Diagnosis(of(tropical(biases(and(the(MJO(from(patterns(in(

Size: px
Start display at page:

Download "Diagnosis(of(tropical(biases(and(the(MJO(from(patterns(in("

Transcription

1 1 Diagnosis(of(tropical(biases(and(the(MJO(from(patterns(in( 2 MERRA s(analysis(tendency(fields( BrianE.Mapes 9 RosenstielSchoolofMarineandAtmosphericSciences,UniversityofMiami 10 Miami,FL mapes@miami.edu 12 Telephone:(305)421N and JulioT.Bacmeister 17 NationalCenterforAtmosphericResearch 18 Boulder,CO SubmittedAugust6, RevisedJanuary4, ForMERRAspecialissueofJ.Climate 28 29

2 2 Abstract 1 2 TheModernEraReanalysisforResearchandApplications(MERRA)is 3 realistic,includingitsmaddennjulianoscillation(mjo)whichtheunderlyingmodel 4 (GEOSN5)lacks.InMERRA sbudgets,analysis'tendencies(ats)makeevolution 5 realisticdespitemodelshortcomings.atsarethenegativeofphysicalprocess 6 errors,ifdynamicaltendenciesareaccurate.patternresemblancebetweenatsand 7 physicaltendenciessuggestwhichprocessesareerroneous.weexaminedpatterns 8 oftropicalatsin4dimensionsandfoundseveralnoteworthyfeatures. 9 TemperatureATprofilesshowthatmoistphysicshaserroneoussharp 10 coolingat700hpa,asignatureofmisplacedmeltingandperhapsexcessive 11 precipitationevaporation.thisexcitesadistinctive(fingerprint)erroneousshort 12 verticalwavelengthtemperaturestructure,perhapsacauseofgeosn5 stoonslow 13 convectivelycoupledwaves.theglobe slargestatof200hpawindstemsfrom 14 overactiveheatingovertheintranamericasseasregioninsummer,withthesame 15 moistphysicsfingerprint.theerroneousheatingproducesabaroclinicvortexthat 16 iscounteredbyatsopposingitstemperatureandmomentumfieldsinathermal 17 windbalancedsense.lackofrestraintinthedeepconvectionschemeisalso 18 indicatedinmjocomposites,wherethewatervaporatisanomalouslypositiveon 19 theleadingedgeindicatingaprematurevaporsink.sincegeosn5lacksanmjo,this 20 diagnosissuggeststhatthetransitionfromshallowtodeepconvection(moistening 21 todrying)iscrucialintherealnworldmjo.thisisnotnews,butitsdiagnosisbyats 22 providesanobjective,repeatablewaytomeasuretheeffectthatcouldbeauseful 23 guideinmodeldevelopment

3 3 1.(Introduction( 1 2 Therearemanywaystolearnfromtheconfrontationofanatmosphere 3 modelwithobservations,inserviceofmodelimprovement.thestudyofinitial 4 tendencies(orerrorsinonentimenstepforecasts,klinkerandsardeshmukh1992)is 5 appealingbecausetheeffectofamodelprocesserrorislocalized.however, 6 initializationshockmaydominatetheresults,makinginterpretationsubtle(e.g. 7 Juddetal.2008).Attheotherextremeoftimescale,thebiasesofunconstrained 8 modelrunscanalsobehardtointerpret,sinceinteractingerrorshavetimeto 9 pervadeallaspectsofthesimulation.inbetweenthefirsttimestepandfreemodel 10 climatologyliestheprocessoferrorgrowthandspread,whichmayyieldlongnterm 11 errorsquitedifferentfromtheoriginalsourceoftheerror(e.g.rodwellandjung ).Atstilllongerleadtimes,othercoupledmodelcomponents(landandocean) 13 canfurtherevolvetheerrors(e.g.songandmapes2012).a seamless suiteofdata 14 assimilationandforecastactivities,withinitializedforecastsexaminedatvarious 15 leadtimes,isarguablythebestwaytoevaluateandimprovemodelsofboth 16 weatherandclimate(jeukenetal.1996,phillipsetal.2004,rodwellandpalmer ,Boyleetal.2008,Andersonetal.2010,Martinetal.2010). 18 Dataassimilationcanalsoteachusaboutnature,notjustaboutmodelerrors. 19 Whilemodelaccuracyishelpfulinensuringtherealismofanalyzedstates,small 20 modelerrorscanactuallybeinformativeiftheyactasspacentime fingerprint 21 patternsthatfacilitateprocessinterpretations.lessonsaboutnatureareprobably 22 cleanestwhenthemodelexertslittleofitsowninfluence,butratheractsonlyasa 23 quantitativeframeworkofgoverningequations.suchisthecasewiththestudyhere 24 ofthemaddennjulianoscillation(mjo,maddenandjulian1994),aprominentform 25 ofvariabilityinnaturethatthefreenrunninggeosn5modellacksalmostcompletely 26 (seefigs.3g,4g,6g,7gofkimetal.2009).thatsamemodel(slightlyupdatedbut 27 stilllackinganmjo)underpinsthenewmodernerareanalysisforresearchand 28 Applications(MERRA,Rieneckeretal.2008,2011). 29

4 4 AnoveltyofMERRAoverearlierreanalysesisthatitsdatasetsinclude 1 comprehensivesetsofbudgettermsforthemodelstatevariables(wind, 2 temperature,moisture,ozone).theseeulerianbudgetsbalanceexactly,by 3 construction:atermontherighthandsideofeachbudgetcalledtheanalysis' 4 tendency(at)guaranteesit.constructionoftheat soccursduringapredictorn 5 correctororforwardnbackwardtimeintegrationthatdrivesthemodelthrougha 6 sequenceofanalyzedatmosphericstates(asdescribedinsection2). 7 InawellNdeveloped,comprehensive,fullNphysicsGCMlikeGEOSN5,model 8 shortcomingsaremostlysecondnorderweaknesseswithinadequateschemes,not 9 wildlyinaccurateormissingprocesses.thishelpsusinterpretats:ifthespacen 10 timepatternsofatsresemblethepatternofactionofoneofthemodel sphysical 11 tendencies,thatsuggetswhichschemeisatfaultnnactinginabouttherightplace 12 withinawellnanalyzedstate,butinaslightlywrongway(schubertandchang ).Alongtheway,lessonscanalsoemergeaboutnature,atleastiftheyare 14 expressiblewithintheframeworkoftheideasandmechanismsembodiedinthe 15 model sformulation.thisstudyisadiagnosisofsomeerrorsofgeosn5viamerra 16 ATs,containingsomelessonsaboutnature. 17 Section2describesMERRAdataandtheinterpretationofanalysis 18 tendencies(ats).section3examinesatpatternsinsamplesandaveragesover 19 variousregionsofspaceandtime.section4containsthesummaryandconclusions (Data(and(methods( a.analysistendencies TheMERRAreanalysisisdescribedinRieneckeretal.(2011).Itusesa 25 versionofthegeosn5atmosphericmodelcalledgeosagcmneros_7_24.itsphysics 26 aresimilartopriorversionsincludingthensippn2model(bacmeisteretal.2006, 27 Leeetal.2008,Mapesetal.2009),andtheGEOSN5modelusedinKimetal.(2009), 28 althoughthereevaporationofprecipitationhasevolvedsomewhat(relevantto 29 discussionsherein).stateestimation(analysis)isdonebya3doptimal 30

5 interpolation(minimizationofasquaredweightederrorbetweenfirstguessfields andobservations),ingestingmanytypesofobservationsbothfromsatellitesandin situmeasurements(rieneckeretal.2008).giventhesequenceofanalyzedstates every6hours,theincrementalanalysisupdate(iau,bloometal.1996)technique buildsatsthatcarrythemodeltrajectoryinphasespacealmostexactlythroughthe analyzedstates.theatsareconstantwithin6nhourmodelintegrationtime windowscenteredonthe6nhourlyanalysistimes.usingtheiausystem,anyversion ofthemodelcanbedriventhroughanysetofstates(includingotherreanalyses,not justmerrastates)nnacapabilitycalledreplay. ThefollowingdiscussionintroducesournotationabouttheATs,asusedin figurecaptionsanddisucssionsbelow.consideranarbitrarystatevariable'z'whose governingequationinnaturecanbewrittenintermsoflargenscaledynamicalplus physicalprocesses(partialtendencies): Z t = Z lsd + Z phys (1) AGCMhasacorrespondinggoverningequationforZ,butdiscretizedintime asindicatedbyδtandwithapproximationsoftherighthandside: ΔZ Δt = dz + dz dt dyn dt param (2) Themodel sdynamicaltendenciesdz/dtdyn'consistofadvectionofresolvedn scalegradientsbyresolvednscaleflows,pluspressuregradientandcoriolisforcesin thecasewherezismomentum.givenanaccuratestateanalysisanditsgradients, dz/dtdyn Żlsd'sincedynamicalcorenumericserrorsarequitesmallonan instantaneousbasis.moreproblematicarethe physical tendenciesdz/dtparam, whichmusttrytorepresentżphys,'includingallunresolvedfluideddyflux divergences(turbulence,convection,gravitywaves),alltrulynonndynamical processeslikeradiationandmoleculareffects(surfaceconduction,phasechanges, radiation),andalltheinteractionsofthesethings,includingpossible 5

