Earth s flattening : which impact for meteorology and climatology?

Size: px
Start display at page:

Download "Earth s flattening : which impact for meteorology and climatology?"

Transcription

1 Earth s flattening : which impact for meteorology and climatology? Pierre Bénard Météo-France CNRM/GMAP CNRS Aug. 2014, Montreal P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 1 / 27

2 INTRODUCTION Need of a model of the Earth To write governing equations, one needs (namely): - the shape of the Earth - the shape of Centrifugal forces - the shape of gravity field -... = Hence one needs to first define/choose the assumed shape of the gravity (or geopotential) field P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 2 / 27

3 INTRODUCTION First of all: terminology What is gravity and geopotential, etc., in Meteorology - Gravity : g = the apparent gravity felt by a resting object in the rotating frame (e.g. lying on the floor) - Vertical line = line along apparent gravity (plumb) - Geopotential : g = φ - Horizontal surface = to vertical = iso-geopotential (spirit level) = CONSEQUENCES: - Gravity contains Newtonian and Centrifugal components: g = g N +g C - All surfaces/lines have complicated shapes - Since g = φ, the intensity of gravity is inversely to the vertical separation of geopotentials, locally. P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 3 / 27

4 INTRODUCTION Ω Vertical line ( // to g ) g bigger g smaller Horizontal line ( iso geopotential ) P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 4 / 27

5 INTRODUCTION Currently the model is: Spherical Geopotential Approximation (SGA) - Earth s shape = spherical - All geopotential surfaces = spherical = - Vertical lines are straight radial lines - Vertical separation of geopotentials : uniform - Surface gravity : uniform (g 0 = , some average) Underlying hypothesis This is equivalent to neglect almost all centrifugal effects of earth s rotation P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 5 / 27

6 INTRODUCTION REALITY - Non spherical Earth: Departure best sphere : ±10 km, best ellipsoid : ±100 m Ellipticity ǫ = (a c)/a 0.3% geometrical errors z - Non uniform Gravity : Meridional variations Pole : g P 9.83, Eq. : g E 9.78 Departure mean gravity : ±0.2% gravity errors a 2. a c x P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 6 / 27

7 INTRODUCTION Why relaxing SGA? - Authors claim : systematic and cumulative errors impact on long and climate forecasts? when do they stop to be neglectible? - Also, modelling giant planets atmospheres :... for time being, still considered spherical!! - Thus, it is not useless to prepare and try to evaluate. P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 7 / 27

8 OUTLINE Introduction Consistent Formulations Geometric and gravity errors Estimation of errors in a shallow-water model Estimation of gravity errors in a 3D NWP model Conclusions P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 8 / 27

9 CONSISTENT FORMULATIONS Dynamical Consistency - Definition Definition : Formal respect of conservation principles for axial angular momentum, energy and potential vorticity Dynamically-consistent formulation of gov. equations lead to constraints (cannot write anything which looks good ). Example: bluntly setting g = g(ϕ) in SGA (to better mimic reality) is inconsistent. in SGA, g must be meridionally constant. P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 9 / 27

10 CONSISTENT FORMULATIONS Dynamical Consistency - Theory Big work ( ) mostly UKMO, and also French (LMD, M-F) teams, to better understand non-spherical dynamically-consistent systems Find Governing Equations systems which ensure dynamical consistency (with proofs...) Find appropriate curvilinear coordinate systems for a concretely tractable mathematical description and use. Derivation from Hamiltonian Mechanics formalism helps a lot. Shallow-water, 3D shallow-atmosphere, and 3D deep-atmosphere variants... if interested, look for Staniforth, White, Bénard (Q.J.R. Meteor. Soc), Dubos (JAS), mostly 2014, and refs therein P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 10 / 27

11 CONSISTENT FORMULATIONS Dynamical Consistency - EGA In practice: Ellipsoidal Geopotential Approximation (EGA) instead of SGA all geopotentials are assumed to be ellipsoids (no obvious need to go to actual irregular geoid geometry) EGA allows reasonably tractable equations P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 11 / 27

12 CONSISTENT FORMULATIONS - EGA why reasonably? For families of concentric geopotential ellipsoids respecting the correct ratio g Pole /g Eq = 9.83/9.78, vertical lines have no direct analytical expressions (recall: these lines are simple straight lines in SGA) Spheroidal coordinates (λ,ϕ,r) where r = r(φ) (preferred in order to avoid projection of g on horizontal components). orthogonal horizontal/vertical curvilinear coordinates system. Computation of metrics OK. BUT transformation from Cartesian coordinates non-analytic Requires either polynomial approximation or numerical solution. (not considered as a big problem, though) P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 12 / 27

