLIED STOCHASTIC PROCESSES APPLIED STOCHASTIC PROCESSES G.A. Pavliotis Department of Mathematics Imperial College London, UK January 16, 2011 Pavliotis (IC) StochProc January 16, 2011 1 / 367 Lectures: Mondays, 10:00-12:00, Huxley

More information

M5A42 APPLIED STOCHASTIC PROCESSES

M5A42 APPLIED STOCHASTIC PROCESSES M5A42 APPLIED STOCHASTIC PROCESSES Professor G.A. Pavliotis Department of Mathematics Imperial College London, UK LECTURE 1 06/10/2016 Lectures: Thursdays 14:00-15:00, Huxley 140, Fridays 10:00-12:00,

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Markov processes and queueing networks

Markov processes and queueing networks Inria September 22, 2015 Outline Poisson processes Markov jump processes Some queueing networks The Poisson distribution (Siméon-Denis Poisson, 1781-1840) { } e λ λ n n! As prevalent as Gaussian distribution

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017. Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 017 Nadia S. Larsen 17 November 017. 1. Construction of the product measure The purpose of these notes is to prove the main

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

Stochastic Processes. Winter Term Paolo Di Tella Technische Universität Dresden Institut für Stochastik

Stochastic Processes. Winter Term Paolo Di Tella Technische Universität Dresden Institut für Stochastik Stochastic Processes Winter Term 2016-2017 Paolo Di Tella Technische Universität Dresden Institut für Stochastik Contents 1 Preliminaries 5 1.1 Uniform integrability.............................. 5 1.2

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3.

In terms of measures: Exercise 1. Existence of a Gaussian process: Theorem 2. Remark 3. 1. GAUSSIAN PROCESSES A Gaussian process on a set T is a collection of random variables X =(X t ) t T on a common probability space such that for any n 1 and any t 1,...,t n T, the vector (X(t 1 ),...,X(t

More information

Letting p shows that {B t } t 0. Definition 0.5. For λ R let δ λ : A (V ) A (V ) be defined by. 1 = g (symmetric), and. 3. g

Letting p shows that {B t } t 0. Definition 0.5. For λ R let δ λ : A (V ) A (V ) be defined by. 1 = g (symmetric), and. 3. g 4 Contents.1 Lie group p variation results Suppose G, d) is a group equipped with a left invariant metric, i.e. Let a := d e, a), then d ca, cb) = d a, b) for all a, b, c G. d a, b) = d e, a 1 b ) = a

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1].

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1]. 1 Introduction The content of these notes is also covered by chapter 3 section B of [1]. Diffusion equation and central limit theorem Consider a sequence {ξ i } i=1 i.i.d. ξ i = d ξ with ξ : Ω { Dx, 0,

More information

µ X (A) = P ( X 1 (A) )

µ X (A) = P ( X 1 (A) ) 1 STOCHASTIC PROCESSES This appendix provides a very basic introduction to the language of probability theory and stochastic processes. We assume the reader is familiar with the general measure and integration

More information

Expectation, variance and moments

Expectation, variance and moments Expectation, variance and moments John Appleby Contents Expectation and variance Examples 3 Moments and the moment generating function 4 4 Examples of moment generating functions 5 5 Concluding remarks

More information

Wiener Measure and Brownian Motion

Wiener Measure and Brownian Motion Chapter 16 Wiener Measure and Brownian Motion Diffusion of particles is a product of their apparently random motion. The density u(t, x) of diffusing particles satisfies the diffusion equation (16.1) u

More information

Brownian Motion. Chapter Stochastic Process

Brownian Motion. Chapter Stochastic Process Chapter 1 Brownian Motion 1.1 Stochastic Process A stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ,P and a real valued stochastic

More information

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 2. Poisson Processes Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Outline Introduction to Poisson Processes Definition of arrival process Definition

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Random Process. Random Process. Random Process. Introduction to Random Processes

Random Process. Random Process. Random Process. Introduction to Random Processes Random Process A random variable is a function X(e) that maps the set of experiment outcomes to the set of numbers. A random process is a rule that maps every outcome e of an experiment to a function X(t,