6 nondeterminism.ingeosn5,thephysicaltendenciesdz/dtphysarebrokendown accordingtosubroutinepackages:moistprocessesdz/dtmoist'(convection,cloud, precipitation),turbulencedz/dtturb,radiationdz/dtradandgravitywavedrag dz/dtgwd. Inreanalysis(orreplay)mode,themodel sequationsaremodifiedby additionofananalysistendencydz/dtana: 7 ΔZ analyzed 6h = dz + dz + dz dt dyn,6h dt param,6h dt ana (3) 8 whichisperhapsmoreclearlyviewedasadefinitionoftheatfield: 9 dz /dt ana ΔZ analyzed 6h dz /dt dyn,6h dz /dt param,6h (4) IfthelargeNscalestatevariablesareaccuratelyanalyzed,includingtheir spatialgradientsandtimechanges,thenlargenscaledynamicaltendenciesare accurate(dz/dtdyn' 'Żlsdasarguedabove)andΔZanalyzed/Δt' ' Z/ t.withthose assumptions,(3) (1)gives: dz/dtana' ''>(dz/dtparam'>'żphys)' (5) orinotherwords,ats'can'be'interpreted'as'the'negative'of'model'physical'tendency' error(whereerrorisdefinedasmodelminustruth). TheIAUproduces6NhourlypiecewiseNconstantATscenteredontheanalysis times,whichareincludedas4ndimensionaloutputfieldsinthemerradataset. However,itisworthnotingthatanyschemewhichdrawsthemodeltowardan analyzedstatesequencecouldbeusedtodefineatsusefully,evensimplerelaxation ornudging(jung2011). b.mjodefinitions TheMJOresultsdescribedbelowinvolvetwodifferentapproachestodefine MJOphaseasabasisforcomposites.Inthefirst,eachlongitudehasadifferentphase 6

7 7 (front,middle,andbackofthemovingmjo scentralrainyoractivearea).inthis 1 caselongitudeaswellastimecanbepooledtomakephasecomposites,andafew 2 monthsofdataaresufficienttofill8n10phasebins.inthesecond,thewholeworld 3 isassignedonephaseofthemjoonagivenday,so phase thuscorrespondstothe 4 longitudeofenhancedconvection(wheelerandhendon2004,wh04).sincethe 5 dependenceonlongitudeisretained,onlytemporalaveragingcontributesto 6 buildingacompositeandmanymoredataareneededtomakeitsmooth.athird 7 definitionusedinrobertsonandroberts(2012)alsoassignsthewholeworlda 8 singlemjophaseonanygivenday.figure3ofrileyetal.(2011)illustratesourtwo 9 methodsofdefiningthemjo. 10 ThefirstapproachisdefinedfromspaceNtimefilteredtropicalNbelt(15SN15N) 11 outgoinglongwaveradiation(olr)observedbysatellite.theolrtimenlongitude 12 sectionwasbandnpassfilteredfor20n100dayperiodsandplanetarywavenumber 13 1N9,toproduceareferencetimeNlongitudesectionOLR (x,t)whichpassesthe 14 eyeballtest(fig.5below)forappropriatelyisolatingtherelevantlowfrequency 15 aspectsinthetimenlongitudesection.ascatterplotofstandardizedolr and 16 standardized (OLR )/ t,witheachlongitudentimebinasitsdatapoints,makesa 17 circularscatterinwhichazimuthindefinesmjophaseandradiusisamplitude(see 18 Fig.3ofRileyetal.2011,Fig.2ofYasunagaandMapes2012).Dividingphaseinto 19 10binsleavesenoughdataineachbinforasmoothcompositewithjustafewMJO 20 cycles(4monthsofdata).however,aspectsofthemjothatdependonlongitudeare 21 sacrificedintheaveraging.insomeplotsbelow,indianandpacificlongitudeswere 22 averagedseparately,althoughthisfunctionsmoreasasignificancecheck 23 (emphasizingthesimilarities)thananestimateoflongitudedependence(the 24 differences).thiswasourfirstapproach,conductedinitiallywith2.5 o Scout 25 versionsofmerraandlaterrepeatedwithfinalmerradata,fortwo120nday 26 periodsofintensemjoactivity:januarynapril1990andnovember February1993.ThefirstperiodwasthehighestpeakinalongNtermindexofMJO 28 varianceforwhichmerradatawereavailablewhentheresearchbegan,whilethe 29 secondwaschosenbecauseitincludedthetogancoarefieldprogram.forthese 30

8 twoperiods,acomprehensivecompositeofall(morethan100)merradataset variableswasmadeandperused.thesimilarityofresultsbetweenthesetwomjon activeperiodsgivesusconfidencethattheconclusionsreportedherearerobust.we focushereonthe1990results,inparttoemphasizethatthespecialobservationsof 1992N3arenotcriticalforthisexercise.Microwaverainfallestimatesoverocean, obtainedfromremotesensingsystems(ssmi.com),wereusedasanindependent checkonmerrarainfall.itisnoteworthythatthe2.5 o Scoutdatagavecomposite resultsalmostidenticaltothe~100xlargerfinalmerradataset. OursecondapproachtoMJOdefinitionusestheRealNtimeMultivariateMJO index(rmm).wheelerandhendon(2004)defineditscomponents(rmm1,rmm2) astheleadingpairofprincipalcomponentsinananalysisofthecombinedvectorof standardizedandlightlyhighnpassfilteredolr,850hpazonalwind,and250hpa zonalwindtimenlongitudesections.inthisrmmbasedmjodefinition,longitude andlatitudedependencesareretained,sincermm1andrmm2aresimplydaily timeseries.wecomposited1979n2005merradatainwh04 soctantsofrmm1n RMM2phasespace.Forthesecompositeswealsorebinnedthedatafrom2/3x½ degreeresolution(540x360arrays,discardingthe361 st latitude,thenorthpole)to 3.3x5degree(108x36arrays).Dataareon42pressurelevels(25levelsinthe tropospherewith25 50hPaspacing).RMMphasesthusrangefrom1N8. 3.(Results:(analysis(tendencies(and(their(interpretation( ThissectionexaminesMERRA stropicalatsindifferentscales,domains,and contextsbasedonthemostoutstandingfindingsofourcomprehensiveexamination. a.(vertical(structure:(a(fulldresolution(sample(of(dt/dt ana ( Figure1showsdT/dtparamanddT/dtanaatasinglegridpointoverthe equatorialwesternpacificinlatedecember1992,theplaceandtimeofthetoga COAREfieldcampaign.MERRA stotalphysicalheating(fig.1a)istopnheavyin profileandintermittentintime,andshowsadistinctivestripeoflowornegative valuesat700hpa,alsoseeninpriorstudiessuchasfig.4ofmapesetal.(2009), 8

9 9 Figs.1and3ofHagosetal.(2010),andFig.9case1ofLingandZhang(2011).Moist 1 heatingdt/dtmoistprovidesmostofthistotal(notshown),andfurtherbreakdowns 2 areshownlater.theanalysistendency(fig.1b)consistentlyopposesthestripeof 3 moistcoolingat700hpa,suggestingthatitiserroneous,andalsohasanegative 4 stripeat550hpa(the0 o Clevelinthetropics). 5 BasedontheseATstripes,underinterpretation(5)above,wesuspectedthat 6 themodelwasmeltingitsprecipitationatthewronglevel,near700hpainsteadof 7 550hPainthetropics.Inthemodelcode,freezingandmeltingwerebothassigneda 8 timescaleof5000s,atimechosentoexpressicenucleationdelaysinthefreezing 9 process.formelting,5000sissolong(5kmfallatatypicalsnowfallspeedof1m/s) 10 thatasecondarycleanuplineofcodeisactuallyhandlingmostsnowmelting,atthe 11 firstaltitude(goingdownward)wheretexceeds5c.thusmeltingisindeed 12 occurringtoolowinthemerraversion;newerversionsofgeosn5haveupdated 13 thistreatmentbasedontheresearchpresentedhere.precipitationrenevaporation 14 alsoshowsasharpverticalgradientinthe600n700hparange(asweshallsee 15 belowinfig.6c)andmayalsocontributesomeofthephysicserrordeducedfrom 16 theatverticalstructure.thereevaporationismostlyofnonconvectiverain(not 17 shown),anditcorrespondstoacloudvoidbeneathrainngeneratinguppercloud, 18 suggestingthatitisstrongenoughtodrivearesolvednscaledowndraft(fig.8cof 19 Mapesetal.2009).Reevaporationcoolingwasdeliberatelymadestrongerinorder 20 tolimitconvectionnlowlevelconvergenceinteractionsthatleadtoadoubleitcz 21 biasinthepacific(bacmeisteretal.2006). 22 Verticallythinlocalizedcooling(suchasmelting)drivesgravitywave 23 motionsthataredispersiveaccordingtoverticalwavelength,yieldingwavelike 24 temperatureanomalieswithshortverticalwavelengthsthatextendaboveand 25 belowthelocalizedcooling.thiswavelikeforcedtpatterncanthencoupleto 26 convectivemassfluxprofilesthroughbuoyancysorting,producingthinlayered 27 inflowsandoutflowssometimesseennearbutalsoextendingaboveandbelowthe 28 meltinglevelindopplerradardata(mapesandhouze1995).basedonthisphysics, 29 theerroneousverticaltemperaturewaveimpliedbythe~300hpavertical 30

