Studying. Space. the Ocean from

Size: px
Start display at page:

Download "Studying. Space. the Ocean from"

Transcription

1 Studying the Ocean from Space Because of its excellence in satellite-based research, the College of Oceanic and Atmospheric Sciences (COAS) at Oregon State University was selected to develop a center of excellence in satellite remote-sensing research and modeling of the ocean. The Cooperative Institute for Oceanographic Satellite Studies (CIOSS) was established by the National Oceanic & Atmospheric Administration in April 2003.

2 Satellites fill need for ocean measurements It is difficult to observe the vast ocean that controls much of our climate and other Earth-system processes. Research cruises and moored instruments are expensive. Some areas are difficult to get to or work in, especially the Southern Ocean, where wave heights are often six meters or more. However, instruments on satellites can make a variety of measurements over much of the global ocean in a period of one to several days. Microwave radar altimeters measure seasurface heights, which show currents in the upper ocean, along with significant wave heights. Microwave radiometers measure surface temperatures on a coarser grid than the IR sensors, but look through clouds. Many of the instruments also are used to look at the atmosphere, clouds and the amount of radiation that reaches the ocean s surface. By collecting measurements over time, oceanographers can see patterns that indicate circulation and variability on time scales ranging from days (storms) to decades (global change). Infared (IR) sensors measure surface temperatures that show upwelling areas, where cooler, nutrient-rich waters support productive fisheries. Sensors that measure light (ocean color) at several wavelengths in the visible spectrum allow estimates of phytoplankton biomass and growth. Microwave instruments use radio waves to see through clouds, allowing all-weather measurements of the ocean surface (IR and visible bands cannot see through clouds). Microwave radar scatterometers measure winds, which show their mixing power and driving force for ocean currents, as well as the strength of the transfer of heat and CO 2 through the ocean s surface. Sea surface temperature over three days, as seen by the all-weather AMSR sensor on the Aqua satellite. One can find equatorial cold tongues, tropical instability waves, eastern boundary current upwelling, the Gulf Stream and other features.

3 The QuikSCAT scatterometer satellite measures wind speed and direction at the sea surface and provides coverage of 90% of the globe each day. Why was COAS chosen to establish CIOSS? According to CIOSS director Ted Strub: COAS was chosen by NOAA to form CIOSS because of its strength in satellite remote sensing. Mike Freilich helped design the scatterometer; he and Dudley Chelton are international leaders in analysis of scatterometer ocean surface winds. Chelton has led in designing altimeters and using sea surface height measurements of large-scale ocean circulation and eddies. Mark Abbott, Ricardo Letelier, Peter Strutton and Curt Davis are similarly leaders in the design and use of ocean color sensors to explore phytoplankton and ecosystem dynamics. Ted Strub uses combinations of various types of satellite data to look at mesoscale circulation patterns along the boundaries of the ocean. However, remote sensing only sees the surface of the ocean. We need subsurface measurements from ships, moorings, drifters and automated underwater vehicles. CIOSS researchers Jack Barth, Mike Kosro and COAS co-workers provide the skill to collect these data, with an emphasis on the large-scale coastal ocean. Computer models of ocean circulation bring together information from satellites and instruments beneath the surface. Andrew Bennett literally wrote the book on data assimilation, which combines data with numerical models. Jim Richman and Bob Miller apply these models to the basin-scale circulation, while an even larger team models the coastal ocean and atmosphere (John Allen, Gary Egbert, Alexandre Kurapov, Roger Samelson, Eric Skyllingstad). Yvette Spitz extends these physical models to include the plankton ecosytem. On the atmospheric side, Steve Esbensen teams with Chelton and Freilich to look at interactions of the lower atmosphere and upper-ocean. Jim Coakley examines cloud structure and the transfer of radiation through the atmosphere to the ocean surface. Eric Maloney works on the largest atmospheric scales, considering connections between the tropical Pacific Ocean and the weather over North America. All three types of research (remote sensing, atsea data collection and modeling) are needed to understand the ocean and the atmosphere-ocean interface. The U.S. Integrated Ocean Observing System (IOOS) that is planned for the future will incorporate each of these methods to meet societal needs, especially in coastal regions. Because of its expertise and leadership in all of these areas, CIOSS/COAS and its NOAA partners will help design the IOOS system and advise NOAA on future satellite sensors.

4 Tracking Harmful Algal Blooms In a harmful algal bloom (HAB) a bloom of harmful algae (certain species) at the coastline causes toxins to accumulate in filterfeeding shellfish, such as mussels, clams, oysters and scallops. To prevent Pete Strutton people from eating toxic shellfish, affected beaches are closed. The incidence and persistence of individual HAB events are increasing. Monitoring programs, however, only detect an event after it has affected coastal communities. Oceanographers work to identify conditions favorable to blooms of toxic species so they are detected before reaching the beaches. They hope to define the optical signatures of harmful species so they can identify and track blooms using satellite data. Pete Strutton of COAS works with Michelle Wood, a biologist with the University of Oregon, to study HABs in the highly productive area off the Oregon coast. Strutton and Wood will analyze a decade of sea surface temperature, ocean color and domoic acid concentration data off Oregon, looking for satellitebased physical and optical signals that indicate HABs. They will collect data over Heceta Bank southwest of Newport, a possible incubator region of the toxic species, and test the ability to detect HAB water masses from satellites. The researchers also will work with NOAA CoastWatch to develop satellite products that can be disseminated to the scientific and coastal management community. Ultimately, such products could serve as an early-warning system for coastal managers, health officials and commercial and recreational fishers. A Climatological Atlas of Ocean Winds From its orbit onboard the QuikSCAT satellite, the SeaWinds radar scatterometer measures surface winds over 90 percent of the Earth s oceans every 24 hours. SeaWinds sends pulses of microwave radiation down to the wind-roughened surface and measures the backscatter of the radiation that returns to the satellite. From this data, wind speed and direction can be estimated. COAS graduate student Craig Risien worked with advisor Dudley Chelton and Mark Hodges of NOAA to develop a five-year climatology of global ocean winds. The climatology is a web-based interactive atlas from which users can retrieve wind statistics, in tabular and graphic form, for a region of interest. The data have been averaged over 50-km regions to form monthly averages for approximately 150,000 grid cells distributed evenly across the global ocean. This provides wind information on many regions of the world ocean that are almost never sampled by ships and buoys. One useful application is a product for the NOAA Office of Response and Restoration with responsibilities for oil spill responses. The data will also be used by NOAA and the National Weather Service for training at regional marine workshops. A QuikSCAT display of wind speed and direction around the Hawaiian Islands. Each arrow can be clicked for more details. Warmer colors indicate faster wind speed. CIOSS scientists track harmful algal blooms (HAB), which cause toxins to accumulate in filter-feeding shellfish, such as mussels.