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Stochastic Processes

Stochastic Processes Stochastic Processes A very simple introduction Péter Medvegyev 2009, January Medvegyev (CEU) Stochastic Processes 2009, January 1 / 54 Summary from measure theory De nition (X, A) is a measurable space

More information

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ)

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ) Chapter 4 Stochastic Processes 4. Definition In the previous chapter we studied random variables as functions on a sample space X(ω), ω Ω, without regard to how these might depend on parameters. We now

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 20, 2009 Preliminaries for dealing with continuous random processes. Brownian motions. Our main reference for this lecture

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes This section introduces Lebesgue-Stieltjes integrals, and defines two important stochastic processes: a martingale process and a counting

More information

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018 ECE534, Spring 2018: s for Problem Set #4 Due Friday April 6, 2018 1. MMSE Estimation, Data Processing and Innovations The random variables X, Y, Z on a common probability space (Ω, F, P ) are said to

More information

Basic Definitions: Indexed Collections and Random Functions

Basic Definitions: Indexed Collections and Random Functions Chapter 1 Basic Definitions: Indexed Collections and Random Functions Section 1.1 introduces stochastic processes as indexed collections of random variables. Section 1.2 builds the necessary machinery

More information

{σ x >t}p x. (σ x >t)=e at.

{σ x >t}p x. (σ x >t)=e at. 3.11. EXERCISES 121 3.11 Exercises Exercise 3.1 Consider the Ornstein Uhlenbeck process in example 3.1.7(B). Show that the defined process is a Markov process which converges in distribution to an N(0,σ

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Jae Gil Choi and Young Seo Park

Jae Gil Choi and Young Seo Park Kangweon-Kyungki Math. Jour. 11 (23), No. 1, pp. 17 3 TRANSLATION THEOREM ON FUNCTION SPACE Jae Gil Choi and Young Seo Park Abstract. In this paper, we use a generalized Brownian motion process to define

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

Random Processes. DS GA 1002 Probability and Statistics for Data Science.

Random Processes. DS GA 1002 Probability and Statistics for Data Science. Random Processes DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Modeling quantities that evolve in time (or space)

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Chapter 7. Basic Probability Theory

Chapter 7. Basic Probability Theory Chapter 7. Basic Probability Theory I-Liang Chern October 20, 2016 1 / 49 What s kind of matrices satisfying RIP Random matrices with iid Gaussian entries iid Bernoulli entries (+/ 1) iid subgaussian entries

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

Notes on Measure Theory. Let A 2 M. A function µ : A [0, ] is finitely additive if, A j ) =

Notes on Measure Theory. Let A 2 M. A function µ : A [0, ] is finitely additive if, A j ) = Notes on Measure Theory Definitions and Facts from Topic 1500 For any set M, 2 M := {subsets of M} is called the power set of M. The power set is the set of all sets. Let A 2 M. A function µ : A [0, ]

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

The Feynman-Kac formula

The Feynman-Kac formula The Feynman-Kac formula William G. Faris February, 24 The Wiener process (Brownian motion) Consider the Hilbert space L 2 (R d ) and the self-adjoint operator H = σ2, () 2 where is the Laplace operator.

More information

1.1 Definition of BM and its finite-dimensional distributions

1.1 Definition of BM and its finite-dimensional distributions 1 Brownian motion Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as he observed a chaotic motion of particles suspended in water. The rigorous mathematical model of BM

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Spectral representations and ergodic theorems for stationary stochastic processes

Spectral representations and ergodic theorems for stationary stochastic processes AMS 263 Stochastic Processes (Fall 2005) Instructor: Athanasios Kottas Spectral representations and ergodic theorems for stationary stochastic processes Stationary stochastic processes Theory and methods

More information

Elementary Probability. Exam Number 38119

Elementary Probability. Exam Number 38119 Elementary Probability Exam Number 38119 2 1. Introduction Consider any experiment whose result is unknown, for example throwing a coin, the daily number of customers in a supermarket or the duration of