10 10 wavelengthinfig.1bmaybeaconsequenceofthinnlayerphysicalheatingerrorsin 1 asfewasonelayer.butifmodelmeltingismisplacedintheverticalfrom550hpato 2 700hPa,itimpliesadipoleerrorwithtwicethemagnitudeofmelting:bothtoolittle 3 coolingat550hpaandtoomuchat700hpa.thesameshortnwavelengtht profile 4 inconnectionwithraineventscanbeseeninfig.8fofmapesetal.(2009). 5 ThereisindirectevidenceofashortverticalwavelengthheatingandTerror 6 ingeosn5:convectivelyncoupledwavestravelatabout7m/s(fig.6bofleeetal ),muchslowerthaninobservationsandapproximatelyconsistentwiththe 8 ideaofagravitywaveof~300hpaverticalwavelengthasseeninfig.1bcouplingto 9 convection.mightthealtitudeofmeltingbeimportantinsettingthephasespeedof 10 convectivelycoupledwaves?theanswerdependsonacombinationoftheheating 11 profile sverticalfinestructureandtheconvectionscheme ssensitivityprofiles, 12 beyondthepresentscope. 13 b.(the(strongest(feature(of(u200(at(climatology( MERRA sannualmeanclimatology(1979n2005)ofdu/dtanaat200hpais 16 showninfig.2,intheregionofoneofitsmostintensefeatures,regriddedto3.3x5 17 degreeresolution.thelargestvalueexceedsn3m/sday N1 intheannualmeanover 18 thewesternatlanticatabout25n,andthetimenlatitudeclimatologyinpanelb 19 revealsthatitoccursinsummerwhenseasurfacetemperature(sst)iswarmest.a 20 similarlyntimedpositivevalueisseenat10n15n,suggestingthatthesearepartofa 21 couplet. 22 GEOSN5tendstoproducetoomuchdeepconvectionandrainfalloverthe 23 AtlanticWarmPool(AWP)regioninsummerwhendrivenwithobservedSSTfields 24 (standarddiagnosticsnotshown),likemanycontemporarygcms(biasuttietal ,Misraetal.2009).ThisproblemisindicatedinMERRAbythevertically 26 integratedatforwatervapor,d<qv>/dtana(fig.3).positiveatvaluestheresuggest 27 thatthemodelphysicshasanoveractivemoisturesink(precipitation).wespeculate 28 thattheconvectionschemecuestoostronglyonsurfacenbasedparcelinstability 29

11 11 whichiscloselytiedtowarmsst,andistooinsensitivetothemiddlenleveldryair, 1 animportantsuppressingfactorforconvectionintheawpregion. 2 Anoveractivemoisturesinkimpliesanexcessivemoistheatinginthemodel, 3 whichmustproduceerroneouspotentialvorticity(pv)viaitsverticalderivative. 4 WecandiscernthebalancedwindandthermalstructureofthiserroneousPV 5 vortexinfig.4a,whichshowsacrossnsectionoftheatsoftemperature(colors)and 6 u(contours).cyclonicdu/dtanatorquesat200hpaindicatethatwindobservations 7 opposethemodel stendencytoproduceanexcessiveanticycloneaboveits 8 excessiveheating.meanwhile,anticyclonictorquesnear600hpasuggestthatthe 9 modelhasanerroneouscyclonictendency,consistentwithapvsourceduetoan 10 excessiveverticalheatinggradientdq/dzthere.consistently,dt/dtanaisnegativein 11 between,inthe200n600hpalayer,andpositiveat700hpa,whichalsoindicatesvia 12 thetfielddirectlyanexcessivedt/dtparamheatingdipolewith(minus)theprofileof 13 dt/dtana.fig.4bshowsthatthephysicalheating(opencontours)closelyfollowsthe 14 patternthattheatsareopposing,supportingtheinterpretation(5)ofatsasthe 15 negativeofphysical(mostlymoist)heatingerrors.raineventsinfig.8bofmapeset 16 al.(2009)leaveatemperatureresideofsimilarverticalstructure,sothisbalanced 17 climatologicalvortexoferrorsappearstobeaconvectivelydrivenfeaturewrit 18 large.inthiscase,theheatinghasexcessivemagnitude,anditspeculiarprofile 19 (discussedaboveinsection3a)issimplythefingerprintofmerra smoistheating 20 processesthataidsinattribution. 21 c.(mjo(composites(of(ats( SinceMERRAtracksnatureintime,wecanuseindependentsatellite 24 observationsofthemjoasthebasisforcompositingmerraatsandotherfields. 25 RobertsonandRoberts(2012)concludethat MERRAhasproducedaverycredible 26 pictureofintraseasonalvariabilityasjudgedbycomparisonswithradiativefluxes 27 andprecipitationdatathatareindependentoftheassimilation, andwefindthe 28 sameusingolr(notshown)andssmirainfallestimates(infig.7below), 29 encouragingtheuseofindependentmeasurementsasabasisforcomposites. 30

12 12 Figure5showsthestrongMJOactivityofJanuaryNApril1990,with15NN15S 1 OLR(leftpanelcolors)andOLR filteredtomjofrequenciesandwavenumbers 2 (opencontoursonbothpanels).panelbshowsthephasestripsusedtoconstruct 3 ourcomposites.phase0ismostsuppressed(olr maxima),andphase5ismost 4 active(olr minima),astheantipodesof10equallyspacedazimuthbinsinolr vs. 5 dolr /dtspace.manystudiesuse8phasebins,butwe(followingrileyetal.2011) 6 happenedtochoose10initially,andthatresolutionprovesconvenientbelow. 7 Contouringmakessuchbinningdetailsunimportant,exceptthatplotaxislabelsgo 8 from0n9ratherthan0n7or1n8. 9 SelectedtermsintheMJOcompositetemperaturebudgetareshowninFig NotethatmeanfieldsandMJOvariationsarecombinedinFig.6;thesearenot 11 anomalies.sincethemjoislowfrequencyandcyclical,heatstorageδt/δtistinyas 12 dt/dtdynanddt/dtphysnearlybalance(notshown).moistprocesses(panelc) 13 producemostofthephysicalheating,andagainthesharpverticalgradientfrom N700hPaisseen.Evaporationofprecipitation(paneld)iscenteredat750hPa 15 andprovidesasubstantialpartoftheverticalgradientnear600hpa,whichis 16 sharperthanthatinfig.5ofbacmeisteretal.(2006)astheparameterizationhas 17 changedsincethen.theprofilestructureindt/dtana(paneld)seemstoalignwith 18 themoistheatingprofilefinestructure,andnotwiththatofradiativeheating(not 19 shown),againproviding fingerprint typeevidencethatmoistheatingratherthan 20 cloudyradiationisthedominantprocessdrivingthelayeredstructureoferrors. 21 Moisturebudgetprocesses(Fig.7)arerevealingaboutthemodel s 22 difficultiesinsimulatingthejanuarynapril1990mjos.startingatlowerleft,figure 23 7dshowsthatunassimilatedrainfallestimatesbysatelliteindicateatriplingof 24 rainfallfromphase0tophase5forthecompositemjoasdefinedhere,withthe 25 Indiansector(red)rainierthanthePacific(blue)onaverage.MERRA(landplus 26 ocean)hasapositiverainbiascomparedtossmi(oceanonly)acrossallphases,and 27 alsoasmallercompositemjoamplitude(fig.7c).robertsonandroberts(2012) 28 alsofindthatmerra smjoiscrediblebutabitweakinitsrainfallamplitude, 29 consistentwiththenotionthatthemodellackstheoscillationmechanismsandis 30

13 13 beingforcedtoundergoitonlybytheobservationsitassimilates.phase2asdefined 1 hereisthepeakofmerra sexcessiverainbias.moistureatsinpanels7a,bconfirm 2 thatmerra smoisturesinkismostexcessiveinphase2,althoughthisisjusta 3 modestdeviationfromatimenmeantropicalmoistureprofilebiasthatprevails 4 acrossallphases,withadistinctiveverticalprofile(fig.7a).geosn5developerscall 5 thisbias themushroom afteritsappearanceinzonalmeancrosssections. 6 Convectivemassflux(Fig.7e)alsoshowsadistinctupperNlevelenhancement 7 inphase2,indicatingthatthemodelisprematureinitsonsetofdeepconvectionin 8 themjo sonsetphase,wellbeforethepeakrainfall(atphase5n6).interestingly, 9 observationscompositedinthesameway(albietfromdifferentyears,inthe 10 Cloudsatera,2006N2009)suggestsomeinterpretationsofthemodel sdifficulties. 11 Figure7fshowsrandomlydrawnsamplesofCloudsatecho'objects(Rileyetal ),eachcenteredonitsappropriatephase(phaseisdefinedcontinuouslyhere, 13 butthexaxisislabeledwith10valuesforconvenience).deepconvectiondoes 14 indeedoccurinphase2,infactwiththehighestechotopaltitudeofthewhole 15 display,butitisisolatedandnarrow,quitedistinctfromthewide,overlapping 16 mesoscaleechoobjectsinthemainactivephases(3n6inthisrandomsamplefrom 17 manymore,oftenweaker,mjoeventsin2006n2009).alsoconsistently,lightning 18 peaksinoffnpeakphasesofthemjo(moritaetal.2006),indicatingintensebut 19 sparseconvectioninconditionslikephase2.basedonalltheseindications,it 20 appearsthattheliftednparcelinstabilitydrivingiusolatedcumulonimbuscloudsis 21 stronginearlymjophases,soperhapsitisunsuprisingthatgoesn5 s 22 parameterizedconvection,whichisbasedonverticallynintegratedbuoyancyor 23 cloudworkfunction(moorthiandsuarez1988)mightoverreacttothatinstability. 24 Hypothesestoimprovethemodelwouldbetoincreaseitssensitivitytodryair,as 25 suggestedalsoaroundfig.3,ortofindsomewaytodrawadistinctionbetween 26 isolatedandorganizeddeepconvection(e.g.mapesandneale2011).merra s 27 prematurelywidespreaddeepconvectiondevelopmentisalsoseenasaphaseshift 28 ofitsmiddleandhighcloudrelatedfieldsrelativetomodisandothersatellite 29 observations(fig.4ofrobertsonandroberts2012). 30