5 Post-Docs: Modeling and Observing Coastal Currents and Winds COAS is well known for strengths in remote sensing, at-sea data collection and modeling. Besides making use of the expertise of its faculty, CIOSS supports postdoctoral research scientists in this work. This advances scientific understanding and transfers the expertise of one generation to the next. Paul Choboter extended a theoretical model proposed by Joseph Pedlosky to explain the alongshore coastal currents during the process of winddriven upwelling. Coastal circulation is also being examined by Martin Saraceno and Byoung-Ju Choi by using satellite altimeter, scatterometer and coastal radar data alone (Saraceno) or by combining these data with more complete computer models of the coastal ocean circulation (Choi). Natalie Perlin couples models of the coastal ocean and atmosphere to explore the atmosphere s affect on the ocean, while post-doc Qingtao Song traces the effect of sea surface temperature changes in the ocean into the atmospheric boundary layer, using atmospheric models. Post-doc Hai-Ying Jiao compares and combines scatterometer winds with winds estimated by a new type of satellite using a passive microwave sensor. Post-doc Guang Guo has finished a project using satellite data to estimate the solar and infrared radiation at the ocean s surface. These post-docs are tomorrow s leaders in remote sensing and modeling. Mapping Currents in the Coastal Ocean with Radio Waves Some satellite sensors have difficulty using data from the coastal area because the land signal is very strong and contaminates the signal from the water. An alternate technology is provided by high-frequency (HF) radio techniques, which estimate ocean surface currents with high space and time resolution, many kilometers from the coast. Mike Kosro and other COAS researchers have installed HF radar surface current systems along the entire Oregon coast. Each coastal site consists of two low-power radio antennas; one transmits and one receives. The equipment measures ocean currents using the echoes of radio waves scattered from ocean waves. The received radio waves are shifted in frequency by the effects of ocean currents, allowing estimates of those currents. The system provides hourlyto-daily maps of surface currents out to miles from shore. The circulation of coastal ocean currents can have profound impacts on fisheries, birds, manmade structures, search and rescue operations, and dispersal of pollutants. CIOSS research projects are combining the coastal radar current measurements and the satellite data to examine coastal circulation patterns, in some cases incorporating the data into models of coastal dynamics and circulation. Map of surface currents off the Oregon coast. Arrows indicate current speed red are the fastest.

6 The Next Generation of Satellites One focus of CIOSS research is to evaluate present and planned satellite systems and models, in partnership with colleagues at NOAA/NESDIS. This includes providing evaluations of plans for changes in the present (POES and GOES) and future (NPOESS and GOES-R) satellite systems. Other activities include work within the IOOS system to understand the needs of research and non-research users for satellite data and products, considering differences in their accuracy, resolution (in time and space), etc. As an example related to surface winds, CIOSS sponsors research and workshops (two so far) on Ocean Vector Winds (OVW). The goal is to better understand the properties of remotely sensed ocean vector wind fields from different sensors, compared to the needs of operational ocean wind and Meet Craig Risien As an undergraduate, Craig Risien attended the University of Cape Town, South Africa, majoring in environmental and geographical science and ocean and atmospheric science. He wrote his honors thesis on satellite oceanography before coming to OSU to continue in that field. As a COAS Marine Resource Management (MRM) graduate student, Craig Risien used satellite wind data to create a climatological atlas of global ocean winds. Risien chose to come to COAS because his advisor, Dudley Chelton, was familiar with his master s thesis work and encouraged him to apply. After finishing his degree, Risien expanded the global surface wind climatology, in order to make it easier for ocean wave forecasters. Results from the OVW workshops help CIOSS provide input for future OVW sensors. Similarly, research and workshops sponsored by CIOSS for members of the Coastal Ocean Applications and Science Team (COAST) help design future ocean color sensors through community workshops, field campaigns to collect new data and participation in NOAA- NASA discussions of changes to the NPOESS VIIRS sensor. CIOSS personnel also participate in the NOAA-NASA deliberations concerning future altimeters and microwave SST sensors. Discussion of future sensors lead to considerations of whether the sensors will allow construction of Climate Data Records, maintaining consistent quality for past, present and future sensors in order to construct long-time records for detection of climate-related changes in ocean conditions. modelers to use the data. The CoastWatch node at Monterey, Calif. will incorporate Craig s wind atlas into its system. Craig will continue to work at OSU with CIOSS Fellow Jack Barth, helping to design the Oregon Coastal Ocean Observing System. Ted Strub CIOSS Influence on the Future Director Ted Strub looks at what lies ahead for CIOSS: During CIOSS first four years, CIOSS Fellows have established an ever-increasing number of partnerships with their NOAA colleagues, within NESDIS and other Line Offices, which help to accomplish common CIOSS and NOAA goals. CIOSS is conducting research that improves satellite products, uses remote sensing fields to better understand processes in the ocean and atmosphere, and helps to plan improved satellite sensors. Within the context of the U.S. system of Integrated Ocean Observing Systems (IOOS), CIOSS projects are improving NOAA s ability to fulfill its role as the National Backbone for remote sensing. CIOSS Fellows are also active in the IOOS components for direct ocean observations and nowcast/ forecast models of the coastal ocean. The improved understanding of satellite sensors, remote sensing techniques, modeling capabilities and ocean processes that CIOSS contributes will impact oceanographic research scientists, resource managers and the public for several decades.

7 46N 45N Columbia River [Chl] mg/m N Coos Bay 43N 42N 41N A snapshot of surface chlorophyll from the SeaWiFS sensor off Oregon in September The Columbia River is at the upper right.

