Techniques for Improving Wind to Power Conversion

Size: px
Start display at page:

Download "Techniques for Improving Wind to Power Conversion"

Transcription

1 Techniques for Improving Wind to Power Conversion Gerry Wiener Sue Ellen Haupt Bill Myers Seth Linden Julia Pearson Laura Imbler National Center for Atmospheric Research P.O. Box 3000 Boulder, CO ABSTRACT In forecasting wind farm power output, it is important to obtain an accurate farm power output estimate based on given forecast winds. Generally, the manufacturer's turbine power curves are applied to obtain this estimate. In this paper we will discuss the errors that result from using the manufacturer s power curves at actual wind farms. We will discuss alternative approaches that statistically model the power output based on incorporating air density data with actual wind and power observations at wind farms. We will show how these alternative approaches can reduce the overall conversion error and can thus be superior to using the manufacturer s power curves. INDEX TERMS - wind power, power curve, wind turbine, data mining, wind forecasting, power forecasting 1.0 INTRODUCTION Starting in 2009, the National Center for National Research (NCAR) has been working together with Xcel Energy on the development and implementation of a wind/power forecasting system. This system covers wind farms in the Xcel Energy domain that includes Colorado, New Mexico, Texas and Minnesota. The implemented system makes hourly wind and power forecasts for all the wind farms in the Xcel domain out to 7 days. Short term forecasts out to 3 hours are made every 15 minutes. The system incorporates 4 major pieces: the actual real-time wind speed and power observations from the wind farms; a set of meteorological numerical models including standard National Weather Service models such as the Real-Time Four-Dimensional Data Assimilation Weather Research and Forecast model, the Global Forecast System model, the Rapid Update Cycle model, the Global Environmental Multiscale model and others; a dynamic integrated wind forecasting system that integrates the model forecasts based on underlying skill; and a wind to power conversion module. In implementing this system we discovered that the observed wind to power conversion for the turbines at all the various wind farms can deviate significantly from their industrial power curves. As a result, as part of the implementation, NCAR developed statistical methods for performing the power conversion for all the various turbines in the Xcel domain where observed wind and power data were available. 2.0 MANUFACTURER'S POWER CURVE ERRORS The plot in Fig. 1 illustrates the power curve for a common turbine in the Xcel domain. As can be seen in this figure, there is a unique power for every wind speed and the power 1

2 cuts out at 25 m/s in order to protect the turbine. Actual observations tell a different story as depicted in Figure 2. Here it can be seen that individual wind speeds actually lead to a wide distribution of powers. The percentiles in the plot in Fig. 2 were determined by gathering turbine wind and power observations for GE 1.5 SLE turbines for a period of approximately one year. The observations were then binned into 0.1 m/s bins and distributions for each bin were formulated and percentiles calculated. The percentiles were then plotted. It is interesting to see that a 10 m/s for the GE 1.5 SLE turbine maps to a 1.2 MW power in Fig. 1. In Fig. 2 the same wind speed maps anywhere from 1.1 MW to close to 1.5 MW, approximately a 25% range in maximum turbine capacity. Another interesting phenomenon to note in Fig. 2 is the shape of the fifth percentile curve which is clearly anomalous. Such power output could be due to a number of factors both non-meteorological and meteorological. In general, power can be curtailed at wind farms owing to market or transmission line conditions and at such times, the generated power will be less than the potential power at a given wind speed. Anomalous power can also be due to meteorological conditions such as snow and ice building up on the turbine blades leading to power loss. In developing a wind to power conversion model that outputs accurate potential power, it is important to filter out anomalous wind/power pairs that are associated with curtailment, turbine malfunctioning, or unusual meteorological conditions such as icing/heavy snow. In the work discussed below, the wind and power input data are pre-filtered by restricting the power of the wind/power pairs to be in the interquartile range between the 25 th and 75 th percentile powers. There is, however, a good rationale for using a larger interpercentile range such as the 25 th to 95 th interpercentile range since curtailments, icing, heavy snow, etc. impact the lower end of the power distribution and it is more rare to see anomalies in the high end of the power distribution (again refer to Fig. 2). 3.0 STATISTICALLY MODELED POWER CURVES The GE 1.5 SLE observed wind/power plot in Fig. 2 does not account for other meteorological variables such as air density, and it is known that power production increases linearly with air density. Air density decreases at higher elevations such as those in Colorado. It also decreases as temperature increases. Thus in statistically modeling power conversion it makes sense to incorporate air density and/or meteorological variables associated with air density. There are four different power curve statistical models presented in this paper: 1. Model based on wind 2. Model based on wind and temperature 3. Model based on wind, temperature, air pressure, dew point and a derived air density 4. Model based on based on past wind, past power and current wind The model based on wind uses a training set consisting of 15 minute averaged wind and power observations gathered for all turbines having the same turbine type at a particular wind farm. The model based on wind and temperature is similar to the previous model but augments it by adding the average temperature obtained from the Real-Time Mesoscale Analysis (RTMA) model. The model based on wind, temperature, air pressure, dew point and derived air density is similar to the previous model but augments it by adding other meteorological variables from the RTMA model. Finally, the model based on past wind, past power and current wind uses previous observations of wind and power and the current observation of wind in order to estimate the current observed power. Different data mining techniques were explored in order to construct the above models. The Cubist regression tree model developed by Ross Quinlan at Rulequest ( was subsequently chosen owing to its simplicity of use and good performance. 4.0 MODEL AND POWER CURVE PERFORMANCE In order to evaluate the performance of the models discussed in the previous section, approximately 1.75 years worth of data were gathered from a wind farm in Minnesota consisting of approximately 100 GE 1.5 SLE turbines. The wind and power observations were averaged over one minute time intervals and then were filtered using an interquartile range filter. The one minute filtered wind and power observations were then averaged over 15 minute time intervals and the data mining models described above were then applied. The first two thirds of the data set were used for training of the regression tree model and the last one third was used for testing. The RTMA data used for the additional meteorological variables are generated hourly so these data were matched with the nearest observed wind and power data from the wind farm. The first two thirds of the resulting data set were then used for training and the last one third was used for testing. The mean absolute error (MAE) results are as follows rounded to the nearest kilowatt: 1. Model based on wind: 2