14 14 Byusingmanyyears(1979N2005)insteadofjust4monthsofMERRAdata, 1 wecanaddspatialdetailtothisdiagnosisofmjomoistprocessesandtheirerrorsin 2 GEOSN5.Figure8showsMERRA smjoanomaliesofprecipitationandcolumn 3 integratedd<qv>/dtanacompositedaccordingtothewheelernhendonrmmphase 4 definition,averagedover20sn20n.phase8isrepeatedasphase0forcontouring 5 purposes.positiverainanomalies(green)ofabout1mm/dmoveacrosstheindon 6 Pacificsector(60EN180E)fromphases2N6.Before(eastof)theserainanomaliesare 7 positiveatanomalies(red,~0.1mm/d)thatshowthemodel soveractivephysical 8 moisturesink(prematuredeepconvectionorinadequatesurfaceflux)inthose 9 regionsandtimes.linesatphases2and3delineatewhenthisleadingpositiveat 10 featureisoverthepacific,althoughtheeffectisevenstrongerovertheindianocean 11 inphase8. 12 Figure9showsaspatiallydistributedviewofmoisturebudgettermsfor 13 phases2(top3panels)and3(bottom3panels).merraprecipitationcomposites 14 showthemaximum(redareasinfig.9a,9d)movingfromtheeasternindianto 15 westernpacificoceansduringthesephases.aheadofthepeakrainfallanomalies, 16 overthewholewesternpacific,positived<qv>/dtanaandverticallydistributed 17 dqv/dtanasuggest,onceagain,thatthemodelphysicstendencyhasanegativeerror 18 there(excessivemoisturesinkinprematuredeepconvectionorinadequatesource 19 insurfaceflux).theverticalstructureofdqv/dtanainthebottompanelofeachphase 20 (panelsc,f)isbroadlyconsistentwiththatoffig.7a,andindicatesthatthephysics 21 errorisanexcessivesinkatlowlevelsandsourceatupperlevels,againsuggesting 22 prematuretransitiontodeepconvection.robertsonandroberts(2012)find 23 consistentresultsaboutmerra satstructureacrossthemjo,asdefinedintheir 24 differentway.theyalsoexaminedthedivergenceofthelownlevelwindats,and 25 foundevidenceofconvergentwindtendenciesintheboundarylayerplayingarole 26 inorganizingmjoprecipitation,somomentumphysicserrorsandnotjust 27 thermodynamiconesemphasizedheremaybeapartofgeosn5 spoormjo 28 simulation. 29

15 15 Finally,inlightoftheIndianOceansignatureinFig.8,weconsideracase 1 studyofspecialinterest:octobernnovember2011,duringthedynamofield 2 campaignonmjoinitiation.figure10showsmerra srainrate,precipitablewater, 3 andd<qv>/dtanaforthis61ndayperiod.twomainintraseasonalrainpeaksareseen 4 inlateoctoberandlatenovember,inassociationwithprecipitablewaterpeaks.the 5 watervaporatisindeedatitsmostpositivewhenthermmphaseis8(dotted 6 lines),consistentwiththecompositeresultsoffig.8nnahopefulindicatorthatthese 7 2monthsofDYNAMONsampledMJOactivitymayhavesomegenerality. 8 4.(Summary(and(conclusions( 9 10 WehaveexaminedMERRA sanalysistendencyfieldsinheight,latitude, 11 longitude,andtime(season,mjophase,andinstantaneous).besidesshowingthe 12 model smeanbiases,whichcouldbeknownbysubtractingaveragedfreerunning 13 simulationoutputfromaveragedobservations,atsshowpatternsofmodelerror 14 withinrealisticandrealnworldnsynchronizedsequencesofatmosphericstates.from 15 thesepatternsand(5)afewfindingsemergedaboutmerra sunderlyingmodel 16 versioncalledgeosagcmneros_7_ Themodelhaserroneousshortverticalwavelengthsinitsvertical 18 heatingprofile(fig.1b).theseerrorscomemainlyfrommoist 19 heating(fig.6b),whichhasasteepverticalgradientatmidlevels 20 duetodelayedmeltingofprecipitationtoofarbelowthe0clevelas 21 wellasconcentrationoftheevaporationofprecipitationatabout mb(Fig.6c) Themodelproducesexcessivedeepconvection(moistheatingand 24 drying)overtheatlanticwarmpoolinsummer(fig.3),whereit 25 drivesananomalousbaroclinicvortex(fig.4);andontheleading 26 edgeofthemjo(figs.6,8,9),whereinstabilityislarge(e.g. 27 lightningandtallnarrowcloudsareobserved).thewellnknown 28 insensitivityofconvectionschemestodryness(derbyshireetal )maybethecommonculpritinbotherrors. 30

16 16 Wecanfurtherdeduce,fromthefactthatGEOSN5lackstheMJOentirelyin 1 freerunningmode(kimetal.2009),thatthemoistureatdiagnosispointsto 2 shallowntondeepconvectiontransitionasalikelykeyprocessintherealnworldmjo. 3 Thisisnotanewidea(KemballNCookandWeare2001;KikuchiandTakayabu2004; 4 Kiladisetal.2005;Masunagaetal.2006;BenedictandRandall2007;Zhangand 5 Song2009;Masunaga2009;Katsumataetal.2009),buthavingarepeatable, 6 objectivemethodtomeasuretheeffectinamathematicalconfrontationofmodel 7 withobservationscouldbeuniquelyhelpfulforturningthisfamiliarnotionintoa 8 pathtowardwellcalibratedmodelimprovements. 9 ThetacticofreplayingexistinganalysesusingIAUisveryappealing,in 10 comparisontoexpensiverawndataassimilation,buttheuseofevensimplerlinear 11 relaxationtoestimateatsmaysuffice(jung2011).wehopesuchactivitiesbecome 12 moreroutinelyavailableinthefuture,bothtoimprovemodelsandtoadvance 13 understandingofimperfectlysimulatedbutwellanalyzedphenomena. 14 Acknowledgements( Helpful'suggestions'by'several'seminar'audiences'and'three'reviewers'are'gratefully' 17 acknowledged.'this'material'is'based'on'work'supported'by'nasa'grant'nnx06ad74g,' 18 Office'of'Science'(BER),'U.'S.'Department'of'Energy'grant'DEMSC ,'and'National' 19 Science'Foundation'Grant'No.' 'JTB'acknowledges'support'from'GMAO'and' 20 NASA s'map'program.'the'olr'image'in'fig.'5a'was'provided'by'the'noaa/esrl' 21 Physical'Sciences'Division,'Boulder'Colorado,'from'their'Web'site'at' Kiladis.' 24

17 References' Andersson, Erik, and Coauthors, 2005: Assimilation and Modeling of the Atmospheric Hydrological Cycle in the ECMWF Forecasting System. Bull. Amer. Meteor. Soc., 86, doi: Bacmeister, J.T., M.J. Suarez, and F.R. Robertson, 2006: Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM. J. Atmos. Sci., 63, Benedict, J. J. and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, Biasutti, M., A. H. Sobel, and Y. Kushnir, 2006: AGCM precipitation biases in the tropical Atlantic. J. Climate, 19, Bloom, S., L. Takacs, A. da Silva, and D. Ledvina, 1996: Data Assimilation Using Incremental Analysis Updates. Mon. Wea. Rev., 124, Boyle, J., S. Klein, G. Zhang, S. Xie, X. Wei, 2008: Climate model forecast experiments for TOGA COARE. Mon. Wea. Rev., 136, doi: /2007MWR Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, Hagos, S., and Coauthors, 2010: Estimates of tropical diabatic heating profiles: commonalities and uncertainties. J. Climate, 23, doi: /2009JCLI Jeuken, A. B. M., P. C. Siegmung, L. C. Heijboer, J. Feichter, and L. Bengtsson (1996) On the potential of assimilating meteorological analysis in a global climate model for the purpose of model validation. J Geophys. Res. 101: Jiang, Xianan, and Coauthors, 2011: Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates. Mon. Wea. Rev., 139, doi: Judd, K, C. A. Reynolds, T. E. Rosmond, and L. A. Smith, 2008: The geometry of model error. J. Atmos. Sci., 65 (6). pp Jung, T., 2011: Diagnosing remote origins of forecast error: relaxation versus 4D-Var dataassimilation experiments. Quarterly Journal of the Royal Meteorological Society, 137: doi: /qj.781 Katsumata, M., R. H. Johnson, and P. E. Ciesielski, 2009: Observed synoptic-scale variability during the developing phase of an ISO over the Indian Ocean during MISMO. J. Atmos. Sci., 66, Kemball-Cook, S. R. and B. C. Weare, 2001: The onset of convection in the Madden-Julian Oscillation. J. Climate, 14,

18 Kikuchi, K. and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi: /2004gl Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden- Julian Oscillation. J. Atmos. Sci., 62, Kim, D., and Coauthors, 2009: Application of MJO Simulation Diagnostics to Climate Models. J. Climate, 22, doi: /2009JCLI Klinker, E. and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, Lee, M.I., M.J. Suarez, I.S. Kang, I.M. Held, and D. Kim, 2008: A Moist Benchmark Calculation for Atmospheric General Circulation Models. J. Climate, 21, Ling, Jian, Chidong Zhang, 2011: Structural Evolution in Heating Profiles of the MJO in Global Reanalyses and TRMM Retrievals. J. Climate, 24, doi: Mapes, B. E. and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, Mapes, B. E., J. Bacmeister, M. Khairoutdinov, C. Hannay, M. Zhao, 2009: Virtual field campaigns on deep tropical convection in climate models. J. Climate, 22, Madden, R. A., and P. R. Julian, 1994: Observations of the Day Tropical Oscillation A Review. Mon. Wea. Rev., 122, Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, J. Kim. (2010) Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate. Journal of Climate 23:22, Masunaga, H., T. S. L Ecuyer, and C. D. Kummerow, 2006: The Madden-Julian Oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, Masunaga, H., 2009: A 9-season observation TRMM observation of the austral summer MJO and low-frequency equatorial waves. J. Meteor. Soc. Japan, 87A, Misra, V., S. Chan, R. Wu, and E.P. Chassignet, Air-sea interaction over the Atlantic warm pool in the NCEP CFS. Geophys. Res. Lett., 36, L15702, doi: /2009gl Moorthi, S. and M. J. Suarez, 1992, Relaxed Arakawa-Schubert, a parameterization of moist convection for general-circulation models. Mon. Wea. Rev. 120, Morita, J., Y. N. Takayabu, S. Shige, and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden-Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42, , doi: /j.dynatmoce