8 College of Oceanic and Atmospheric Sciences COAS Oregon State University College of Oceanic and Atmospheric Sciences 104 COAS Administration Building Oregon State University Corvallis, Oregon Phone: (541) Fax: (541)

The Cooperative Institute for Oceanographic Satellite Studies (CIOSS) Year 4 Annual Progress Report. (April 1, March 31, 2007)

The Cooperative Institute for Oceanographic Satellite Studies (CIOSS) Year 4 Annual Progress Report. (April 1, March 31, 2007) The Cooperative Institute for Oceanographic Satellite Studies (CIOSS) Year 4 Annual Progress Report (April 1, 2006 - March 31, 2007) List of CIOSS Fellows Dr. Ted Strub: Professor; COAS; Director of CIOSS

More information

LESSON THREE Time, Temperature, Chlorophyll a Does sea surface temperature affect chlorophyll a concentrations?

LESSON THREE Time, Temperature, Chlorophyll a Does sea surface temperature affect chlorophyll a concentrations? STUDENT PAGES LESSON THREE A partnership between California Current Ecosystem Long Term Ecological Research (CCE LTER) and Ocean Institute (OI) Beth Simmons, Education and Outreach Coordinator, CCE LTER,

More information

Observation system for early warning of HAB events

Observation system for early warning of HAB events Observation system for early warning of HAB events Vera L. Trainer, NOAA Fisheries Northwest Fisheries Science Center Marine Biotoxins Program Seattle, Washington, USA Juan de Fuca eddy Regional HAB OOS

More information

The Coastal Ocean Applications and Science Team (COAST): Science Support for a Geostationary Ocean Color Imager for Coastal Waters

The Coastal Ocean Applications and Science Team (COAST): Science Support for a Geostationary Ocean Color Imager for Coastal Waters The Coastal Ocean Applications and Science Team (COAST): Science Support for a Geostationary Ocean Color Imager for Coastal Waters PIs: Curt Davis and Mark Abbott NOAA Technical Contact: Paul Menzel, NOAA/STAR.

More information

HAB Forecaster. For info on HABs in the Pacific Northwest see:

HAB Forecaster. For info on HABs in the Pacific Northwest see: HAB Forecaster BACKGROUND In this activity, students can take on the role as a resource manager or scientist, tasked with deciding if razor clam harvesters should go out onto the beach to harvest razor

More information

Alexander Kurapov, in collaboration with R. Samelson, G. Egbert, J. S. Allen, R. Miller, S. Erofeeva, A. Koch, S. Springer, J.

Alexander Kurapov, in collaboration with R. Samelson, G. Egbert, J. S. Allen, R. Miller, S. Erofeeva, A. Koch, S. Springer, J. Coastal Ocean Modeling at CIOSS Alexander Kurapov, in collaboration with R. Samelson, G. Egbert, J. S. Allen, R. Miller, S. Erofeeva, A. Koch, S. Springer, J. Osborne - Pilot real-time forecast model of

More information

The Cooperative Institute for Oceanographic Satellite Studies (CIOSS) Year 8 Annual Progress Report. (January 1, December 31, 2010)

The Cooperative Institute for Oceanographic Satellite Studies (CIOSS) Year 8 Annual Progress Report. (January 1, December 31, 2010) The Cooperative Institute for Oceanographic Satellite Studies (CIOSS) Year 8 Annual Progress Report (January 1, 2010 - December 31, 2010) List of CIOSS Fellows *Dr. Ted Strub: Professor; COAS; Director

More information

Automated ocean color product validation for the Southern California Bight

Automated ocean color product validation for the Southern California Bight Automated ocean color product validation for the Southern California Bight Curtiss O. Davis a, Nicholas Tufillaro a, Burt Jones b, and Robert Arnone c a College of Earth, Ocean and Atmospheric Sciences,

More information

Observing System Requirements for the Harmful Algal Bloom Forecast System in the Gulf of Mexico

Observing System Requirements for the Harmful Algal Bloom Forecast System in the Gulf of Mexico Observing System Requirements for the Harmful Algal Bloom Forecast System in the Gulf of Mexico July 2007 Background The Harmful Algal Bloom (HAB) Forecast System provides nowcasts and forecasts of Karenia

More information

HY-2A Satellite User s Guide

HY-2A Satellite User s Guide National Satellite Ocean Application Service 2013-5-16 Document Change Record Revision Date Changed Pages/Paragraphs Edit Description i Contents 1 Introduction to HY-2 Satellite... 1 2 HY-2 satellite data

More information

GEOSC/METEO 597K Kevin Bowley Kaitlin Walsh

GEOSC/METEO 597K Kevin Bowley Kaitlin Walsh GEOSC/METEO 597K Kevin Bowley Kaitlin Walsh Timeline of Satellites ERS-1 (1991-2000) NSCAT (1996) Envisat (2002) RADARSAT (2007) Seasat (1978) TOPEX/Poseidon (1992-2005) QuikSCAT (1999) Jason-2 (2008)

More information

Egypt-NOAA Cooperation: Advancing our Environmental Science, Technology, and Education

Egypt-NOAA Cooperation: Advancing our Environmental Science, Technology, and Education Egypt-NOAA Cooperation: Advancing our Environmental Science, Technology, and Education T. G. Onsager NOAA Space Weather Prediction Center and NWS International Activities Office (one-year detail) Terry.Onsager@noaa.gov

More information

Southern Florida to Cape Hatteras Spring Season Preview 2018 UPDATE ON U.S. EAST COAST GULF STREAM CONDITIONS

Southern Florida to Cape Hatteras Spring Season Preview 2018 UPDATE ON U.S. EAST COAST GULF STREAM CONDITIONS Southern Florida to Cape Hatteras Spring Season Preview 2018 UPDATE ON U.S. EAST COAST GULF STREAM CONDITIONS By ROFFS Gregory J. Gawlikowski ROFFS continues its spring preview series by providing an overall

More information

Toward Environmental Predictions MFSTEP. Executive summary

Toward Environmental Predictions MFSTEP. Executive summary Research Project co-funded by the European Commission Research Directorate-General 5 th Framework Programme Energy, Environment and Sustainable Development Contract No. EVK3-CT-2002-00075 Project home

More information

Internal Chronology: Activities of CIOSS Fellows at the College of Oceanic and Atmospheric Sciences, Oregon State University

Internal Chronology: Activities of CIOSS Fellows at the College of Oceanic and Atmospheric Sciences, Oregon State University Internal Chronology: Activities of CIOSS Fellows at the College of Oceanic and Atmospheric Sciences, Oregon State University January: New COAST index: NA108H. Janine Kobel requested budget transfer from