13 ILLUSTRATION Shallow-Water system in geodetic latitude ϕ, no orog. ( ) du R dt a 2 cosϕ u +2Ω R v sinϕ+ a 2 cosϕ g(ϕ) H λ = 0 ( ) dv R dt + a 2 cosϕ u +2Ω R 3 usinϕ+ a 2 c 2 cosϕ ϕ [g(ϕ)h] = 0 ( dh R dt +H u a 2 cosϕ λ + R 3 v a 2 c 2 cosϕ ϕ Rtanϕ ) a 2 v = 0 where : d dt = t + Ru a 2 cosϕ λ + R3 v a 2 c 2 ϕ R = a 2 cos 2 ϕ+c 2 sin 2 ϕ c a P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 13 / 27

14 OUTLINE Introduction Consistent Formulations Geometric and gravity errors Estimation of errors in a shallow-water model Estimation of gravity errors in a 3D NWP model Conclusions P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 14 / 27

15 Geometric and gravity errors Geometric error - Length of Montreal parallel (45 N) on sphere: km - Length of ACTUAL Montreal parallel (45 N) : km - A pressure low travelling eastward at given V is too fast on sphere... Gravity error - g = 9.806m/s 2 on sphere - g = 9.78 to g = 9.83m/s 2 on actual earth - Propagation of a wave sensitive to gravity will be distorted on sphere... separate evaluation - gravity and geometry errors may be assessed separately by setting only correct geometry or correct gravity (Bénard, 2014, Q. J. Roy. Meteor. Soc.) P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 15 / 27

16 OUTLINE Introduction Consistent Formulations Geometric and gravity errors Estimation of errors in a shallow-water model Estimation of gravity errors in a 3D NWP model Conclusions P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 16 / 27

17 Estimation of errors in a shallow-water model Hauriwtz wave (e.g. Thuburn and Li, 2000, Q. J. R. Meteor. Soc.) - Quasi stationary analytical wave for SW - rotation (eastward), vacillations, becomes instable after 30 days P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 17 / 27

18 Estimation of errors in a shallow-water model Longitude Phase (compared to EGA reference) SGA (total error) gravity error geometry error EGA (ref) P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 18 / 27

19 Estimation of errors in a shallow-water model Standard Real case (from Williamson s test set) 10 days forecast, height field at 250 hpa P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 19 / 27

20 Estimation of errors in a shallow-water model Standard Real case (from Williamson s test set) 10 days forecast, height field at 250 hpa: P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 20 / 27

21 Estimation of errors in a shallow-water model Standard Real case (from Williamson s test set) - Longitude phase shift for some features - modified intensity - modified shape - global RMS after 10 days : about 30 m for Z gravity error still dominates P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 21 / 27

22 OUTLINE Introduction Consistent Formulations Geometric and gravity errors Estimation of errors in a shallow-water model Estimation of gravity errors in a 3D NWP model Conclusions P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 22 / 27

23 Estimation of errors in a 3D NWP model estimation of gravity error only: - spherical planet - shallow-atmosphere approximation - but meridionally-variable gravity ( m/s 2 ) Physically consistent (Bénard, 2014, Q. J. R. Meteor. Soc). Allows spherical geometry (at any level), and variable gravity. P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 23 / 27

24 Estimation of errors in a 3D NWP model Forecast scores against TEMP (Radio-soundings) sample : 2 months (April+May 2014) Contour=0.5m Puzzling results?!? weak significance after 72 h P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 24 / 27

25 Estimation of errors in a 3D NWP model Evaluation against verifying analysis shows: - scores/improvements significant only below 72 h differences/score improvements quite weak - at large forecast times, (larger) potential improvements are buried in (much larger) forecasts errors and become unsignificant P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 25 / 27

26 OUTLINE Introduction Consistent Formulations Geometric and gravity errors Estimation of errors in a shallow-water model Estimation of gravity errors in a 3D NWP model Conclusions P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 26 / 27

27 CONCLUSION Governing Equations are now obtained in various frameworks Allows an estimation of errors in SGA and benefits from EGA Gravity errors seems to slightly dominate 3D shows immediate (but weak) score improvement at short ranges At medium/long range (larger) improvements seem to be buried in (much larger) forecast errors and become not significant. Seemingly no panics with SGA, but reasonably need to prepare the set for future NWP in EGA... P. Bénard (Météo-France) Earth s flattening : which impact? 16/21 Aug 2014, Montreal 27 / 27