19 Phillips, T. J., G. L. Potter, D. L. Williamson, R. T. Cederwall, J. S. Boyle, M. Fiorino, J. J. Hnilo, J. G. Olson, S. Xie, and J. J. Yio, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85(12), Rienecker, M.M.. and co-authors, 2008: The GEOS-5 Data Assimilation System Documentation of Versions and NASA GSFC Technical Report Series on Global Modeling and Data Assimilation, NASA/TM , Vol. 27, pp. 92. Reinecker, M. M., and Co-authors, 2011: MERRA - NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, doi: /JCLI-D Riley, Emily M., Brian E. Mapes, Stefan N. Tulich, 2011: Clouds Associated with the Madden Julian Oscillation: A New Perspective from CloudSat. J. Atmos. Sci., 68, doi: Robertson, F. R., and J. B. Roberts, 2012: Intraseasonal Variability in MERRA Energy Fluxes over the Tropical Oceans. J. Climate, in revision (this issue). Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, doi /qj.23 Rodwell, M. J. and T. Jung, 2008: Understanding the local and global impacts of model physics changes: An aerosol example. Quart. J. Roy. Meteor. Soc., 134(635), Schubert, S. and Chang, Y An objective method for inferring sources of model error. Mon. Weather Rev. 124, Song, S. and B. E. Mapes, 2012: Interpretations of systematic errors in the NOAA Climate Forecast System at lead times of 2, 4, days. J. Adv. Model. Earth Syst., in revision. Wheeler, M. C., and H. H. Hendon, 2004: An all-season multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, Yasunaga, K., and B. E. Mapes, 2012: Differences between more-divergent vs. more-rotational types of Convectively Coupled Equatorial Waves. Part II: Composite Analysis based on space-time filtering. J. Atmos. Sci., doi: /JAS-D Zhang, G. J., and X. Song (2009), Interaction of deep and shallow convection is key to Madden- Julian Oscillation simulation, Geophys. Res. Lett., 36, L09708, doi: /2009gl

20 Figurecaptions Fig.1:TimeNheightsectionsof(a)MERRA stotalphysicalheating(k/d)and(b) temperatureanalysistendency(k/d)forthegridpointat ,n1.875 correspondingtothetogacoareintensivefluxarrayareaintheequatorial westernpacific,15n31december1992. Fig.2:MERRA sdu/dtana(unitsms N2 )atthe200hpalevel,regriddedto3.3 o x5 o.a) Annualmean.b)ClimatologicalannualcycleasatimeNlatitudesectionfortheboxed regionin(a).largestvaluesareabout4m/sperday. Fig.3:Verticallyintegratedwatervaporanalysistendencyd<qv>/dtana(mm/d)in theintranamericasseasregioninborealsummer. Fig.4:LatitudeNpressure(0N40N,1000N100hPa)sectionoftheJulyclimatological meanover60wn90wofdt/dtana(colors,unitskd N1 ),overlaidwithcontoursof:(a) du/dtana(m/sd N1 )and(b)dt/dtphys(unitskd N1 ).Dottedcontoursindicatenegative values. Fig.5:LongitudeNtimesections(withtimerunningdownward,15SN15N)showing thejanuarynapril1990mjoactivity.(a)satellitenobservedoutgoinglongwave Radiation(OLR,colors)andMJONfilteredOLR (contours,10wm N2 intervals).(b) Localphaseindex(0N9,colors)oftheMJO,whereveritsamplitudeexceeds1 standarddeviation.olr contoursarerepeatedforreference.phaseisazimuthand amplitudeisradiusinascatterplotoftheseolr dataandtheirtimederivative, bothstandardized.magentalinein(b)separatesindianfrompacificdatafor separatesubncomposites(redandbluelinesinfig.7). Fig.6:MJOphasecompositesoftheindicatedtemperaturetendencies(unitsK/day). Phaseincreasesfromrighttoleft,sothattheseshouldbeviewedassimilartoeastN westsectionsratherthantimeseries. 20

21 21 1 Fig.7:(a)N(e):MJOphasecompositesfromJFMA1990.Panel(a)showsdqv/dtana, 2 and(b)showsitsverticalintegral.panel(c)issurfaceraindifference(merra 3 minusssmi),while(d)isthessmiestimate(overoceanonly).redandbluecurves 4 usedatawestandeastoflongitude110e,respectively(seefig.3),whileblackis 5 averagedoveralllongitudes.panel(e)ismerra sconvectionschememassflux, 6 while(f)depictsarandomsampleofcloudsatnobserved echoobjects from2006n ,centeredontheirMJOphaseasdefinedinthesameway,withagrayNtoNred 8 radarreflectivityscale(asinrileyetal.2011) Fig.8:20SN20NaveragesofRMMNbased(WheelerandHendon2004)MJOcomposite 11 anomaliesofmerra sd<qv>/dtana(bluenredshadingandn0.1and0.1contours)and 12 precipitation(opencontours,greenispositiveandorangeisnegativewithcontours ,1,1.5).Unitsaremm/dforbothquantities Fig.9:MapsandcrossNsectionsofmoisturebudgettermsinRMMphases2and3, 16 whenthemjoprecipitationanomaly(redinpanelsaandd)ismovingfromthe 17 IndianoceantothewesternPacific.Positivehumidityanalysistendencies(red 18 areas,d<qv>/dtanainb,eanddqv/dtanainc,f)suggestwheremodelphysicsmakes 19 excessivedrying Fig.10:DailytimeseriesovertheIndianOcean(50N100E,10SN10N)duringthe 22 DYNAMOfieldcampaignofMERRA s(a)rainfallrate,(b)columnwatervapor(or 23 precipitablewaterpw),and(c)d<qv>/dtanawith5ndayboxcarsmoothing(heavy 24 line).dottedlinesin(c)aretimeswhenthermmindexphaseis8(c.f.fig.8)

22 (a) (b) Fig. 1: Time-height sections of (a) MERRA s total physical heating (K/d) and (b) temperature analysis tendency (K/d) for the grid point at , corresponding to the TOGA COARE Intensive Flux Array area in the equatorial western Pacific, December 1992.

23 (a) (b) J F M A M J J A S O N D Fig. 2. MERRA s du/dtana (units m s-2) at the 200 hpa level, regridded to 3.3o x 5o. a) Annual mean. b) Climatological annual cycle as a time-latitude section for the boxed region in (a). Largest values are about 4 m/s per day.

24 Fig. 3: July climatology of vertically integrated water vapor analysis tendency d<q v >/dt ana (mm/d) in the Intra-Americas Seas region.

25 (a) (b) Fig. 4: Latitude-pressure (0-40N, hpa) section of the July climatological mean over 60W-90W of dt/dt ana (colors, units K d -1 ), overlaid with contours of: (a) du/dt ana (m/s d -1 ) and (b) dt/dt phys (units K d -1 ). Dotted contours are negative values.

26 (a) (b) Fig. 5: Longitude-time sections (with time running downward, 15S-15N) showing the January-April 1990 MJO activity. (a) Satellite-observed Outgoing Longwave Radiation (OLR, colors) and MJO-filtered OLR (contours, 10 W m -2 intervals). (b) Local phase index (0-9, colors) of the MJO, wherever its amplitude exceeds 1 standard deviation. OLR contours are repeated for reference. Phase is azimuth and amplitude is radius in a scatter plot of these OLR data and their time derivative, both standardized. Magenta line in (b) separates Indian from Pacific data for separate sub-composites (red and blue lines in Fig. 7).

27 a) dt/dt phys c) REEVAP b) dt/dt moist d) dt/dt ana Fig. 6: MJO phase composites of the indicated temperature tendencies (units K/day). Phase increases from right to left, so that these should be viewed as similar to east-west sections rather than time series.

28 a) dq v /dt ana b) d<q v >/dt ana c) MERRA SSMI rain d) SSMI rain e) MERRA convective mass flux f) Cloudsat echo objects in 10 MJO phases 15 z 10 (km) MJO phase Fig. 7: (a)-(e): MJO phase composites from JFMA Panel (a) shows dq v /dt ana, and (b) shows its vertical integral. Panel (c) is surface rain difference (MERRA minus SSMI), while (d) is the SSMI estimate (over ocean only). Red and blue curves use data west and east of longitude 110E, respectively (see Fig. 3), while black is averaged over all longitudes. Panel (e) is MERRA s convection scheme mass flux, while (f) depicts a random sample of Cloudsat-observed echo objects from , centered on their MJO phase as defined in the same way, with a gray-tored radar reflectivity scale (as in Riley et al. 2011).

29 Fig. 8: 20S-20N averages of RMM-based (Wheeler and Hendon 2004) MJO composite anomalies of MERRA s d<q v >/dt ana (blue-red shading and -0.1 and 0.1 contours) and precipitation (open contours, green is positive and orange is negative with contours 0.5, 1, 1.5). Units are mm/d for both quantities.

30 Fig. 9: Maps and cross-sections of moisture budget terms in RMM phases 2 and 3, when the MJO precipitation anomaly (red in panels a and d) is moving from the Indian ocean to the western Pacific. Positive humidity analysis tendencies (red areas, d<q v >/dt ana in b,e and dq v /dt ana in c,f) suggest where model physics makes excessive drying. (a) (b) (c) (d) (e) (f)

31 Fig. 10: Daily time series over the Indian Ocean (50-100E, 10S-10N) during the DYNAMO field campaign of MERRA s (a) rainfall rate, (b) Column water vapor (or precipitable water PW), and (c) d<q v >/dt ana with 5-day boxcar smoothing (heavy line). Dotted lines in (c) are times when the RMM index phase is 8 (compare Fig. 8).