3 a. Training set MAE - 28 kilowatts b. Test set MAE - 22 kilowatts 2. Model based on wind and temperature: a. Training set MAE - 22 kilowatts b. Test set MAE - 16 kilowatts 3. Model based on wind, temperature, air pressure, dew point and a derived air density: a. Training set MAE - 15 kilowatts b. Test set MAE - 12 kilowatts 4. Model based on past wind, past power and current wind: a. Training set MAE - 10 kilowatts b. Test set MAE - 10 kilowatts 5. GE 1.5 SLE industrial power curve: a. Larger test set MAE - 48 kilowatts b. Smaller test set MAE associated with the hourly RTMA data - 43 kilowatts Cole Boulevard, Golden, Colorado Subcontract Number: AFW Note that the model based on past wind, past power and current wind had the lowest overall training and test set errors. The addition of other meteorological variables improved results over statistically modeling wind to power. Utilizing more meteorological variables with observed turbine wind speeds in the statistical modeling resulted in improved MAE over simply using temperature and turbine wind speeds to model power. 5.0 SUMMARY The results presented in this paper illustrate that statistical models can outperform the standard industrial power curve when applied to wind and power observations that have been quality controlled to remove anomalies. In practice such statistical models can be used to reduce overall error and produce a better power forecast. 6.0 REFERENCES William P. Mahoney, Keith Parks, Gerry Wiener, Yubao Liu, Bill Myers, Juanzhen Sun, Luca Delle Monache, Thomas Hopson, David Johnson and Sue Ellen Haupt. A Wind Power Forecasting System to Optimize Grid Integration. Submitted to IEEE Transactions on Sustainable Energy. TSTE William Myers, Gerry Wiener, Seth Linden, and Sue Ellen Haupt; A Consensus Forecasting Approach for Improved Turbine Hub Height Wind Speed Predictions; American Wind Energy Association (AWEA) 2011 Keith Parks, Yih-huei Wan, Gerry Wiener, and Yubao Liu. Wind Energy Forecasting A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy. Prepared for: National Renewable Energy Laboratory,

4 Fig. 1: An ideal power curve for the GE 1.5 SLE turbine 4

5 Fig. 2: A power curve formulated using actual observations from multiple wind turbines at a single wind farm 5

810 A Comparison of Turbine-based and Farm-based Methods for Converting Wind to Power

810 A Comparison of Turbine-based and Farm-based Methods for Converting Wind to Power 810 A Comparison of Turbine-based and Farm-based Methods for Converting Wind to Power Julia M. Pearson 1, G. Wiener, B. Lambi, and W. Myers National Center for Atmospheric Research Research Applications

More information

A Community Gridded Atmospheric Forecast System for Calibrated Solar Irradiance

A Community Gridded Atmospheric Forecast System for Calibrated Solar Irradiance A Community Gridded Atmospheric Forecast System for Calibrated Solar Irradiance David John Gagne 1,2 Sue E. Haupt 1,3 Seth Linden 1 Gerry Wiener 1 1. NCAR RAL 2. University of Oklahoma 3. Penn State University

More information

National Center for Atmospheric Research Research Applications Laboratory Renewable Energy

National Center for Atmospheric Research Research Applications Laboratory Renewable Energy National Center for Atmospheric Research Research Applications Laboratory Renewable Energy Dr. Sue Ellen Haupt, Director & Dr. Branko Kosovic, Program Manager Weather Systems & Assessment Program Research

More information

Characterizing and Modeling Wind Power Forecast Errors from Operational Systems for Use in Wind Integration Planning Studies

Characterizing and Modeling Wind Power Forecast Errors from Operational Systems for Use in Wind Integration Planning Studies Engineering Conferences International ECI Digital Archives Modeling, Simulation, And Optimization for the 21st Century Electric Power Grid Proceedings Fall 10-23-2012 Characterizing and Modeling Wind Power

More information

David John Gagne II, NCAR

David John Gagne II, NCAR The Performance Impacts of Machine Learning Design Choices for Gridded Solar Irradiance Forecasting Features work from Evaluating Statistical Learning Configurations for Gridded Solar Irradiance Forecasting,

More information

Threats to the Power System

Threats to the Power System Threats to the Power System Energy Risk and Critical Infrastructure Workshop National Conference of State Legislatures William P. Mahoney III Deputy Director, Research Applications Laboratory National

More information

1.3 STATISTICAL WIND POWER FORECASTING FOR U.S. WIND FARMS

1.3 STATISTICAL WIND POWER FORECASTING FOR U.S. WIND FARMS 1.3 STATISTICAL WIND POWER FORECASTING FOR U.S. WIND FARMS Michael Milligan, Consultant * Marc Schwartz and Yih-Huei Wan National Renewable Energy Laboratory, Golden, Colorado ABSTRACT Electricity markets

More information

Weather and Travel Time Decision Support

Weather and Travel Time Decision Support Weather and Travel Time Decision Support Gerry Wiener, Amanda Anderson, Seth Linden, Bill Petzke, Padhrig McCarthy, James Cowie, Thomas Brummet, Gabriel Guevara, Brenda Boyce, John Williams, Weiyan Chen

More information

NOAA s Capabilities in Wind Energy

NOAA s Capabilities in Wind Energy NCAR-Xcel-NOAA Meeting May 11-12, 2010 Boulder, CO NOAA s Capabilities in Wind Energy Melinda Marquis, Ph.D. NOAA Earth System Research Laboratory Outline NOAA has a potential role in improving wind forecasting