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0 ! Revised Friday, April 19, 2013! 1 Inertial Stability and Instability David Randall Introduction Inertial stability and instability are relevant to the atmosphere and ocean, and also in other contexts

More information

Height systems. Rüdiger Gens

Height systems. Rüdiger Gens Rüdiger Gens 2 Outline! Why bother about height systems?! Relevant terms! Coordinate systems! Reference surfaces! Geopotential number! Why bother about height systems?! give a meaning to a value defined

More information

Height systems. Rudi Gens Alaska Satellite Facility

Height systems. Rudi Gens Alaska Satellite Facility Rudi Gens Alaska Satellite Facility Outline Why bother about height systems? Relevant terms Coordinate systems Reference surfaces Geopotential number 2 Why bother about height systems? give a meaning to

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

EATS Notes 1. Some course material will be online at

EATS Notes 1. Some course material will be online at EATS 3040-2015 Notes 1 14 Aug 2015 Some course material will be online at http://www.yorku.ca/pat/esse3040/ HH = Holton and Hakim. An Introduction to Dynamic Meteorology, 5th Edition. Most of the images

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #2 Planetary Wave Models Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Observational motivation 2. Forced planetary waves in the stratosphere 3. Traveling planetary

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations

The Hydrostatic Approximation. - Euler Equations in Spherical Coordinates. - The Approximation and the Equations OUTLINE: The Hydrostatic Approximation - Euler Equations in Spherical Coordinates - The Approximation and the Equations - Critique of Hydrostatic Approximation Inertial Instability - The Phenomenon - The

More information

NOTES AND CORRESPONDENCE. Comments on The Roles of the Horizontal Component of the Earth s Angular Velocity in Nonhydrostatic Linear Models

NOTES AND CORRESPONDENCE. Comments on The Roles of the Horizontal Component of the Earth s Angular Velocity in Nonhydrostatic Linear Models 198 JOURNAL OF THE ATMOSPHERIC SCIENCES NOTES AND CORRESPONDENCE Comments on The Roles of the Horizontal Component of the Earth s Angular elocity in Nonhydrostatic Linear Models DALE R. DURRAN AND CHRISTOPHER

More information

Attractor of a Shallow Water Equations Model

Attractor of a Shallow Water Equations Model Thai Journal of Mathematics Volume 5(2007) Number 2 : 299 307 www.math.science.cmu.ac.th/thaijournal Attractor of a Shallow Water Equations Model S. Sornsanam and D. Sukawat Abstract : In this research,

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids

Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Extension of the 1981 Arakawa and Lamb Scheme to Arbitrary Grids Department of Atmospheric Science Colorado State University May 7th, 2015 Intro Introduction Introduction Key Principles of Numerical Modeling

More information

GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED WITH THE EGM96 ANG EGM2008

GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED WITH THE EGM96 ANG EGM2008 GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED Dr. Abdelrahim Elgizouli Mohamed Ahmed* WITH THE EGM96 ANG EGM2008 Abstract: Positioning by satellite system determine the normal height above

More information

Assimilation Experiments of One-dimensional Variational Analyses with GPS/MET Refractivity

Assimilation Experiments of One-dimensional Variational Analyses with GPS/MET Refractivity Assimilation Experiments of One-dimensional Variational Analyses with GPS/MET Refractivity Paul Poli 1,3 and Joanna Joiner 2 1 Joint Center for Earth Systems Technology (JCET), University of Maryland Baltimore

More information

Numerical Investigation on Spherical Harmonic Synthesis and Analysis

Numerical Investigation on Spherical Harmonic Synthesis and Analysis Numerical Investigation on Spherical Harmonic Synthesis and Analysis Johnny Bärlund Master of Science Thesis in Geodesy No. 3137 TRITA-GIT EX 15-006 School of Architecture and the Built Environment Royal

More information

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model Overview of the Numerics of the Atmospheric Forecast Model M. Hortal Seminar 6 Sept 2004 Slide 1 Characteristics of the model Hydrostatic shallow-atmosphere approimation Pressure-based hybrid vertical

More information

1/28/16. EGM101 Skills Toolbox. Oblate spheroid. The shape of the earth Co-ordinate systems Map projections. Geoid