More information

PREDICTION AND MONITORING OF OCEANIC DISASTERS USING MICROWAVE REMOTE SENSING TECHNIQUES

PREDICTION AND MONITORING OF OCEANIC DISASTERS USING MICROWAVE REMOTE SENSING TECHNIQUES PREDICTION AND MONITORING OF OCEANIC DISASTERS USING MICROWAVE REMOTE SENSING TECHNIQUES O P N Calla International Centre for Radio Science, OM NIWAS A-23, Shastri Nagar, Jodhpur-342 003 Abstract The disasters

More information

Data Management for Algal Monitoring in the Gulf of Mexico

Data Management for Algal Monitoring in the Gulf of Mexico Data Management for Algal Monitoring in the Gulf of Mexico Scott Cross NOAA National Oceanographic Data Center/ Coastal Data Development Center (NCDDC) Outline History Current & Future Directions Needs

More information

Oceanic Eddies in the VOCALS Region of the Southeast Pacific Ocean

Oceanic Eddies in the VOCALS Region of the Southeast Pacific Ocean Oceanic Eddies in the VOCALS Region of the Southeast Pacific Ocean Outline: Overview of VOCALS Dudley B. Chelton Oregon State University Overview of the oceanographic component of VOCALS Preliminary analysis

More information

Sustained observations of mesoscale and submesoscale surface circulation

Sustained observations of mesoscale and submesoscale surface circulation Sustained observations of mesoscale and submesoscale surface circulation off the U.S. West Coast Sung Yong Kim 1,*, Eric Terrill 1, Bruce Cornuelle 1, Burt Jones 2, Libe Washburn 3, Mark Moline 4, Jeffrey

More information

How typical are current conditions?

How typical are current conditions? How typical are current conditions? NANOOS provides many sources of information for those wanting to track oceanographic conditions throughout the NE Pacific Ocean to be able to understand if the current

More information

Name Period Part I: INVESTIGATING OCEAN CURRENTS: PLOTTING BUOY DATA

Name Period Part I: INVESTIGATING OCEAN CURRENTS: PLOTTING BUOY DATA Name Period Part I: INVESTIGATING OCEAN CURRENTS: PLOTTING BUOY DATA INTRODUCTION: Ocean currents are like huge rivers in the sea. They carry drifting organisms, vital dissolved chemical nutrients and

More information

OCEAN SURFACE DRIFT BY WAVELET TRACKING USING ERS-2 AND ENVISAT SAR IMAGES

OCEAN SURFACE DRIFT BY WAVELET TRACKING USING ERS-2 AND ENVISAT SAR IMAGES OCEAN SURFACE DRIFT BY WAVELET TRACKING USING ERS-2 AND ENVISAT SAR IMAGES Antony K. Liu, Yunhe Zhao Ocean Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Ming-Kuang Hsu Northern

More information

Air-Sea Coupling in an Eastern Boundary Current Region

Air-Sea Coupling in an Eastern Boundary Current Region Air-Sea Coupling in an Eastern Boundary Current Region Eric D. Skyllingstad CEOAS, Oregon State University Roger M. Samelson D. B. Chelton, A. Kurapov CEOAS, Oregon State University N. Perlin RSMAS, University

More information

Tracking El Niño using optical indices of phytoplankton dynamics in the equatorial Pacific

Tracking El Niño using optical indices of phytoplankton dynamics in the equatorial Pacific Abstract Tracking El Niño using optical indices of phytoplankton dynamics in the equatorial Pacific Joel Craig 1, Pete Strutton 2, Wiley Evans 2 1. College of Earth and Atmospheric Science, Georgia Institute

More information

Coupled Ocean-Atmosphere Modeling of the Coastal Zone

Coupled Ocean-Atmosphere Modeling of the Coastal Zone Coupled Ocean-Atmosphere Modeling of the Coastal Zone Eric D. Skyllingstad College of Oceanic and Atmospheric Sciences, Oregon State University 14 Ocean Admin. Bldg., Corvallis, OR 97331 Phone: (541) 737-5697

More information

EVALUATION OF WINDSAT SURFACE WIND DATA AND ITS IMPACT ON OCEAN SURFACE WIND ANALYSES AND NUMERICAL WEATHER PREDICTION

EVALUATION OF WINDSAT SURFACE WIND DATA AND ITS IMPACT ON OCEAN SURFACE WIND ANALYSES AND NUMERICAL WEATHER PREDICTION 5.8 EVALUATION OF WINDSAT SURFACE WIND DATA AND ITS IMPACT ON OCEAN SURFACE WIND ANALYSES AND NUMERICAL WEATHER PREDICTION Robert Atlas* NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami,

More information

Ocean Currents Student Activity Book

Ocean Currents Student Activity Book Ocean Currents Student Activity Book I. Introduction Ocean currents influence the weather in coastal areas. They also influence sailing vessels. Though they visibly affect many people's lives, they are

More information

SPATIAL CHARACTERISTICS OF THE SURFACE CIRCULATION AND WAVE CLIMATE USING HIGH-FREQUENCY RADAR

SPATIAL CHARACTERISTICS OF THE SURFACE CIRCULATION AND WAVE CLIMATE USING HIGH-FREQUENCY RADAR SPATIAL CHARACTERISTICS OF THE SURFACE CIRCULATION AND WAVE CLIMATE USING HIGH-FREQUENCY RADAR Apisit Kongprom,Siriluk Prukpitikul, Varatip Buakaew, Watchara Kesdech, and Teerawat Suwanlertcharoen Geo-Informatics

More information

New NASA Ocean Observations and Coastal Applications

New NASA Ocean Observations and Coastal Applications New NASA Ocean Observations and Coastal Applications Duane Armstrong Chief, Applied Science & Technology Project Office August 20, 2014 1 Outline NASA s new Earth Science Ocean Science Missions for 2014

More information

Altimetry for Coastal Applications. Paul M. DiGiacomo and Amanda Bittinger NOAA CoastWatchatch Program 5 February 2008