More information

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1 Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet. For ξ, ξ 2, i.i.d. with P(ξ i = ± = /2 define the discrete-time random walk W =, W n = ξ +... + ξ n. (i Formulate and prove the property

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

Gaussian Random Fields: Geometric Properties and Extremes

Gaussian Random Fields: Geometric Properties and Extremes Gaussian Random Fields: Geometric Properties and Extremes Yimin Xiao Michigan State University Outline Lecture 1: Gaussian random fields and their regularity Lecture 2: Hausdorff dimension results and

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

Gaussian Processes. 1. Basic Notions

Gaussian Processes. 1. Basic Notions Gaussian Processes 1. Basic Notions Let T be a set, and X : {X } T a stochastic process, defined on a suitable probability space (Ω P), that is indexed by T. Definition 1.1. We say that X is a Gaussian

More information

Final Exam Practice Problems Math 428, Spring 2017

Final Exam Practice Problems Math 428, Spring 2017 Final xam Practice Problems Math 428, Spring 2017 Name: Directions: Throughout, (X,M,µ) is a measure space, unless stated otherwise. Since this is not to be turned in, I highly recommend that you work

More information

2 n k In particular, using Stirling formula, we can calculate the asymptotic of obtaining heads exactly half of the time:

2 n k In particular, using Stirling formula, we can calculate the asymptotic of obtaining heads exactly half of the time: Chapter 1 Random Variables 1.1 Elementary Examples We will start with elementary and intuitive examples of probability. The most well-known example is that of a fair coin: if flipped, the probability of

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration? Lebesgue Integration: A non-rigorous introduction What is wrong with Riemann integration? xample. Let f(x) = { 0 for x Q 1 for x / Q. The upper integral is 1, while the lower integral is 0. Yet, the function

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

18.175: Lecture 15 Characteristic functions and central limit theorem

18.175: Lecture 15 Characteristic functions and central limit theorem 18.175: Lecture 15 Characteristic functions and central limit theorem Scott Sheffield MIT Outline Characteristic functions Outline Characteristic functions Characteristic functions Let X be a random variable.

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

An Introduction to Stochastic Processes in Continuous Time

An Introduction to Stochastic Processes in Continuous Time An Introduction to Stochastic Processes in Continuous Time Flora Spieksma adaptation of the text by Harry van Zanten to be used at your own expense May 22, 212 Contents 1 Stochastic Processes 1 1.1 Introduction......................................

More information

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1 Chapter 2 Probability measures 1. Existence Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension to the generated σ-field Proof of Theorem 2.1. Let F 0 be

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Convergence of Markov Processes. Amanda Turner University of Cambridge

Convergence of Markov Processes. Amanda Turner University of Cambridge Convergence of Markov Processes Amanda Turner University of Cambridge 1 Contents 1 Introduction 2 2 The Space D E [, 3 2.1 The Skorohod Topology................................ 3 3 Convergence of Probability

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

PROBABILITY THEORY II

PROBABILITY THEORY II Ruprecht-Karls-Universität Heidelberg Institut für Angewandte Mathematik Prof. Dr. Jan JOHANNES Outline of the lecture course PROBABILITY THEORY II Summer semester 2016 Preliminary version: April 21, 2016

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

DS-GA 1002 Lecture notes 2 Fall Random variables

DS-GA 1002 Lecture notes 2 Fall Random variables DS-GA 12 Lecture notes 2 Fall 216 1 Introduction Random variables Random variables are a fundamental tool in probabilistic modeling. They allow us to model numerical quantities that are uncertain: the

More information

212a1416 Wiener measure.

212a1416 Wiener measure. 212a1416 Wiener measure. November 11, 2014 1 Wiener measure. A refined version of the Riesz representation theorem for measures The Big Path Space. The heat equation. Paths are continuous with probability

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

MATH4210 Financial Mathematics ( ) Tutorial 7

MATH4210 Financial Mathematics ( ) Tutorial 7 MATH40 Financial Mathematics (05-06) Tutorial 7 Review of some basic Probability: The triple (Ω, F, P) is called a probability space, where Ω denotes the sample space and F is the set of event (σ algebra

More information