More information

WRF-RTFDDA Optimization and Wind Farm Data Assimilation

WRF-RTFDDA Optimization and Wind Farm Data Assimilation 2009, University Corporation for Atmospheric Research. All rights reserved. WRF-RTFDDA Optimization and Wind Farm Data Assimilation William Y.Y. Cheng, Yubao Liu, Yuewei Liu, and Gregory Roux NCAR/Research

More information

Computationally Efficient Dynamical Downscaling with an Analog Ensemble

Computationally Efficient Dynamical Downscaling with an Analog Ensemble ENERGY Computationally Efficient Dynamical Downscaling with an Analog Ensemble Application to Wind Resource Assessment Daran L. Rife 02 June 2015 Luca Delle Monache (NCAR); Jessica Ma and Rich Whiting

More information

NAM weather forecasting model. RUC weather forecasting model 4/19/2011. Outline. Short and Long Term Wind Farm Power Prediction

NAM weather forecasting model. RUC weather forecasting model 4/19/2011. Outline. Short and Long Term Wind Farm Power Prediction Short and Long Term Wind Farm Power Prediction Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University of Iowa Iowa City, Iowa 52242 1527 andrew kusiak@uiowa.edu Tel: 319 335 5934

More information

Current best practice of uncertainty forecast for wind energy

Current best practice of uncertainty forecast for wind energy Current best practice of uncertainty forecast for wind energy Dr. Matthias Lange Stochastic Methods for Management and Valuation of Energy Storage in the Future German Energy System 17 March 2016 Overview

More information

This wind energy forecasting capability relies on an automated, desktop PC-based system which uses the Eta forecast model as the primary input.

This wind energy forecasting capability relies on an automated, desktop PC-based system which uses the Eta forecast model as the primary input. A Simple Method of Forecasting Wind Energy Production at a Complex Terrain Site: An Experiment in Forecasting Using Historical Data Lubitz, W. David and White, Bruce R. Department of Mechanical & Aeronautical

More information

Colorado PUC E-Filings System

Colorado PUC E-Filings System Page 1 of 10 30-Minute Flex Reserve on the Public Service Company of Colorado System Colorado PUC E-Filings System Prepared by: Xcel Energy Services, Inc. 1800 Larimer St. Denver, Colorado 80202 May 13,

More information

Bayesian Based Neural Network Model for Solar Photovoltaic Power Forecasting

Bayesian Based Neural Network Model for Solar Photovoltaic Power Forecasting Bayesian Based Neural Network Model for Solar Photovoltaic Power Forecasting Angelo Ciaramella 1, Antonino Staiano 1, Guido Cervone 2, and Stefano Alessandrini 3 1 Dept. of Science and Technology, University

More information

Computing urban wind fields

Computing urban wind fields Combining mesoscale, nowcast, and CFD model output in near real-time for protecting urban areas and buildings from releases of hazardous airborne materials S. Swerdlin, T. Warner, J. Copeland, D. Hahn,

More information

Assessing WRF PBL Schemes for Wind Energy Applications

Assessing WRF PBL Schemes for Wind Energy Applications Assessing WRF PBL Schemes for Wind Energy Applications Branko Kosović, Yubao Liu, Youwei Liu, Will Cheng NCAR Workshop May 12, 21 NATIONAL CENTER FOR ATMOSPHERIC RESEARCH In the Past PBL Parameterizations

More information

Economic Evaluation of Short- Term Wind Power Forecasts in ERCOT: Preliminary Results

Economic Evaluation of Short- Term Wind Power Forecasts in ERCOT: Preliminary Results Economic Evaluation of Short- Term Wind Power Forecasts in ERCOT: Preliminary Results Preprint K. Orwig, B.-M. Hodge, G. Brinkman, E. Ela, and M. Milligan National Renewable Energy Laboratory V. Banunarayanan

More information

Verification of wind forecasts of ramping events

Verification of wind forecasts of ramping events Verification of wind forecasts of ramping events Matt Pocernich Research Application Laboratory - NCAR pocernic@ucar.edu Thanks to Brice Lambi, Seth Linden and Gregory Roux Key Points A single verification

More information

Developing Analytical Approaches to Forecast Wind Farm Production: Phase II

Developing Analytical Approaches to Forecast Wind Farm Production: Phase II Developing Analytical Approaches to Wind Farm Production: Phase II Kate Geschwind, 10 th Grade Mayo High School 1420 11th Avenue Southeast Rochester, MN 55904 Research Category: Mathematics Acknowledgement

More information

VERIFICATION OF HIGH RESOLUTION WRF-RTFDDA SURFACE FORECASTS OVER MOUNTAINS AND PLAINS

VERIFICATION OF HIGH RESOLUTION WRF-RTFDDA SURFACE FORECASTS OVER MOUNTAINS AND PLAINS VERIFICATION OF HIGH RESOLUTION WRF-RTFDDA SURFACE FORECASTS OVER MOUNTAINS AND PLAINS Gregory Roux, Yubao Liu, Luca Delle Monache, Rong-Shyang Sheu and Thomas T. Warner NCAR/Research Application Laboratory,

More information

Tom Durrant Frank Woodcock. Diana Greenslade

Tom Durrant Frank Woodcock. Diana Greenslade Tom Durrant Frank Woodcock Centre for Australian Weather and Climate Research Bureau of Meteorology Melbourne, VIC Australia Motivation/Application techniques have been found to be very useful in operational

More information

Wind energy production backcasts based on a high-resolution reanalysis dataset

Wind energy production backcasts based on a high-resolution reanalysis dataset Wind energy production backcasts based on a high-resolution reanalysis dataset Liu, S., Gonzalez, L. H., Foley, A., & Leahy, P. (2018). Wind energy production backcasts based on a highresolution reanalysis