1/28/16. EGM101 Skills Toolbox. Oblate spheroid. The shape of the earth Co-ordinate systems Map projections. Geoid EGM101 Skills Toolbox Oblate spheroid The shape of the earth Co-ordinate systems Map projections The geoid is the shape that the surface of the oceans would take under the influence of Earth's gravitation

More information

Mountain Torques Caused by Normal-Mode Global Rossby Waves, and the Impact on Atmospheric Angular Momentum

Mountain Torques Caused by Normal-Mode Global Rossby Waves, and the Impact on Atmospheric Angular Momentum 1045 Mountain Torques Caused by Normal-Mode Global Rossby Waves, and the Impact on Atmospheric Angular Momentum HARALD LEJENÄS Department of Meteorology, Stockholm University, Stockholm, Sweden ROLAND

More information

The Equations of Motion in a Rotating Coordinate System. Chapter 3

The Equations of Motion in a Rotating Coordinate System. Chapter 3 The Equations of Motion in a Rotating Coordinate System Chapter 3 Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study

More information

Map projections. Rüdiger Gens

Map projections. Rüdiger Gens Rüdiger Gens Coordinate systems Geographic coordinates f a: semi-major axis b: semi-minor axis Geographic latitude b Geodetic latitude a f: flattening = (a-b)/a Expresses as a fraction 1/f = about 300

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

A study of the moist Entropy in Meteorology.

A study of the moist Entropy in Meteorology. Workshop on the Atmospheric Modelling 8-10 February, 2011.Toulouse, France. A study of the moist Entropy in Meteorology. Pascal MARQUET (Météo-France. DPrévi / LABO) Contents 1) Motivations : to study

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

Lecture 12: Angular Momentum and the Hadley Circulation

Lecture 12: Angular Momentum and the Hadley Circulation Lecture 12: Angular Momentum and the Hadley Circulation September 30, 2003 We learnt last time that there is a planetary radiative drive net warming in the tropics, cooling over the pole which induces

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

Dynamics of the Atmosphere. Large-scale flow with rotation and stratification

Dynamics of the Atmosphere. Large-scale flow with rotation and stratification 12.810 Dynamics of the Atmosphere Large-scale flow with rotation and stratification Visualization of meandering jet stream Upper level winds from June 10th to July 8th 1988 from MERRA Red shows faster

More information

Chapter 4: Fundamental Forces

Chapter 4: Fundamental Forces Chapter 4: Fundamental Forces Newton s Second Law: F=ma In atmospheric science it is typical to consider the force per unit mass acting on the atmosphere: Force mass = a In order to understand atmospheric

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

On the Tides' paradox.

On the Tides' paradox. On the Tides' paradox. T. De ees - thierrydemees @ pandora.be Abstract In this paper I analyse the paradox of tides, that claims that the oon and not the Sun is responsible for them, although the Sun's

More information

Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) EE 570: Location and Navigation Lecture Navigation Mathematics: Kinematics (Earth Surface & ) EE 570: Location and Navigation Lecture Notes Update on March 10, 2016 Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

Orbital Motion in Schwarzschild Geometry

Orbital Motion in Schwarzschild Geometry Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

More information

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves Reference: An Introduction to Dynamic Meteorology (4 rd edition), J.R. Holton Atmosphere-Ocean Dynamics, A.E. Gill Fundamentals of Atmospheric

More information

Equatorial Superrotation on Tidally Locked Exoplanets

Equatorial Superrotation on Tidally Locked Exoplanets Equatorial Superrotation on Tidally Locked Exoplanets Adam P. Showman University of Arizona Lorenzo M. Polvani Columbia University Synopsis Most 3D atmospheric circulation models of tidally locked exoplanets

More information

Spherical Harmonics and Related Topics. David Randall 2 S = 0, r 2 r r S 2. S = r n Y n

Spherical Harmonics and Related Topics. David Randall 2 S = 0, r 2 r r S 2. S = r n Y n ! Revised April 10, 2017 1:32 PM! 1 Spherical Harmonics and Related Topics David Randall The spherical surface harmonics are convenient functions for representing the distribution of geophysical quantities

More information

Last week we obtained a general solution: 1 cos αdv

Last week we obtained a general solution: 1 cos αdv GRAVITY II Surface Gravity Anomalies Due to Buried Bodies Simple analytical solution may be derived for bodies with uniform density contrast simple shape, such as: Sphere Horizontal/vertical cylinders

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

Eliassen-Palm Cross Sections Edmon et al. (1980)