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California YUK L. YUNG

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California YUK L. YUNG 4576 M O N T H L Y W E A T H E R R E V I E W VOLUME 138 Vertical Moist Thermodynamic Structure of the Madden Julian Oscillation in Atmospheric Infrared Sounder Retrievals: An Update and a Comparison to

More information

Vertical Moist Thermodynamic Structure of the MJO in AIRS Observations: An Update and A Comparison to ECMWF Interim Reanalysis

Vertical Moist Thermodynamic Structure of the MJO in AIRS Observations: An Update and A Comparison to ECMWF Interim Reanalysis Vertical Moist Thermodynamic Structure of the MJO in AIRS Observations: An Update and A Comparison to ECMWF Interim Reanalysis Baijun Tian 1 Duane Waliser 1, Eric Fetzer 1, and Yuk Yung 2 1.Jet Propulsion

More information

Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates

Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates 3208 M O N T H L Y W E A T H E R R E V I E W VOLUME 139 Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates XIANAN JIANG,* DUANE E. WALISER, 1 WILLIAM

More information

Systematic Errors in the ECMWF Forecasting System

Systematic Errors in the ECMWF Forecasting System Systematic Errors in the ECMWF Forecasting System Thomas Jung ECMWF Introduction Two principal sources of forecast error: Uncertainties in the initial conditions Model error How to identify model errors?

More information

Assimilating Earth System Observations at NASA: MERRA and Beyond

Assimilating Earth System Observations at NASA: MERRA and Beyond Assimilating Earth System Observations at NASA: MERRA and Beyond Siegfried Schubert, Michael Bosilovich, Michele Rienecker, Max Suarez, Ron Gelaro, Randy Koster, Julio Bacmeister, Ricardo Todling, Larry

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Intensification of Northern Hemisphere Subtropical Highs in a Warming Climate Wenhong Li, Laifang Li, Mingfang Ting, and Yimin Liu 1. Data and Methods The data used in this study consists of the atmospheric

More information

The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon

The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon 4466 J O U R N A L O F C L I M A T E VOLUME 24 The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon SUN WONG, ERIC J. FETZER, BAIJUN

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres. Diagnosing MJO hindcast biases in NCAR CAM3 using nudging during the DYNAMO field campaign

PUBLICATIONS. Journal of Geophysical Research: Atmospheres. Diagnosing MJO hindcast biases in NCAR CAM3 using nudging during the DYNAMO field campaign PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: Evaluate MJO hindcast performance Relate MJO hindcast biases to model physics parameterizations Understand MJO mechanisms

More information

The Madden Julian Oscillation in the ECMWF monthly forecasting system

The Madden Julian Oscillation in the ECMWF monthly forecasting system The Madden Julian Oscillation in the ECMWF monthly forecasting system Frédéric Vitart ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom F.Vitart@ecmwf.int ABSTRACT A monthly forecasting system has

More information

Convective scheme and resolution impacts on seasonal precipitation forecasts

Convective scheme and resolution impacts on seasonal precipitation forecasts GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2078, doi:10.1029/2003gl018297, 2003 Convective scheme and resolution impacts on seasonal precipitation forecasts D. W. Shin, T. E. LaRow, and S. Cocke Center

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Diurnal Timescale Feedbacks in the Tropical Cumulus Regime

Diurnal Timescale Feedbacks in the Tropical Cumulus Regime DYNAMO Sounding Array Diurnal Timescale Feedbacks in the Tropical Cumulus Regime James Ruppert Max Planck Institute for Meteorology, Hamburg, Germany GEWEX CPCM, Tropical Climate Part 1 8 September 2016

More information

Experimental Dynamical Forecast of an MJO Event Observed during TOGA-COARE Period

Experimental Dynamical Forecast of an MJO Event Observed during TOGA-COARE Period ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2008, VOL. 1, NO. 1, 24 28 Experimental Dynamical Forecast of an MJO Event Observed during TOGA-COARE Period Xiouhua Fu 1, Bin Wang 1,2, BAO Qing 3, Ping Liu 1,

More information

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Xiaoqing Wu, Liping Deng and Sunwook Park Iowa State University 2009 DYNAMO Workshop Boulder, CO April 13-14,

More information

Characterizing Clouds and Convection Associated with the MJO Using the Year of Tropical Convection (YOTC) Collocated A-Train and ECMWF Data Set

Characterizing Clouds and Convection Associated with the MJO Using the Year of Tropical Convection (YOTC) Collocated A-Train and ECMWF Data Set Characterizing Clouds and Convection Associated with the MJO Using the Year of Tropical Convection (YOTC) Collocated A-Train and ECMWF Data Set Wei-Ting Chen Department of Atmospheric Sciences, National

More information

Impact of Resolution on Extended-Range Multi-Scale Simulations

Impact of Resolution on Extended-Range Multi-Scale Simulations DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Resolution on Extended-Range Multi-Scale Simulations Carolyn A. Reynolds Naval Research Laboratory Monterey,

More information

David W. Reynolds * National Weather Service WFO San Francisco Bay Area Monterey, CA

David W. Reynolds * National Weather Service WFO San Francisco Bay Area Monterey, CA 3.2 THE MADDEN JULIAN OSCILLATION: ITS POTENTIAL FOR WEEK TWO FLOOD OUTLOOKS AND RESERVOIR MANAGEMENT DECISIONS IN CALIFORNIA David W. Reynolds * National Weather Service WFO San Francisco Bay Area Monterey,

More information

The Influence of Intraseasonal Variations on Medium- to Extended-Range Weather Forecasts over South America

The Influence of Intraseasonal Variations on Medium- to Extended-Range Weather Forecasts over South America 486 MONTHLY WEATHER REVIEW The Influence of Intraseasonal Variations on Medium- to Extended-Range Weather Forecasts over South America CHARLES JONES Institute for Computational Earth System Science (ICESS),

More information

Modulation of the diurnal cycle of tropical deep convective clouds

Modulation of the diurnal cycle of tropical deep convective clouds Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L20704, doi:10.1029/2006gl027752, 2006 Modulation of the diurnal cycle of tropical deep convective clouds by the MJO Baijun Tian, 1 Duane

More information

A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean

A New Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research (NCAR) Boulder,

More information

Introduction of climate monitoring and analysis products for one-month forecast

Introduction of climate monitoring and analysis products for one-month forecast Introduction of climate monitoring and analysis products for one-month forecast TCC Training Seminar on One-month Forecast on 13 November 2018 10:30 11:00 1 Typical flow of making one-month forecast Observed

More information

Charles Jones ICESS University of California, Santa Barbara CA Outline

Charles Jones ICESS University of California, Santa Barbara CA Outline The Influence of Tropical Variations on Wintertime Precipitation in California: Pineapple express, Extreme rainfall Events and Long-range Statistical Forecasts Charles Jones ICESS University of California,

More information

Moisture modes, cloud-radiative feedbacks and the MJO

Moisture modes, cloud-radiative feedbacks and the MJO Moisture modes, cloud-radiative feedbacks and the MJO Adam Sobel Eric Maloney, Shuguang Wang, Daehyun Kim, also bits from Jim Benedict; thanks also Gilles Bellon, Dargan Frierson FDEPS, Kyoto Source: Matt

More information

Differences of Boreal Summer Intraseasonal Oscillations Simulated in an Atmosphere Ocean Coupled Model and an Atmosphere-Only Model*

Differences of Boreal Summer Intraseasonal Oscillations Simulated in an Atmosphere Ocean Coupled Model and an Atmosphere-Only Model* 1263 Differences of Boreal Summer Intraseasonal Oscillations Simulated in an Atmosphere Ocean Coupled Model and an Atmosphere-Only Model* XIOUHUA FU IPRC, SOEST, University of Hawaii at Manoa, Honolulu,

More information

Madden-Julian Oscillation Task Force: a joint effort of the climate and weather communities

Madden-Julian Oscillation Task Force: a joint effort of the climate and weather communities Madden-Julian Oscillation Task Force: a joint effort of the climate and weather communities Matthew Wheeler 1, Eric Maloney 2, and MJO Task Force 1 Centre for Australian Weather and Climate Research, Bureau

More information

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 1, 25 30 The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO HU Kai-Ming and HUANG Gang State Key

More information

Cloud Radiative Feedbacks in GCMs : A Challenge for the Simulation of Tropical Climate Variability and Sensitivity

Cloud Radiative Feedbacks in GCMs : A Challenge for the Simulation of Tropical Climate Variability and Sensitivity Cloud Radiative Feedbacks in GCMs : A Challenge for the Simulation of Tropical Climate Variability and Sensitivity Sandrine Bony LMD/IPSL, CNRS, UPMC Boite 99, 4 Place Jussieu, 75252 Paris, France bony@lmd.jussieu.fr

More information

京都大学防災研究所年報第 49 号 B 平成 18 年 4 月. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 49 B,

京都大学防災研究所年報第 49 号 B 平成 18 年 4 月. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 49 B, 京都大学防災研究所年報第 49 号 B 平成 18 年 4 月 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 49 B, 2006 170 1978 2003 26 30-60 10-20 :. 10 60 (Krishnamurti and Bhalme, 1976; Hartmann and Michelsen, 1989 )Hartmann

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Summary of the climatic responses to the Gulf Stream. On the offshore flank of the SST front (black dashed curve) of the Gulf Stream (green long arrow), surface wind convergence associated with

More information

What is the Madden-Julian Oscillation (MJO)?