More information

Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications

Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications Performance Measures x.x, x.x, and x.x Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications Julie K. Lundquist Jeff Mirocha, Branko Kosović 9 WRF User s Workshop,

More information

The Relative Contributions of ECMWF Deterministic and Ensemble Forecasts in an Automated Consensus Forecasting System

The Relative Contributions of ECMWF Deterministic and Ensemble Forecasts in an Automated Consensus Forecasting System The Relative Contributions of ECMWF Deterministic and Ensemble Forecasts in an Automated Consensus Forecasting System Brett Basarab, Bill Myers, William Gail, Jenny Shepard Global Weather Corporation ECMWF

More information

Multi-wind Field Output Power Prediction Method based on Energy Internet and DBPSO-LSSVM

Multi-wind Field Output Power Prediction Method based on Energy Internet and DBPSO-LSSVM , pp.128-133 http://dx.doi.org/1.14257/astl.16.138.27 Multi-wind Field Output Power Prediction Method based on Energy Internet and DBPSO-LSSVM *Jianlou Lou 1, Hui Cao 1, Bin Song 2, Jizhe Xiao 1 1 School

More information

The Pennsylvania State University. The Graduate School. Department of Meteorology ARTIFICIAL INTELLIGENCE TECHNIQUES FOR SHORT-RANGE SOLAR

The Pennsylvania State University. The Graduate School. Department of Meteorology ARTIFICIAL INTELLIGENCE TECHNIQUES FOR SHORT-RANGE SOLAR The Pennsylvania State University The Graduate School Department of Meteorology ARTIFICIAL INTELLIGENCE TECHNIQUES FOR SHORT-RANGE SOLAR IRRADIANCE PREDICTION A Dissertation in Meteorology by Tyler C.

More information

NCAR UCAR. 50 th Anniversary Lecture

NCAR UCAR. 50 th Anniversary Lecture NCAR & UCAR 50 th Anniversary Lecture Turbulence, Wind Shear, Toxin Attacks, and Other Things That Go Bump In the Night: Applied Research for Real-Life Problems Bill Mahoney National Center for Atmospheric

More information

Model Output Statistics (MOS)

Model Output Statistics (MOS) Model Output Statistics (MOS) Numerical Weather Prediction (NWP) models calculate the future state of the atmosphere at certain points of time (forecasts). The calculation of these forecasts is based on

More information

Module 11: Meteorology Topic 5 Content: Weather Maps Notes

Module 11: Meteorology Topic 5 Content: Weather Maps Notes Introduction A variety of weather maps are produced by the National Weather Service and National Oceanographic Atmospheric Administration. These maps are used to help meteorologists accurately predict

More information

Short term wind forecasting using artificial neural networks

Short term wind forecasting using artificial neural networks Discovery Science, Volume 2, Number 6, December 2012 RESEARCH COMPUTER SCIENCE ISSN 2278 5485 EISSN 2278 5477 Science Short term wind forecasting using artificial neural networks Er.Gurpreet Singh 1, Er.Manpreet

More information

CAISO Participating Intermittent Resource Program for Wind Generation

CAISO Participating Intermittent Resource Program for Wind Generation CAISO Participating Intermittent Resource Program for Wind Generation Jim Blatchford CAISO Account Manager Agenda CAISO Market Concepts Wind Availability in California How State Supports Intermittent Resources

More information

The document was not produced by the CAISO and therefore does not necessarily reflect its views or opinion.

The document was not produced by the CAISO and therefore does not necessarily reflect its views or opinion. Version No. 1.0 Version Date 2/25/2008 Externally-authored document cover sheet Effective Date: 4/03/2008 The purpose of this cover sheet is to provide attribution and background information for documents

More information

Multi-Plant Photovoltaic Energy Forecasting Challenge with Regression Tree Ensembles and Hourly Average Forecasts

Multi-Plant Photovoltaic Energy Forecasting Challenge with Regression Tree Ensembles and Hourly Average Forecasts Multi-Plant Photovoltaic Energy Forecasting Challenge with Regression Tree Ensembles and Hourly Average Forecasts Kathrin Bujna 1 and Martin Wistuba 2 1 Paderborn University 2 IBM Research Ireland Abstract.

More information

CS 229: Final Paper Wind Prediction: Physical model improvement through support vector regression Daniel Bejarano

CS 229: Final Paper Wind Prediction: Physical model improvement through support vector regression Daniel Bejarano CS 229: Final Paper Wind Prediction: Physical model improvement through support vector regression Daniel Bejarano (dbejarano@stanford.edu), Adriano Quiroga (aquiroga@stanford.edu) December 2013, Stanford

More information

Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results

Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results I. Maiello 1, L. Delle Monache 2, G. Romine 2, E. Picciotti 3, F.S. Marzano 4, R. Ferretti

More information

Richard L. Bankert* and Michael Hadjimichael Naval Research Laboratory, Monterey, CA

Richard L. Bankert* and Michael Hadjimichael Naval Research Laboratory, Monterey, CA P.34 SATELLITE AND NUMERICAL MODEL DATA-DRIVEN CLOUD CEILING AND VISIBILITY ESTIMATION Richard L. Bankert* and Michael Hadjimichael Naval Research Laboratory, Monterey, CA Paul H. Herzegh, Gerry Wiener,

More information

Integration of WindSim s Forecasting Module into an Existing Multi-Asset Forecasting Framework

Integration of WindSim s Forecasting Module into an Existing Multi-Asset Forecasting Framework Chad Ringley Manager of Atmospheric Modeling Integration of WindSim s Forecasting Module into an Existing Multi-Asset Forecasting Framework 26 JUNE 2014 2014 WINDSIM USER S MEETING TONSBERG, NORWAY SAFE

More information

Expedited Filing Draft August 22, 2017

Expedited Filing Draft August 22, 2017 Applicability 1 Section 304.9 applies to: (a) (b) Requirements Expedited Filing Draft August 22, 2017 the legal owner of a wind or solar aggregated generating facility connected to the interconnected electric

More information

CHAPTER 6 CONCLUSION AND FUTURE SCOPE

CHAPTER 6 CONCLUSION AND FUTURE SCOPE CHAPTER 6 CONCLUSION AND FUTURE SCOPE 146 CHAPTER 6 CONCLUSION AND FUTURE SCOPE 6.1 SUMMARY The first chapter of the thesis highlighted the need of accurate wind forecasting models in order to transform

More information

MxVision WeatherSentry Web Services Content Guide

MxVision WeatherSentry Web Services Content Guide MxVision WeatherSentry Web Services Content Guide July 2014 DTN 11400 Rupp Drive Minneapolis, MN 55337 00.1.952.890.0609 This document and the software it describes are copyrighted with all rights reserved.