Altimetry for Coastal Applications. Paul M. DiGiacomo and Amanda Bittinger NOAA CoastWatchatch Program 5 February 2008 Altimetry for Coastal Applications Paul M. DiGiacomo and Amanda Bittinger NOAA CoastWatchatch Program 5 February 2008 IGOS COASTAL THEME REPORT Published January 2006, IOC http://www.igospartners.org/d

More information

Coastal Altimetry Workshop February 5-7, Supported by NOAA (Stan Wilson) NASA (Eric Lindstrom, Lee Fu)

Coastal Altimetry Workshop February 5-7, Supported by NOAA (Stan Wilson) NASA (Eric Lindstrom, Lee Fu) Coastal Altimetry Workshop February 5-7, 2008 Organized by: Laury Miller, Walter Smith: NOAA/NESDIS Ted Strub, Amy Vandehey: CIOSS/COAS/OSU With help from many of you! Supported by NOAA (Stan Wilson) NASA

More information

Coastal Ocean Circulation Experiment off Senegal (COCES)

Coastal Ocean Circulation Experiment off Senegal (COCES) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coastal Ocean Circulation Experiment off Senegal (COCES) Pierre-Marie Poulain Istituto Nazionale di Oceanografia e di Geofisica

More information

QuikSCAT Analysis of Hurricane Force Extratropical Cyclones in the Pacific Ocean

QuikSCAT Analysis of Hurricane Force Extratropical Cyclones in the Pacific Ocean University of Rhode Island DigitalCommons@URI Senior Honors Projects Honors Program at the University of Rhode Island 2010 QuikSCAT Analysis of Hurricane Force Extratropical Cyclones in the Pacific Ocean

More information

Oceanography from Space

Oceanography from Space Why study the ocean? Oceanography from Space Paolo Cipollini National Oceanography Centre, Southampton, U.K. LOCAL drivers: fisheries, shipping, transportation, coastal erosion, leisure Norwegians know

More information

U l;~;uj P~ L,: - #*"**

U l;~;uj P~ L,: - #*** REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

OSE/OSSEs at NOAA. Eric Bayler NOAA/NESDIS/STAR

OSE/OSSEs at NOAA. Eric Bayler NOAA/NESDIS/STAR OSE/OSSEs at NOAA Eric Bayler NOAA/NESDIS/STAR OSE/OSSEs at NOAA NOAA Leadership view: Relatively inexpensive way to: Assess the impact of potential new observations Refine and redirect current observing

More information

HFR Surface Currents Observing System in Lower Chesapeake Bay and Virginia Coast

HFR Surface Currents Observing System in Lower Chesapeake Bay and Virginia Coast HFR Surface Currents Observing System in Lower Chesapeake Bay and Virginia Coast Larry P. Atkinson, Teresa Garner, and Jose Blanco Center for Coastal Physical Oceanography Old Dominion University Norfolk,

More information

Harmful Algal Blooms (HABs) 5 Applications

Harmful Algal Blooms (HABs) 5 Applications Harmful Algal Blooms (HABs) 5 Applications Richard P. Stumpf NOAA, National Ocean Service HAB occurrences worldwide Image from whoi.edu/redtide HAB applications: short term Management: Monitoring and Response

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Richard W. Reynolds * NOAA National Climatic Data Center, Asheville, North Carolina

Richard W. Reynolds * NOAA National Climatic Data Center, Asheville, North Carolina 8.1 A DAILY BLENDED ANALYSIS FOR SEA SURFACE TEMPERATURE Richard W. Reynolds * NOAA National Climatic Data Center, Asheville, North Carolina Kenneth S. Casey NOAA National Oceanographic Data Center, Silver

More information

Observations and Modeling of SST Influence on Surface Winds

Observations and Modeling of SST Influence on Surface Winds Observations and Modeling of SST Influence on Surface Winds Dudley B. Chelton and Qingtao Song College of Oceanic and Atmospheric Sciences Oregon State University, Corvallis, OR 97331-5503 chelton@coas.oregonstate.edu,

More information

Boundary Conditions, Data Assimilation and Predictability in Coastal Ocean Models

Boundary Conditions, Data Assimilation and Predictability in Coastal Ocean Models Boundary Conditions, Data Assimilation and Predictability in Coastal Ocean Models (NOPP-CODAE/ONR) R. Samelson, J. S. Allen, G. Egbert, A. Kurapov, R. Miller S. Kim, S. Springer; B.-J. Choi (GLOBEC) College

More information

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS 1. The atmosphere is a continuous fluid that envelops the globe, so that weather observation, analysis, and forecasting require international

More information

NOAA S Arctic Program in 2017

NOAA S Arctic Program in 2017 NOAA S Arctic Program in 2017 NOAA s Arctic Mission To determine how the Arctic system is changing on time scales of weeks to decades, particularly with respect to the consequences that the loss of sea

More information

Gulf of Mexico Early Season Preview 2018 PROMISING FISHING CONDITIONS IN GULF OF MEXICO

Gulf of Mexico Early Season Preview 2018 PROMISING FISHING CONDITIONS IN GULF OF MEXICO Gulf of Mexico Early Season Preview 2018 PROMISING FISHING CONDITIONS IN GULF OF MEXICO By Daniel C. Westhaver and Matthew A. Upton Introduction As in previous years, ROFFS is providing an early spring

More information

Operational Utilization of High Resolution Ocean Surface Wind Vectors (25km or better) in the Marine Forecasting Environment

Operational Utilization of High Resolution Ocean Surface Wind Vectors (25km or better) in the Marine Forecasting Environment Operational Utilization of High Resolution Ocean Surface Wind Vectors (25km or better) in the Marine Forecasting Environment Paul S. Chang, PI NOAA/NESDIS/Office of Research and Applications NOAA Science

More information

Satellite-based Red-Tide Detection/Monitoring

Satellite-based Red-Tide Detection/Monitoring Satellite-based Detection/Monitoring Contents 1. Introduction - and Its Monitoring System 2. Detection Using Ocean Color Remote Sensing 3. Satellite-Based Monitoring in the Asian Coastal Seas Hiroshi KAWAMURA