What is the Madden-Julian Oscillation (MJO)? What is the Madden-Julian Oscillation (MJO)? Planetary scale, 30 90 day oscillation in zonal wind, precipitation, surface pressure, humidity, etc., that propagates slowly eastward Wavelength = 12,000 20,000

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP July 26, 2004

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP July 26, 2004 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP July 26, 2004 Outline Overview Recent Evolution and Current Conditions Oceanic NiZo Index

More information

CMIP Diagnostic Subproject Proposal. Synoptic to Intraseasonal Variability. Kenneth R. Sperber 1 and Julia M. Slingo 2

CMIP Diagnostic Subproject Proposal. Synoptic to Intraseasonal Variability. Kenneth R. Sperber 1 and Julia M. Slingo 2 CMIP Diagnostic Subproject Proposal Synoptic to Intraseasonal Variability Kenneth R. Sperber 1 and Julia M. Slingo 2 1 Program for Climate Model Diagnosis and Intercomparison, LLNL, CA, USA (sperber@space.llnl.gov)

More information

Characteristics Associated with the Madden Julian Oscillation at Manus Island

Characteristics Associated with the Madden Julian Oscillation at Manus Island 3342 J O U R N A L O F C L I M A T E VOLUME 26 Characteristics Associated with the Madden Julian Oscillation at Manus Island LIPING DENG, SALLY A. MCFARLANE, AND JULIA E. FLAHERTY Pacific Northwest National

More information

MJO modeling and Prediction

MJO modeling and Prediction MJO modeling and Prediction In-Sik Kang Seoul National University, Korea Madden & Julian Oscillation (MJO) index Composite: OLR & U850 RMM index based on Leading PCs of Combined EOF (OLR, U850, U200) P-1

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 23 April 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 5 August 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 25 February 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

4C.4 TRENDS IN LARGE-SCALE CIRCULATIONS AND THERMODYNAMIC STRUCTURES IN THE TROPICS DERIVED FROM ATMOSPHERIC REANALYSES AND CLIMATE CHANGE EXPERIMENTS

4C.4 TRENDS IN LARGE-SCALE CIRCULATIONS AND THERMODYNAMIC STRUCTURES IN THE TROPICS DERIVED FROM ATMOSPHERIC REANALYSES AND CLIMATE CHANGE EXPERIMENTS 4C.4 TRENDS IN LARGE-SCALE CIRCULATIONS AND THERMODYNAMIC STRUCTURES IN THE TROPICS DERIVED FROM ATMOSPHERIC REANALYSES AND CLIMATE CHANGE EXPERIMENTS Junichi Tsutsui Central Research Institute of Electric

More information

Introduction of products for Climate System Monitoring

Introduction of products for Climate System Monitoring Introduction of products for Climate System Monitoring 1 Typical flow of making one month forecast Textbook P.66 Observed data Atmospheric and Oceanic conditions Analysis Numerical model Ensemble forecast

More information

Techniques and experiences in real-time prediction of the MJO: The BMRC perspective

Techniques and experiences in real-time prediction of the MJO: The BMRC perspective Techniques and experiences in real-time prediction of the MJO: The BMRC perspective Matthew Wheeler, Harry Hendon, and Oscar Alves Bureau of Meteorology Research Centre P.O. Box 1289k, Melbourne, Vic,

More information

Climate Validation of MERRA

Climate Validation of MERRA Climate Validation of MERRA Siegfried Schubert, Michael Bosilovich, Michele Rienecker, Max Suarez, Randy Koster, Yehui Chang, Derek Van Pelt, Larry Takacs, Man-Li Wu, Myong-In Lee, Scott Weaver, Junye

More information

Wind-driven latent heat flux and the intraseasonal oscillation

Wind-driven latent heat flux and the intraseasonal oscillation GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L04815, doi:10.1029/2007gl032746, 2008 Wind-driven latent heat flux and the intraseasonal oscillation Nilesh M. Araligidad 1 and Eric D. Maloney 1,2 Received 20 November

More information

The Effect of Imposed Drying on Parameterized Deep Convection

The Effect of Imposed Drying on Parameterized Deep Convection JULY 2009 S O B E L A N D B E L L O N 2085 The Effect of Imposed Drying on Parameterized Deep Convection ADAM H. SOBEL Department of Applied Physics and Applied Mathematics, and Department of Earth and

More information

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Hsi-Yen Ma In collaboration with Shaocheng Xie, James Boyle, Stephen Klein, and Yuying Zhang Program

More information

Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach

Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L18805, doi:10.1029/2006gl027567, 2006 Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate

More information

Moisture Asymmetry and MJO Eastward Propagation in an Aquaplanet General Circulation Model*

Moisture Asymmetry and MJO Eastward Propagation in an Aquaplanet General Circulation Model* 1DECEMBER 2014 H S U E T A L. 8747 Moisture Asymmetry and MJO Eastward Propagation in an Aquaplanet General Circulation Model* PANG-CHI HSU AND TIM LI CDRC/ESMC, International Laboratory on Climate and

More information

Vertical heating rate profiles associated with MJO in JRA-25

Vertical heating rate profiles associated with MJO in JRA-25 Vertical heating rate profiles associated with MJO in JRA-25 Tatsuya Motoyama 1 1 Climate Prediction Division, Japan Meteorological Agency t-motoyama@met.kishou.go.jp INTRODUCTION To study vertical heating

More information

August Description of an MJO forecast metric.

August Description of an MJO forecast metric. 1956-30 Targeted Training Activity: Seasonal Predictability in Tropical Regions to be followed by Workshop on Multi-scale Predictions of the Asian and African Summer Monsoon 4-15 August 2008 Description

More information

Theoretical and Modeling Issues Related to ISO/MJO

Theoretical and Modeling Issues Related to ISO/MJO Theoretical and Modeling Issues Related to ISO/MJO Tim Li Department of Meteorology and IPRC University of Hawaii DYNAMO workshop, April 13-14, Boulder, Colorado 1. MJO Initiation issue: Role of air- sea

More information

Global Ocean Monitoring: A Synthesis of Atmospheric and Oceanic Analysis

Global Ocean Monitoring: A Synthesis of Atmospheric and Oceanic Analysis Extended abstract for the 3 rd WCRP International Conference on Reanalysis held in Tokyo, Japan, on Jan. 28 Feb. 1, 2008 Global Ocean Monitoring: A Synthesis of Atmospheric and Oceanic Analysis Yan Xue,

More information

Factors for the Simulation of Convectively Coupled Kelvin Waves

Factors for the Simulation of Convectively Coupled Kelvin Waves 15 MAY 2012 S E O E T A L. 3495 Factors for the Simulation of Convectively Coupled Kelvin Waves KYONG-HWAN SEO, JIN-HO CHOI, AND SANG-DAE HAN Division of Earth Environmental System, Department of Atmospheric

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 11 November 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 15 July 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height

The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2015, VOL. 8, NO. 6, 371 375 The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height HUANG Yan-Yan and

More information

Introduction to tropical meteorology and deep convection

Introduction to tropical meteorology and deep convection Introduction to tropical meteorology and deep convection TMD Lecture 1 Roger K. Smith University of Munich A satpix tour of the tropics The zonal mean circulation (Hadley circulation), Inter- Tropical

More information

Testing the Hypothesis that the MJO is a Mixed Rossby Gravity Wave Packet

Testing the Hypothesis that the MJO is a Mixed Rossby Gravity Wave Packet 226 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 68 Testing the Hypothesis that the MJO is a Mixed Rossby Gravity Wave Packet DA YANG AND ANDREW P. INGERSOLL Division of Geological

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

Passage of intraseasonal waves in the subsurface oceans

Passage of intraseasonal waves in the subsurface oceans GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L14712, doi:10.1029/2007gl030496, 2007 Passage of intraseasonal waves in the subsurface oceans T. N. Krishnamurti, 1 Arindam Chakraborty, 1 Ruby Krishnamurti, 2,3

More information

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850 CHAPTER 2 DATA AND METHODS Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 185 2.1 Datasets 2.1.1 OLR The primary data used in this study are the outgoing

More information

Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM

Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, VOL. 7, NO. 1, 1 6 Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM YU Hai-Yang 1,2, BAO Qing 1, ZHOU Lin-Jiong 1,2, WANG Xiao-Cong 1,

More information

Model Error Diagnosis across Timescales

Model Error Diagnosis across Timescales Model Error Diagnosis across Timescales Sean Milton THORPEX PDP Workshop Diagnosis of Model errors Traceable Model Error Diagnosis Framework Characterizing Model Systematic Errors across timescales (Study

More information

TC/PR/RB Lecture 3 - Simulation of Random Model Errors

TC/PR/RB Lecture 3 - Simulation of Random Model Errors TC/PR/RB Lecture 3 - Simulation of Random Model Errors Roberto Buizza (buizza@ecmwf.int) European Centre for Medium-Range Weather Forecasts http://www.ecmwf.int Roberto Buizza (buizza@ecmwf.int) 1 ECMWF

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 24 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño

More information

ABSTRACT 2 DATA 1 INTRODUCTION

ABSTRACT 2 DATA 1 INTRODUCTION 16B.7 MODEL STUDY OF INTERMEDIATE-SCALE TROPICAL INERTIA GRAVITY WAVES AND COMPARISON TO TWP-ICE CAM- PAIGN OBSERVATIONS. S. Evan 1, M. J. Alexander 2 and J. Dudhia 3. 1 University of Colorado, Boulder,

More information

Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 478 J O U R N A L O F C L I M A T E VOLUME 0 Horizontal and Vertical Structures of the Northward-Propagating Intraseasonal Oscillation in the South Asian Monsoon Region Simulated by an Intermediate Model*

More information

Why do GCMs have trouble with the MJO?