More information

Speedwell High Resolution WRF Forecasts. Application

Speedwell High Resolution WRF Forecasts. Application Speedwell High Resolution WRF Forecasts Speedwell weather are providers of high quality weather data and forecasts for many markets. Historically we have provided forecasts which use a statistical bias

More information

Sea ice outlook 2012

Sea ice outlook 2012 Sea ice outlook 2012 Alexander Beitsch, Lars Kaleschke, Stefan Kern Institute for Oceanography, KlimaCampus, University of Hamburg Contact: lars.kaleschke@zmaw.de, Tel. +49 40 42838 6518 July 5, 2012 1

More information

1.5 HIGH-RESOLUTION LAND DATA ASSIMILATION IN THE NCAR/ATEC 1.5 REAL-TIME FDDA AND FORECASTING SYSTEM

1.5 HIGH-RESOLUTION LAND DATA ASSIMILATION IN THE NCAR/ATEC 1.5 REAL-TIME FDDA AND FORECASTING SYSTEM 1.5 HIGH-RESOLUTION LAND DATA ASSIMILATION IN THE NCAR/ATEC 1.5 REAL-TIME FDDA AND FORECASTING SYSTEM Andrea N. Hahmann, Yubao Liu, Fei Chen, Kevin W. Manning, Thomas T. Warner, and Laurie Carlson Research

More information

PIRP Forecast Performance

PIRP Forecast Performance Presented at the PIRP Workshop Folsom, CA April 16, 2007 PIRP Forecast Performance John W. Zack AWS Truewind LLC Albany, New York jzack@awstruewind.com Overview PIRP Forecast Performance Forecast Performance

More information

Analyzing the impact of wind turbines on operational weather radar products

Analyzing the impact of wind turbines on operational weather radar products Analyzing the impact of wind turbines on operational weather radar products Günther Haase 1, Daniel Johnson 1 and Kjell-Åke Eriksson 2 1 Swedish Meteorological and Hydrological Institute, S-60176 Norrköping,

More information

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT Bringing Renewables to the Grid John Dumas Director Wholesale Market Operations ERCOT 2011 Summer Seminar August 2, 2011 Quick Overview of ERCOT The ERCOT Market covers ~85% of Texas overall power usage

More information

The Hydrologic Cycle: How Do River Forecast Centers Measure the Parts?

The Hydrologic Cycle: How Do River Forecast Centers Measure the Parts? The Hydrologic Cycle: How Do River Forecast Centers Measure the Parts? Greg Story Meteorologist National Weather Service Fort Worth, TX Overview n Introduction What is the mission of an RFC? n The Hydrologic

More information

P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic

P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic Submitted for the 12 th Conf. on Aviation, Range, and Aerospace Meteor. 29 Jan. 2 Feb. 2006. Atlanta, GA. P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic Hongping Yang 1, Jian

More information

OPTIMIZATION OF WIND POWER PRODUCTION FORECAST PERFORMANCE DURING CRITICAL PERIODS FOR GRID MANAGEMENT

OPTIMIZATION OF WIND POWER PRODUCTION FORECAST PERFORMANCE DURING CRITICAL PERIODS FOR GRID MANAGEMENT OPTIMIZATION OF WIND POWER PRODUCTION FORECAST PERFORMANCE DURING CRITICAL PERIODS FOR GRID MANAGEMENT WINDPOWER 2007 Los Angeles, CA June 3-6, 2007 POSTER PRESENTATION John W. Zack AWS Truewind, LLC 185

More information

SYSTEM OPERATIONS. Dr. Frank A. Monforte

SYSTEM OPERATIONS. Dr. Frank A. Monforte SYSTEM OPERATIONS FORECASTING Dr. Frank A. Monforte Itron s Forecasting Brown Bag Seminar September 13, 2011 PLEASE REMEMBER» In order to help this session run smoothly, your phones are muted.» To make

More information

ASSIMILATION OF METAR CLOUD AND VISIBILITY OBSERVATIONS IN THE RUC

ASSIMILATION OF METAR CLOUD AND VISIBILITY OBSERVATIONS IN THE RUC 9.13 ASSIMILATION OF METAR CLOUD AND VISIBILITY OBSERVATIONS IN THE RUC Stanley G. Benjamin, Stephen S. Weygandt, John M. Brown, Tracy Lorraine Smith 1, Tanya Smirnova 2, William R. Moninger, Barry Schwartz,

More information

Overview of Wind Energy Generation Forecasting

Overview of Wind Energy Generation Forecasting Draft Report Overview of Wind Energy Generation Forecasting Submitted To: New York State Energy Research and Development Authority and the New York State Independent System Operator Prepared By: TrueWind

More information

Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark

Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark Downloaded from orbit.dtu.dk on: Dec 14, 2018 Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark Hahmann, Andrea N.; Pena Diaz, Alfredo Published in: EWEC 2010 Proceedings online

More information

Centralized Forecasting Registration and Communication Requirements for Distribution Connected Variable Generators. IESO Training