More information

J16.1 PRELIMINARY ASSESSMENT OF ASCAT OCEAN SURFACE VECTOR WIND (OSVW) RETRIEVALS AT NOAA OCEAN PREDICTION CENTER

J16.1 PRELIMINARY ASSESSMENT OF ASCAT OCEAN SURFACE VECTOR WIND (OSVW) RETRIEVALS AT NOAA OCEAN PREDICTION CENTER J16.1 PRELIMINARY ASSESSMENT OF ASCAT OCEAN SURFACE VECTOR WIND (OSVW) RETRIEVALS AT NOAA OCEAN PREDICTION CENTER Khalil. A. Ahmad* PSGS/NOAA/NESDIS/StAR, Camp Springs, MD Joseph Sienkiewicz NOAA/NWS/NCEP/OPC,

More information

Report Benefits and Challenges of Geostationary Ocean Colour Remote Sensing - Science and Applications. Antonio Mannino & Maria Tzortziou

Report Benefits and Challenges of Geostationary Ocean Colour Remote Sensing - Science and Applications. Antonio Mannino & Maria Tzortziou Report Benefits and Challenges of Geostationary Ocean Colour Remote Sensing - Science and Applications Antonio Mannino & Maria Tzortziou Time & Space Scales of OC Relevant Missions GOCI I & II Geo from

More information

Harmful Algal Bloom Detectives in the Gulf of Mexico Satellites, Gliders and Buoys, Oh My!

Harmful Algal Bloom Detectives in the Gulf of Mexico Satellites, Gliders and Buoys, Oh My! Harmful Algal Bloom Detectives in the Gulf of Mexico Satellites, Gliders and Buoys, Oh My! By Chris Simoniello and Ruth Mullins* With information from: *The Gulf of Mexico Coastal Ocean Observing System

More information

Wind, Current, Wave, and Stress Coupling in the Boundary Layer and A Plan for Observing This Coupling from Space

Wind, Current, Wave, and Stress Coupling in the Boundary Layer and A Plan for Observing This Coupling from Space Wind, Current, Wave, and Stress Coupling in the Boundary Layer and A Plan for Observing This Coupling from Space Mark A. Bourassa and Qi Shi COAPS, EOAS & GFDI, Florida State University With input from

More information

ASCAT NRT Data Processing and Distribution at NOAA/NESDIS

ASCAT NRT Data Processing and Distribution at NOAA/NESDIS ASCAT NRT Data Processing and Distribution at NOAA/NESDIS Paul S. Chang, Zorana Jelenak, Seubson Soisuvarn, Qi Zhu Gene Legg and Jeff Augenbaum National Oceanic and Atmospheric Administration (NOAA) National

More information

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 1. Introduction Precipitation is one of most important environmental parameters.

More information

MERSEA Marine Environment and Security for the European Area

MERSEA Marine Environment and Security for the European Area MERSEA Marine Environment and Security for the European Area Development of a European system for operational monitoring and forecasting of the ocean physics, biogeochemistry, and ecosystems, on global

More information

R. Michael Laurs 1, David G. Foley 2, and Michael Musyl 2. RML Fisheries Oceanographer Consultant, LLC, Jacksonville, OR USA

R. Michael Laurs 1, David G. Foley 2, and Michael Musyl 2. RML Fisheries Oceanographer Consultant, LLC, Jacksonville, OR USA Update on Research Regarding Identification and Utilization Of Habitats by Large Pacific Sharks Using PSAT Archival Tags, Oceanic Satellite Remote Sensing, and SODA Ocean Assimilation Model Analyses R.

More information

NOAA/OAR Observing Systems

NOAA/OAR Observing Systems NOAA/OAR Observing Systems Dr. Christopher L. Sabine Director NOAA s Pacific Marine Environmental Laboratory Workshop on Hydroclimate Monitoring Systems and Measurement Needs June, 2014 Global Ocean Observing

More information

Winds, Coastal Circulation, Climate Variability and Hypoxia off the Pacific Northwest

Winds, Coastal Circulation, Climate Variability and Hypoxia off the Pacific Northwest Winds, Coastal Circulation, Climate Variability and Hypoxia off the Pacific Northwest Jack Barth College of Oceanic and Atmospheric Sciences Oregon State University with lots of help from: Francis Chan

More information

Ensembles and Particle Filters for Ocean Data Assimilation

Ensembles and Particle Filters for Ocean Data Assimilation DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ensembles and Particle Filters for Ocean Data Assimilation Robert N. Miller College of Oceanic and Atmospheric Sciences

More information

Studying the Ocean Using Live Data

Studying the Ocean Using Live Data Studying the Ocean Using Live Data Overview The Argo buoy project is a major oceanographic study that harnesses the power of automated unmanned buoys traveling the world s oceans (http://www.argo.ucsd.edu/).

More information

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity?

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Name: Date: TEACHER VERSION: Suggested Student Responses Included Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Introduction The circulation

More information

Lab 12: El Nino Southern Oscillation

Lab 12: El Nino Southern Oscillation Name: Date: OCN 104: Our Dynamic Ocean Lab 12: El Nino Southern Oscillation Part 1: Observations of the tropical Pacific Ocean during a normal year The National Oceanographic and Atmospheric Administration

More information

SAWS: Met-Ocean Data & Infrastructure in Support of Industry, Research & Public Good. South Africa-Norway Science Week, 2016

SAWS: Met-Ocean Data & Infrastructure in Support of Industry, Research & Public Good. South Africa-Norway Science Week, 2016 SAWS: Met-Ocean Data & Infrastructure in Support of Industry, Research & Public Good South Africa-Norway Science Week, 2016 Marc de Vos, November 2016 South Africa: Context http://learn.mindset.co.za/sites/default/files/resourcelib/e

More information

Use of Satellite Observations to Measure Air-Sea Coupling and to Validate Its Estimates from Numerical Atmospheric Models

Use of Satellite Observations to Measure Air-Sea Coupling and to Validate Its Estimates from Numerical Atmospheric Models Use of Satellite Observations to Measure Air-Sea Coupling and to Validate Its Estimates from Numerical Atmospheric Models Natalie Perlin, Dudley Chelton, Simon de Szoeke College of Earth, Ocean, and Atmospheric

More information

Introduction to Ocean Numerical Modeling #0 General Introduction. Global model SSH regional model SST

Introduction to Ocean Numerical Modeling #0 General Introduction. Global model SSH regional model SST Introduction to Ocean Numerical Modeling #0 General Introduction Global model SSH regional model SST Gildas Cambon, IRD/LOPS, France gildas.cambon@ird.fr Global model SSH WEEK 1 regional model SST Day