Why do GCMs have trouble with the MJO? Why do GCMs have trouble with the MJO? The Madden-Julian Oscillation West East 200 [hpa] 500 Cool & dry Cool & dry p 700 850 SST Lag Day +20 +15 +10 +5 0-5 -10-15 -20 ~20 days ~10 days ~10-15 days

More information

The Coupled Model Predictability of the Western North Pacific Summer Monsoon with Different Leading Times

The Coupled Model Predictability of the Western North Pacific Summer Monsoon with Different Leading Times ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 3, 219 224 The Coupled Model Predictability of the Western North Pacific Summer Monsoon with Different Leading Times LU Ri-Yu 1, LI Chao-Fan 1,

More information

2006/12/29. MISMO workshop Yokohama, 25 November, 2008

2006/12/29. MISMO workshop Yokohama, 25 November, 2008 Global cloud-resolving simulations of MJO events in November 2006 - January 2007 ---multiscale structure --- 2006/12/29 MTSAT-1R NICAM Tomoe NASUNO, Masaki SATOH, Hiroaki MIURA, NICAM development group

More information

Moisture modes, cloud-radiative feedbacks and the MJO

Moisture modes, cloud-radiative feedbacks and the MJO Moisture modes, cloud-radiative feedbacks and the MJO Adam Sobel Eric Maloney with bits from Shuguang Wang, Jim Benedict; thanks also Gilles Bellon, Dargan Frierson, Daehyun Kim EUCLIPSE summer school

More information

Representation of tropical subseasonal variability of. precipitation in global reanalyses

Representation of tropical subseasonal variability of. precipitation in global reanalyses Representation of tropical subseasonal variability of precipitation in global reanalyses Daehyun Kim 1, Myong- In Lee 2, Dongmin Kim 2, Siegfried D. Schubert 3, Duane E. Waliser 4, and Baijun Tian 4 1

More information

Peter Bechtold. 1 European Centre for Medium Range Weather Forecast. COST Summer School Brac 2013: Global Convection

Peter Bechtold. 1 European Centre for Medium Range Weather Forecast. COST Summer School Brac 2013: Global Convection Global Numerical Weather prediction: the role of convection Peter Bechtold 1 European Centre for Medium Range Weather Forecast Slide 1 Content Global picture of convection and methods to analyse waves

More information

Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport

Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl045072, 2010 Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport In Sik Kang, 1 Daehyun

More information

Thomas M. Rickenbach

Thomas M. Rickenbach Generated using version 3.2 of the official AMS L A TEX template 1 A Further Look at Q 1 and Q 2 from TOGA COARE 2 Richard H. Johnson, Paul E. Ciesielski Colorado State University, Fort Collins, Colorado

More information

Relationships between outgoing longwave radiation and diabatic heating in reanalyses

Relationships between outgoing longwave radiation and diabatic heating in reanalyses Clim Dyn DOI 10.1007/s00382-016-3501-0 Relationships between outgoing longwave radiation and diabatic heating in reanalyses Kai Zhang 1 William J. Randel 2 Rong Fu 1,3 Received: 11 July 2016 / Accepted:

More information

P2.18 Recent trend of Hadley and Walker circulation shown in water vapor transport potential

P2.18 Recent trend of Hadley and Walker circulation shown in water vapor transport potential P.8 Recent trend of Hadley and Walker circulation shown in water vapor transport potential Seong-Chan Park and *Byung-Ju Sohn School of Earth and Environmental Sciences Seoul National University, Seoul,

More information

Understanding Predictability and Model Errors Through Light, Portable Pseudo-Assimilation and Experimental Prediction Techniques

Understanding Predictability and Model Errors Through Light, Portable Pseudo-Assimilation and Experimental Prediction Techniques DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Understanding Predictability and Model Errors Through Light, Portable Pseudo-Assimilation and Experimental Prediction Techniques

More information

The aerosol- and water vapor-related variability of precipitation in the West Africa Monsoon

The aerosol- and water vapor-related variability of precipitation in the West Africa Monsoon The aerosol- and water vapor-related variability of precipitation in the West Africa Monsoon Jingfeng Huang *, C. Zhang and J. M. Prospero Rosenstiel School of Marine and Atmospheric Science, University

More information

NOTES AND CORRESPONDENCE. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China

NOTES AND CORRESPONDENCE. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China 6036 J O U R N A L O F C L I M A T E VOLUME 21 NOTES AND CORRESPONDENCE Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China JIAN LI LaSW, Chinese Academy of Meteorological

More information

An Introduction to Climate Modeling

An Introduction to Climate Modeling An Introduction to Climate Modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline What is Climate & why do we care Hierarchy of atmospheric modeling strategies

More information

Intraseasonal Variability and TC Forecasting

Intraseasonal Variability and TC Forecasting Intraseasonal Variability and TC Forecasting 2017 WMO Class Eric Blake Hurricane Specialist National Hurricane Center 3/1/2017 Outline Madden-Julian Oscillation (MJO) MJO analysis tools Kelvin Waves Brief

More information

Where does precipitation water come from?

Where does precipitation water come from? Chapter II Climate and Meteorology Where does precipitation water come from? Introduction The source of water vapor existing over Mongolia has been considered to consist of evapotranspiration at several

More information

Large-scale distinctions between MJO and non-mjo convective initiation over the tropical Indian Ocean

Large-scale distinctions between MJO and non-mjo convective initiation over the tropical Indian Ocean 698 Large-scale distinctions between MJO and non-mjo convective initiation over the tropical Indian Ocean Jian Ling 1,2, Chidong Zhang 2 and Peter Bechtold 1 Research Department May 2013 To be published

More information

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017 ENSO: Recent Evolution, Current Status and Predictions Update prepared by: Climate Prediction Center / NCEP 30 October 2017 Outline Summary Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

4.4 EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM2 UNDER CAPT FRAMEWORK

4.4 EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM2 UNDER CAPT FRAMEWORK . EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM UNDER CAPT FRAMEWORK Shaocheng Xie, James S. Boyle, Richard T. Cederwall, and Gerald L. Potter Atmospheric

More information

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff Dynamical System Approach to Organized Convection Parameterization for GCMs Mitchell W. Moncrieff Atmospheric Modeling & Predictability Section Climate & Global Dynamics Laboratory NCAR Year of Tropical

More information

John Steffen and Mark A. Bourassa

John Steffen and Mark A. Bourassa John Steffen and Mark A. Bourassa Funding by NASA Climate Data Records and NASA Ocean Vector Winds Science Team Florida State University Changes in surface winds due to SST gradients are poorly modeled

More information

Key Physics of the Madden-Julian Oscillation Based on Multi-model Simulations

Key Physics of the Madden-Julian Oscillation Based on Multi-model Simulations Key Physics of the Madden-Julian Oscillation Based on Multi-model Simulations Xianan Jiang Joint Institute for Regional Earth System Sci. & Engineering / Univ. of California, Los Angeles Jet Propulsion

More information

Comparison of the seasonal cycle of tropical and subtropical precipitation over East Asian monsoon area

Comparison of the seasonal cycle of tropical and subtropical precipitation over East Asian monsoon area 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 Comparison of the seasonal cycle of tropical and subtropical precipitation

More information

Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific

Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L17810, doi:10.1029/2006gl026672, 2006 Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific L. E. Back

More information

Moist static energy budget diagnostics for. monsoon research. H. Annamalai

Moist static energy budget diagnostics for. monsoon research. H. Annamalai Moist static energy budget diagnostics for monsoon research H. Annamalai JJAS Precipitation and SST Climatology I III II Multiple regional heat sources - EIO and SPCZ still experience high precipitation

More information

Tropical drivers of the Antarctic atmosphere

Tropical drivers of the Antarctic atmosphere Tropical drivers of the Antarctic atmosphere Bradford S. Barrett Gina R. Henderson Oceanography Department U. S. Naval Academy Acknowledge support of: NSF awards ARC-1203843 and AGS-1240143 ONR award N1416WX01752

More information

University at Albany, State University of New York, Albany, New York. (Manuscript received 24 September 2009, in final form 6 February 2010) ABSTRACT

University at Albany, State University of New York, Albany, New York. (Manuscript received 24 September 2009, in final form 6 February 2010) ABSTRACT VOLUME 23 J O U R N A L O F C L I M A T E 1 AUGUST 2010 Modulation of the Global Atmospheric Circulation by Combined Activity in the Madden Julian Oscillation and the El Niño Southern Oscillation during

More information

Introduction to tropical meteorology and deep convection

Introduction to tropical meteorology and deep convection Introduction to tropical meteorology and deep convection Roger K. Smith University of Munich A satpix tour of the tropics The zonal mean circulation (Hadley circulation), Inter- Tropical Convergence Zone

More information

Anticorrelated intensity change of the quasi-biweekly and day oscillations over the South China Sea

Anticorrelated intensity change of the quasi-biweekly and day oscillations over the South China Sea Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L16702, doi:10.1029/2008gl034449, 2008 Anticorrelated intensity change of the quasi-biweekly and 30 50-day oscillations over the South

More information

MJO Influence in Continental United States Temperatures

MJO Influence in Continental United States Temperatures MJO Influence in Continental United States Temperatures An honors thesis presented to the Department of Atmospheric Science, University at Albany, State University Of New York in partial fulfillment of

More information

Impacts of the April 2013 Mean trough over central North America

Impacts of the April 2013 Mean trough over central North America Impacts of the April 2013 Mean trough over central North America By Richard H. Grumm National Weather Service State College, PA Abstract: The mean 500 hpa flow over North America featured a trough over

More information

Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times

Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times Dr. Duane Waliser

More information

The Association of the Evolution of Intraseasonal Oscillations to ENSO Phase

The Association of the Evolution of Intraseasonal Oscillations to ENSO Phase 15 JANUARY 2009 R O U N D Y A N D K R A V I T Z 381 The Association of the Evolution of Intraseasonal Oscillations to ENSO Phase PAUL E. ROUNDY AND JOSEPH R. KRAVITZ University at Albany, State University

More information

The Australian Summer Monsoon

The Australian Summer Monsoon The Australian Summer Monsoon Aurel Moise, Josephine Brown, Huqiang Zhang, Matt Wheeler and Rob Colman Australian Bureau of Meteorology Presentation to WMO IWM-IV, Singapore, November 2017 Outline Australian

More information

Seasonal march and intraseasonal variability of the moist static energy budget over the eastern Maritime Continent during CINDY2011/DYNAMO

Seasonal march and intraseasonal variability of the moist static energy budget over the eastern Maritime Continent during CINDY2011/DYNAMO 1 2 3 Seasonal march and intraseasonal variability of the moist static energy budget over the eastern Maritime Continent during CINDY2011/DYNAMO 4 5 6 Satoru Yokoi Japan Agency for Marine Earth Science

More information