Centralized Forecasting Registration and Communication Requirements for Distribution Connected Variable Generators. IESO Training Centralized Forecasting Registration and Communication Requirements for Distribution Connected Variable Generators IESO Training May 2017 Centralized Forecasting - Registration and Communication Requirements

More information

Demand Forecasting Reporting Period: 19 st Jun th Sep 2017

Demand Forecasting Reporting Period: 19 st Jun th Sep 2017 N A T I O N A L G R I D P A G E 1 O F 21 C O M M E R C I A L, E L E C T R I C I T Y C O M M E R C I A L O P E R A T I O N S Demand Forecasting Reporting Period: 19 st Jun 2017 10 th Sep 2017 EXECUTIVE

More information

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Dr. Abhijit Basu (Integrated Research & Action for Development) Arideep Halder (Thinkthrough Consulting Pvt. Ltd.) September

More information

Solar Irradiance and Load Demand Forecasting based on Single Exponential Smoothing Method

Solar Irradiance and Load Demand Forecasting based on Single Exponential Smoothing Method Solar Irradiance and Load Demand Forecasting based on Single Exponential Smoothing Method P. Y. Lim and C. V. Nayar Abstract Forecasting of the solar irradiance and load demand are essential for system

More information

Observing System Simulation Experiments (OSSEs) for the Mid-Columbia Basin

Observing System Simulation Experiments (OSSEs) for the Mid-Columbia Basin LLNL-TR-499162 Observing System Simulation Experiments (OSSEs) for the Mid-Columbia Basin J. Zack, E. J. Natenberg, G. V. Knowe, K. Waight, J. Manobianco, D. Hanley, C. Kamath September 14, 2011 Disclaimer

More information

Big Data Analysis in Wind Power Forecasting

Big Data Analysis in Wind Power Forecasting Big Data Analysis in Wind Power Forecasting Pingwen Zhang School of Mathematical Sciences, Peking University Email: pzhang@pku.edu.cn Thanks: Pengyu Qian, Qinwu Xu, Zaiwen Wen and Junzi Zhang The Keywind

More information

Polar WRF. Polar Meteorology Group Byrd Polar and Climate Research Center The Ohio State University Columbus Ohio

Polar WRF. Polar Meteorology Group Byrd Polar and Climate Research Center The Ohio State University Columbus Ohio Polar WRF David H. Bromwich, Keith M. Hines, Lesheng Bai and Sheng-Hung Wang Polar Meteorology Group Byrd Polar and Climate Research Center The Ohio State University Columbus Ohio Byrd Polar and Climate

More information

DOPPLER LIDAR IN THE WIND FORECAST IMPROVEMENT PROJECTS

DOPPLER LIDAR IN THE WIND FORECAST IMPROVEMENT PROJECTS EPJ Web of Conferences 11911, 10001 (2016) DOPPLER LIDAR IN THE WIND FORECAST IMPROVEMENT PROJECTS Yelena Pichugina 1, 2*, Robert Banta 2, Alan Brewer 2, Aditya Choukulkar 1, 2, Melinda Marquis 2, Joe

More information

WYANDOTTE MUNICIPAL SERVICES COMMUNITY WIND ENERGY PROJECT WIND RESOUCE SUMMARY

WYANDOTTE MUNICIPAL SERVICES COMMUNITY WIND ENERGY PROJECT WIND RESOUCE SUMMARY WYANDOTTE MUNICIPAL SERVICES COMMUNITY WIND ENERGY PROJECT WIND RESOUCE SUMMARY MONTHLY REPORT October 15, 2007 Black & Veatch Project: 144374 Prepared by: Black & Veatch Corporation 6300 S. Syracuse Way

More information

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS David D NOAA / Earth System Research Laboratory / Global Systems Division Nowcasting and Mesoscale Research Working Group Meeting World Meteorological

More information

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Shu Wang 1, Peter Seiler 1 and Zongxuan Sun Abstract This paper proposes an H individual pitch controller for the Clipper

More information

Contributions to The State of Climate 2004 Recent Greenland climate variability and consequences to ice sheet mass balance

Contributions to The State of Climate 2004 Recent Greenland climate variability and consequences to ice sheet mass balance Contributions to The State of Climate 2004 Recent Greenland climate variability and consequences to ice sheet mass balance Jason E. Box AMS Committee on Polar Meteorology Byrd Polar Research Center, The

More information

Meteorology 311. RADAR Fall 2016

Meteorology 311. RADAR Fall 2016 Meteorology 311 RADAR Fall 2016 What is it? RADAR RAdio Detection And Ranging Transmits electromagnetic pulses toward target. Tranmission rate is around 100 s pulses per second (318-1304 Hz). Short silent

More information

The POWER Conference June 2007, Bremerhaven. Strong Offshore Wind Energy Regions - Denmark

The POWER Conference June 2007, Bremerhaven. Strong Offshore Wind Energy Regions - Denmark The POWER Conference 14. 15. June 2007, Bremerhaven Strong Offshore Wind Energy Regions - Denmark By Peter Blach O f f s h o r e w i n d P O W E R i n g t h e N o r t h S e a R e g i o n 1 4. 1 5. J u

More information

Sea ice outlook 2010

Sea ice outlook 2010 Sea ice outlook 2010 Lars Kaleschke 1, Gunnar Spreen 2 1 Institute for Oceanography, KlimaCampus, University of Hamburg 2 Jet Propulsion Laboratory, California Institute of Technology Contact: lars.kaleschke@zmaw.de,

More information

Temporal Wind Variability and Uncertainty

Temporal Wind Variability and Uncertainty Temporal Wind Variability and Uncertainty Nicholas A. Brown Iowa State University, Department of Electrical and Computer Engineering May 1, 2014 1 An Experiment at Home One Cup of Coffee We Can All Do