More information

EUMETSAT s Copernicus Marine Data Stream (CMDS)

EUMETSAT s Copernicus Marine Data Stream (CMDS) EUMETSAT s Copernicus Marine Data Stream (CMDS) Hayley Evers-King (PML, Copernicus Ocean Training Service), Mark Higgins Copernicus Sentinel 3 marine data Sentinel 3 SRAL (Altimetry) SLSTR (SST) OLCI (Ocean

More information

Weather and Climate Summary and Forecast October 2018 Report

Weather and Climate Summary and Forecast October 2018 Report Weather and Climate Summary and Forecast October 2018 Report Gregory V. Jones Linfield College October 4, 2018 Summary: Much of Washington, Oregon, coastal California and the Bay Area and delta region

More information

Peter Gaube EDUCATION

Peter Gaube EDUCATION Peter Gaube Applied Physics Laboratory Department of Air-Sea Interaction and Remote Sensing (AIRS) Box 355640 University of Washington 1013 NE 40th Street Seattle, WA 98105-6698 (520) 248-1939 pgaube@apl.washington.edu

More information

Background Field program information Examples of measurements Wind validation for synthetic modeling effort

Background Field program information Examples of measurements Wind validation for synthetic modeling effort Background Field program information Examples of measurements Wind validation for synthetic modeling effort How do complex fine-scale structure and processes in coastal waters dominated by pulsed-river

More information

Daily OI SST Trip Report Richard W. Reynolds National Climatic Data Center (NCDC) Asheville, NC July 29, 2005

Daily OI SST Trip Report Richard W. Reynolds National Climatic Data Center (NCDC) Asheville, NC July 29, 2005 Daily OI SST Trip Report Richard W. Reynolds National Climatic Data Center (NCDC) Asheville, NC July 29, 2005 I spent the month of July 2003 working with Professor Dudley Chelton at the College of Oceanic

More information

Maritime Weather Information: Automatic Reporting, A New Paradigm

Maritime Weather Information: Automatic Reporting, A New Paradigm Maritime Weather Information: Automatic Reporting, A New Paradigm Joe Sienkiewicz, NOAA/NWS Ocean Prediction Center Responsibilities under SOLAS Met Services Contracting governments Observations Limited

More information

NOAA Great Lakes CoastWatch Program

NOAA Great Lakes CoastWatch Program Great Lakes Workshop Series on Remote Sensing of Water Quality May 7-8, 2014 NOAA GLERL, 4840 South State Rd, Ann Arbor, MI NOAA Great Lakes CoastWatch Program CoastWatch is a nationwide National Oceanic

More information

an accessible interface to marine environmental data Russell Moffitt

an accessible interface to marine environmental data Russell Moffitt an accessible interface to marine environmental data Russell Moffitt The Atlas Project GOAL: To provide a single point of access to oceanographic and environmental data for use by marine resource researchers,

More information

Ocean Circulation. In partnership with Dr. Zafer Top

Ocean Circulation. In partnership with Dr. Zafer Top Ocean Circulation In partnership with Dr. Zafer Top Samantha Hampton Honors Science December 15, 2014 Ocean Circulation is the large scale movement of waters in the ocean basins. Dr. Zafer Top studies

More information

Southern Florida to Cape Hatteras Early Season Preview 2017 U.S. EAST COAST GULF STREAM CONDITIONS LOOKING PROMISING

Southern Florida to Cape Hatteras Early Season Preview 2017 U.S. EAST COAST GULF STREAM CONDITIONS LOOKING PROMISING Southern Florida to Cape Hatteras Early Season Preview 2017 U.S. EAST COAST GULF STREAM CONDITIONS LOOKING PROMISING By Matthew A. Upton and Mitchell A. Roffer ROFFS continues its spring preview series

More information

Add NOAA nowcoast Layers to Maps

Add NOAA nowcoast Layers to Maps WebEOC Maps Add-on Quick Reference Guide Add NOAA nowcoast Layers to Maps Overview With Maps Add-on, you can configure an unlimited number of map layers. These layers allow you to control the data you

More information

TERMS OF REFERENCE FOR THE CEOS OCEAN SURFACE VECTOR WINDS VIRTUAL CONSTELLATION VERSION 1.0 LAST UPDATED: 19 DECEMBER 2013

TERMS OF REFERENCE FOR THE CEOS OCEAN SURFACE VECTOR WINDS VIRTUAL CONSTELLATION VERSION 1.0 LAST UPDATED: 19 DECEMBER 2013 TERMS OF REFERENCE FOR THE CEOS OCEAN SURFACE VECTOR WINDS VIRTUAL CONSTELLATION VERSION 1.0 LAST UPDATED: 19 DECEMBER 2013 CONSTELLATION NAME: Ocean Surface Vector Winds Virtual Constellation (OSVW- VC)

More information

Satellite Oceanography and Applications 1: Introduction, SST, Ocean color

Satellite Oceanography and Applications 1: Introduction, SST, Ocean color Satellite Oceanography and Applications 1: Introduction, SST, Ocean color Ebenezer Nyadjro US Naval Research Lab RMU Summer Program (AUGUST 24-28, 2015) Objectives/Goals To know the basic methods of ocean

More information

The Value of Geostationary Satellite Imagery in IOOS, Now and Future

The Value of Geostationary Satellite Imagery in IOOS, Now and Future The Value of Geostationary Satellite Imagery in IOOS, Now and Future A. S. Lomax Itri Corporation D. W. Colburn Lockheed Martin Civil Space M. K. Galbraith Itri Corporation Abstract- The United States

More information

Update on the Winds and Currents Mission (WaCM)

Update on the Winds and Currents Mission (WaCM) Update on the Winds and Currents Mission (WaCM) Mark Bourassa (Florida State University) Other key players: Ernesto Rodriguez, Bertrand Chapron, Eric Chassignet, Dudley Chelton, William Dewar, Dmitry Dukhovskoy,

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

How Warm Is the Ocean?

How Warm Is the Ocean? Currents and Sea Surface Temperature By Steven Moore, Jennifer Vuturo-Brady, and Hedley Bond Guiding Question Learning Objectives How do ocean currents impact seasonal sea surface temperatures? Students

More information

Hurricane Season 2010 & NOAA s Deepwater Response

Hurricane Season 2010 & NOAA s Deepwater Response Hurricane Season 2010 & NOAA s Deepwater Response What s Happened? What Will 2010 Bring? Possible Shoreline Effects Darin Figurskey Meteorologist-in-Charge NOAA s NWS Raleigh, NC NOAA s National Weather

More information

Arctic. Ocean Observing Build Out Plan. alaska ocean observing system. March 1, 2013 draft. Tom Van Pelt

Arctic. Ocean Observing Build Out Plan. alaska ocean observing system. March 1, 2013 draft. Tom Van Pelt Arctic Ocean Observing Build Out Plan March 1, 2013 draft Tom Van Pelt alaska ocean observing system Tom Van Pelt Why a coastal observing system in the Arctic? The Arctic is booming with increased activity

More information

1. Oceans. Example 2. oxygen.

1. Oceans. Example 2. oxygen. 1. Oceans a) Basic facts: There are five oceans on earth, making up about 72% of the planet s surface and holding 97% of the hydrosphere. Oceans supply the planet with most of its oxygen, play a vital

More information

The known requirements for Arctic climate services

The known requirements for Arctic climate services The known requirements for Arctic climate services based on findings described in STT White paper 8/2015 Johanna Ekman / EC PHORS STT Regional drivers The Arctic region is home to almost four million people

More information

Joint Polar Satellite System. 3 rd Post-EPS User Consultation Workshop Mike Haas

Joint Polar Satellite System. 3 rd Post-EPS User Consultation Workshop Mike Haas 3 rd Post-EPS User Consultation Workshop Mike Haas Overview Introduction - Policy Drivers - Management System Description - Space Segment - Ground Segment Partnerships Status Benefits 2 Introduction (Policy

More information

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W. Linwood Jones Central Florida Remote Sensing Laboratory University of Central Florida Orlando, Florida 3816-

More information

Coastal Ocean Circulation Experiment off Senegal (COCES)

Coastal Ocean Circulation Experiment off Senegal (COCES) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Coastal Ocean Circulation Experiment off Senegal (COCES) Pierre-Marie Poulain Istituto Nazionale di Oceanografia e di Geofisica

More information

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST Peter Childs, Sethu Raman, and Ryan Boyles State Climate Office of North Carolina and

More information

General Oceanography Geology 105 Expedition #17 Tracking Drifter Buoys See Due Date in Greensheet or in Module Area of Canvas

General Oceanography Geology 105 Expedition #17 Tracking Drifter Buoys See Due Date in Greensheet or in Module Area of Canvas General Oceanography Name Geology 105 Expedition #17 Tracking Drifter Buoys See Due Date in Greensheet or in Module Area of Canvas Expedition Objective: Students will apply a scientific approach to study

More information

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses Timothy L. Miller 1, R. Atlas 2, P. G. Black 3, J. L. Case 4, S. S. Chen 5, R. E. Hood

More information

Authors of abstract. Pat Fitzpatrick Jessie Kastler Frank Hernandez Carla Culpepper Candace Bright. But whole CONCORDE team contributed to results

Authors of abstract. Pat Fitzpatrick Jessie Kastler Frank Hernandez Carla Culpepper Candace Bright. But whole CONCORDE team contributed to results Authors of abstract Pat Fitzpatrick Jessie Kastler Frank Hernandez Carla Culpepper Candace Bright MSU USM USM USM USM But whole CONCORDE team contributed to results Outline of talk Field program information

More information

Changes in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, Ryan Eastman Stephen G. Warren Carole J.

Changes in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, Ryan Eastman Stephen G. Warren Carole J. Changes in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan Eastman Stephen G. Warren Carole J. Hahn Clouds Over the Ocean The ocean is cloudy, more-so than land Cloud

More information

53 contributors for 35 individual reports in 2009 show 5% of figures today

53 contributors for 35 individual reports in 2009 show 5% of figures today A Group Approach to Understanding Ecosystem Dynamics in the Northeast Pacific Ocean William Crawford and James Irvine, Fisheries and Oceans Canada (DFO) * * * 53 contributors for 35 individual reports

More information

West Florida Shelf and Tampa Bay Responses to Hurricane Irma: What Happened and Why

West Florida Shelf and Tampa Bay Responses to Hurricane Irma: What Happened and Why West Florida Shelf and Tampa Bay Responses to Hurricane Irma: What Happened and Why R.H. Weisberg Y. Liu J. Chen College of Marine Science University of South Florida St. Petersburg, FL SECOORA Webinar

More information

T h e C o p e r n i c u s m a r i n e s e r v i c e. DG-GROW, Copernicus. Copernicus EU

T h e C o p e r n i c u s m a r i n e s e r v i c e. DG-GROW, Copernicus. Copernicus EU T h e C o p e r n i c u s m a r i n e s e r v i c e DG-GROW, Copernicus Copernicus EU Copernicus EU Copernicus EU www.copernicus.eu 2 W h y is t h e m a r i n e s e c t o r so i m p o r t a n t? Blue Economy,

More information

9A.2 Tropical Cyclone Satellite Tutorial Online Through The COMET Program

9A.2 Tropical Cyclone Satellite Tutorial Online Through The COMET Program 9A.2 Tropical Cyclone Satellite Tutorial Online Through The COMET Program Thomas F. Lee Steven D. Miller F. Joseph Turk Jeffrey D. Hawkins Naval Research Laboratory, Monterey CA Patrick Dills Sherwood

More information

Warm Up Vocabulary Check

Warm Up Vocabulary Check Warm Up Vocabulary Check Surface current Coriolis Effect global winds upwelling Gulf Stream deep current climate El Nino convection current continental deflection 1.The apparent curving of the path of

More information

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 1. The Pacific Ocean is approximately 10,000 km wide. Its upper layer (wind-driven gyre*) is approximately 1,000 m deep. Consider a west-to-east

More information

4.3 Climate (6.3.3) Explore this Phenomena. The same sun shines on the entire Earth. Explain why these two areas have such different climates.

4.3 Climate (6.3.3) Explore this Phenomena. The same sun shines on the entire Earth. Explain why these two areas have such different climates. Explore this Phenomena The same sun shines on the entire Earth. 4.3 Climate (6.3.3) Explain why these two areas have such different climates. 89 6.3.3 Climate Develop and use a model to show how unequal

More information