More information

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions Joshua Hacker National Center for Atmospheric Research hacker@ucar.edu Topics The closure problem and physical parameterizations

More information

The Forecasting Challenge. The Forecasting Challenge CEEM,

The Forecasting Challenge. The Forecasting Challenge CEEM, Using NWP forecasts at multiple grid points to assist power system operators to predict large rapid changes in wind power Nicholas Cutler. n.cutler@unsw.edu.au 9 th April, 2008 CEEM, 2008 The Forecasting

More information

Development and Validation of Polar WRF

Development and Validation of Polar WRF Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio Development and Validation of Polar WRF David H. Bromwich 1,2, Keith M. Hines 1, and Le-Sheng Bai 1 1 Polar

More information

Rapid Prototyping of Cutting-Edge Meteorological Technology: The ATEC 4DWX System

Rapid Prototyping of Cutting-Edge Meteorological Technology: The ATEC 4DWX System Rapid Prototyping of Cutting-Edge Meteorological Technology: The ATEC 4DWX System James F. Bowers U.S. Army Dugway Proving Ground Dugway, Utah 84022-5000 Scott P. Swerdlin and Thomas T. Warner National

More information

Atmospheric Pressure. Weather, Wind Forecasting, and Energy Market Operations

Atmospheric Pressure. Weather, Wind Forecasting, and Energy Market Operations Atmospheric Pressure Weather, Wind Forecasting, and Energy Market Operations MASTERSERIES TTHE MODERN ELECTRIC POWER SYSTEM constitutes a fascinating challenge in delivering reliable and inexpensive power

More information

Research and application of locational wind forecasting in the UK

Research and application of locational wind forecasting in the UK 1 Research and application of locational wind forecasting in the UK Dr Jethro Browell EPSRC Research Fellow University of Strathclyde, Glasgow, UK jethro.browell@strath.ac.uk 2 Acknowledgements Daniel

More information

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * *

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF COLORADO FOR APPROVAL OF ITS 01 RENEWABLE ENERGY STANDARD COMPLIANCE

More information

EVALUATION OF ANTARCTIC MESOSCALE PREDICTION SYSTEM (AMPS) FORECASTS FOR DIFFERENT SYNOPTIC WEATHER PATTERNS

EVALUATION OF ANTARCTIC MESOSCALE PREDICTION SYSTEM (AMPS) FORECASTS FOR DIFFERENT SYNOPTIC WEATHER PATTERNS EVALUATION OF ANTARCTIC MESOSCALE PREDICTION SYSTEM (AMPS) FORECASTS FOR DIFFERENT SYNOPTIC WEATHER PATTERNS John J. Cassano * University of Colorado, Boulder, Colorado Luna M. Rodriguez- Manzanet University

More information

Prashant Pant 1, Achal Garg 2 1,2 Engineer, Keppel Offshore and Marine Engineering India Pvt. Ltd, Mumbai. IJRASET 2013: All Rights are Reserved 356

Prashant Pant 1, Achal Garg 2 1,2 Engineer, Keppel Offshore and Marine Engineering India Pvt. Ltd, Mumbai. IJRASET 2013: All Rights are Reserved 356 Forecasting Of Short Term Wind Power Using ARIMA Method Prashant Pant 1, Achal Garg 2 1,2 Engineer, Keppel Offshore and Marine Engineering India Pvt. Ltd, Mumbai Abstract- Wind power, i.e., electrical

More information

Modelling residual wind farm variability using HMMs

Modelling residual wind farm variability using HMMs 8 th World IMACS/MODSIM Congress, Cairns, Australia 3-7 July 2009 http://mssanz.org.au/modsim09 Modelling residual wind farm variability using HMMs Ward, K., Korolkiewicz, M. and Boland, J. School of Mathematics

More information

2012 will likely be remembered for the significant cold injury damage that occurred to fruit during the spring season. Our scheduled first speaker

2012 will likely be remembered for the significant cold injury damage that occurred to fruit during the spring season. Our scheduled first speaker 2012 will likely be remembered for the significant cold injury damage that occurred to fruit during the spring season. Our scheduled first speaker this afternoon was unable to attend today. Unable to secure

More information

Climate Variables for Energy: WP2

Climate Variables for Energy: WP2 Climate Variables for Energy: WP2 Phil Jones CRU, UEA, Norwich, UK Within ECEM, WP2 provides climate data for numerous variables to feed into WP3, where ESCIIs will be used to produce energy-relevant series

More information

OFFSHORE INTEGRATION STUDY. Analysis, benchmark and mitigation of storm and ramping risks from offshore wind power in Belgium 05/02/2018

OFFSHORE INTEGRATION STUDY. Analysis, benchmark and mitigation of storm and ramping risks from offshore wind power in Belgium 05/02/2018 OFFSHORE INTEGRATION STUDY Analysis, benchmark and mitigation of storm and ramping risks from offshore wind power in Belgium 05/02/2018 This study has been developed in close collaboration with 1 TABLE

More information

Recent US Wind Integration Experience

Recent US Wind Integration Experience Wind Energy and Grid Integration Recent US Wind Integration Experience J. Charles Smith Nexgen Energy LLC Utility Wind Integration Group January 24-25, 2006 Madrid, Spain Outline of Topics Building and

More information

THE IMPACT OF GROUND-BASED GPS SLANT-PATH WET DELAY MEASUREMENTS ON SHORT-RANGE PREDICTION OF A PREFRONTAL SQUALL LINE

THE IMPACT OF GROUND-BASED GPS SLANT-PATH WET DELAY MEASUREMENTS ON SHORT-RANGE PREDICTION OF A PREFRONTAL SQUALL LINE JP1.17 THE IMPACT OF GROUND-BASED GPS SLANT-PATH WET DELAY MEASUREMENTS ON SHORT-RANGE PREDICTION OF A PREFRONTAL SQUALL LINE So-Young Ha *1,, Ying-Hwa Kuo 1, Gyu-Ho Lim 1 National Center for Atmospheric

More information

Power System Seminar Presentation Wind Forecasting and Dispatch 7 th July, Wind Power Forecasting tools and methodologies

Power System Seminar Presentation Wind Forecasting and Dispatch 7 th July, Wind Power Forecasting tools and methodologies Power System Seminar Presentation Wind Forecasting and Dispatch 7 th July, 2011 Wind Power Forecasting tools and methodologies Amanda Kelly Principal Engineer Power System Operational Planning Operations

More information

2.4 Selecting METARs to Verify Ceiling and Visibility Forecasts

2.4 Selecting METARs to Verify Ceiling and Visibility Forecasts 2.4 Selecting METARs to Verify Ceiling and Visibility Forecasts Tressa L. Fowler*, Jamie T. Braid, and Anne Holmes National Center for Atmospheric Research, Boulder, Colorado 1 INTRODUCTION METAR station

More information

IEEE power & energy magazine 57 COMSTOCK, INC. 1998, 1998 CORBIS CORP.

IEEE power & energy magazine 57 COMSTOCK, INC. 1998, 1998 CORBIS CORP. AS MORE WIND ENERGY IS CONNECTED to utility systems, it becomes important to understand and manage the impact of wind generation on system operations. Recent studies and simulations provide a better understanding

More information

EWEA 2016 Methods for Detection of Icing Losses in Scada Data. Staffan Asplund, Christian Granlund Etha Wind Oy Teppo Hilakivi, Puhuri Oy

EWEA 2016 Methods for Detection of Icing Losses in Scada Data. Staffan Asplund, Christian Granlund Etha Wind Oy Teppo Hilakivi, Puhuri Oy EWEA 2016 Methods for Detection of Icing Losses in Scada Data Staffan Asplund, Christian Granlund Etha Wind Oy Teppo Hilakivi, Puhuri Oy Understanding Icing Extreme difference between WTG suppliers operational

More information

Forecast solutions for the energy sector

Forecast solutions for the energy sector Forecast solutions for the energy sector A/S Lyngsø Allé 3 DK-2970 Hørsholm Henrik Aalborg Nielsen, A/S 1 Consumption and production forecasts Heat load forecasts for district heating systems usually for

More information

AN ENSEMBLE STRATEGY FOR ROAD WEATHER APPLICATIONS

AN ENSEMBLE STRATEGY FOR ROAD WEATHER APPLICATIONS 11.8 AN ENSEMBLE STRATEGY FOR ROAD WEATHER APPLICATIONS Paul Schultz 1 NOAA Research - Forecast Systems Laboratory Boulder, Colorado 1. INTRODUCTION In 1999 the Federal Highways Administration (FHWA) initiated

More information

wind power forecasts

wind power forecasts wind power forecasts the user friendly forecast studio about aiolos users Aiolos is Vitec s market-leading tool for effective management for all of your forecasts. With Aiolos it is possible to predict

More information

Adjunct Professor of Meteorology The Pennsylvania State University. website:

Adjunct Professor of Meteorology The Pennsylvania State University.   website: Curriculum Vitae SUE ELLEN HAUPT Director, Weather Systems and Assessment Program Research Applications Laboratory, National Center for Atmospheric Research 3450 Mitchell Lane Boulder, CO 80301 (303) 497-2763

More information

Wind resource assessment and wind power forecasting

Wind resource assessment and wind power forecasting Chapter Wind resource assessment and wind power forecasting By Henrik Madsen, Juan Miguel Morales and Pierre-Julien Trombe, DTU Compute; Gregor Giebel and Hans E. Jørgensen, DTU Wind Energy; Pierre Pinson,

More information

Modelling Wind Farm Data and the Short Term Prediction of Wind Speeds

Modelling Wind Farm Data and the Short Term Prediction of Wind Speeds Modelling Wind Farm Data and the Short Term Prediction of Wind Speeds An Investigation into Wind Speed Data Sets Erin Mitchell Lancaster University 6th April 2011 Outline 1 Data Considerations Overview

More information

IMPACT OF ASSIMILATING COSMIC FORECASTS OF SYNOPTIC-SCALE CYCLONES OVER WEST ANTARCTICA

IMPACT OF ASSIMILATING COSMIC FORECASTS OF SYNOPTIC-SCALE CYCLONES OVER WEST ANTARCTICA IMPACT OF ASSIMILATING COSMIC REFRACTIVITY PROFILES ON POLAR WRF FORECASTS OF SYNOPTIC-SCALE CYCLONES OVER WEST ANTARCTICA David H. Bromwich 1, 2 and Francis O. Otieno 1 1 Polar Meteorology Group, Byrd

More information

The Global Wind Atlas: The New Worldwide Microscale Wind Resource Assessment Data and Tools

The Global Wind Atlas: The New Worldwide Microscale Wind Resource Assessment Data and Tools ICEM 2015, Boulder, Colorado USA The Global Wind Atlas: The New Worldwide Microscale Wind Resource Assessment Data and Tools Jake Badger, Neil Davis, Andrea Hahmann, Bjarke T. Olsen Xiaoli G. Larsén, Mark

More information

Wind Rules and Forecasting Project Update Market Issues Working Group 12/14/2007

Wind Rules and Forecasting Project Update Market Issues Working Group 12/14/2007 Wind Rules and Forecasting Project Update Market Issues Working Group 12/14/2007 Background Over the past 3 MIWG meetings, NYISO has discussed a methodology for forecasting wind generation in the NYCA

More information

Wind Power Production Estimation through Short-Term Forecasting

Wind Power Production Estimation through Short-Term Forecasting 5 th International Symposium Topical Problems in the Field of Electrical and Power Engineering, Doctoral School of Energy and Geotechnology Kuressaare, Estonia, January 14 19, 2008 Wind Power Production

More information