Eliassen-Palm Cross Sections Edmon et al. (1980) Eliassen-Palm Cross Sections Edmon et al. (1980) Cecily Keppel November 14 2014 Eliassen-Palm Flux For β-plane Coordinates (y, p) in northward, vertical directions Zonal means F = v u f (y) v θ θ p F will

More information

The Mathematics of Maps Lecture 4. Dennis The The Mathematics of Maps Lecture 4 1/29

The Mathematics of Maps Lecture 4. Dennis The The Mathematics of Maps Lecture 4 1/29 The Mathematics of Maps Lecture 4 Dennis The The Mathematics of Maps Lecture 4 1/29 Mercator projection Dennis The The Mathematics of Maps Lecture 4 2/29 The Mercator projection (1569) Dennis The The Mathematics

More information

Astronomy 6570 Physics of the Planets

Astronomy 6570 Physics of the Planets Astronomy 6570 Physics of the Planets Planetary Rotation, Figures, and Gravity Fields Topics to be covered: 1. Rotational distortion & oblateness 2. Gravity field of an oblate planet 3. Free & forced planetary

More information

Introduction to Geographic Information Science. Updates/News. Last Lecture. Geography 4103 / Map Projections and Coordinate Systems

Introduction to Geographic Information Science. Updates/News. Last Lecture. Geography 4103 / Map Projections and Coordinate Systems Geography 4103 / 5103 Introduction to Geographic Information Science Map Projections and Coordinate Systems Updates/News Thursday s lecture Reading discussion 1 find the readings online open questions,

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry Chapter 4 THE HADLEY CIRCULATION The early work on the mean meridional circulation of the tropics was motivated by observations of the trade winds. Halley (1686) and Hadley (1735) concluded that the trade

More information

An Optimal Control Problem Formulation for. the Atmospheric Large-Scale Wave Dynamics

An Optimal Control Problem Formulation for. the Atmospheric Large-Scale Wave Dynamics pplied Mathematical Sciences, Vol. 9, 5, no. 8, 875-884 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.5.448 n Optimal Control Problem Formulation for the tmospheric Large-Scale Wave Dynamics Sergei

More information

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5)

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5) 9 Rossby Waves (Holton Chapter 7, Vallis Chapter 5) 9.1 Non-divergent barotropic vorticity equation We are now at a point that we can discuss our first fundamental application of the equations of motion:

More information

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

g (z) = 1 (1 + z/a) = 1

g (z) = 1 (1 + z/a) = 1 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

More information

Comparison of ensemble and NMC type of background error statistics for the ALADIN/HU model

Comparison of ensemble and NMC type of background error statistics for the ALADIN/HU model Comparison of ensemble and NMC type of background error statistics for the ALADIN/HU model Kristian Horvath horvath@cirus.dhz.hr Croatian Meteorological and Hydrological Service supervised by Bölöni Gergely

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

GEF 1100 Klimasystemet. Chapter 7: Balanced flow

GEF 1100 Klimasystemet. Chapter 7: Balanced flow GEF1100 Autumn 2016 27.09.2016 GEF 1100 Klimasystemet Chapter 7: Balanced flow Prof. Dr. Kirstin Krüger (MetOs, UiO) 1 Lecture Outline Ch. 7 Ch. 7 Balanced flow 1. Motivation 2. Geostrophic motion 2.1

More information

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC):

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): Laure Zanna 10/17/05 Introduction to Physical Oceanography Homework 3 - Solutions 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): (a) Looking on the web you can find a lot

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Today s Class Latitude and Longitude Simple spherical definitions Geodetic definition: For an ellipsoid Astronomical definition: Based on direction of gravity Relationships

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

GEOGRAPHIC COORDINATE SYSTEMS

GEOGRAPHIC COORDINATE SYSTEMS GEOGRAPHIC COORDINATE SYSTEMS Introduction to GIS Winter 2015 What is Georeferencing? Used to establish a location on the Earth s surface 1 st order polynomial transformation Georeferencing toolbar What

More information

The hydrostatic and nonhydrostatic global model IFS/ARPEGE: deep-layer model formulation and testing.

The hydrostatic and nonhydrostatic global model IFS/ARPEGE: deep-layer model formulation and testing. 7 The hydrostatic and nonhydrostatic global model IFS/ARPEGE: deep-layer model formulation and testing. Karim Yessad 1 and Nils P. Wedi Research Department 1 Centre National de Recherches Météorologiques,

More information

Influence of Gravity Waves on the Atmospheric Climate

Influence of Gravity Waves on the Atmospheric Climate Influence of Gravity Waves on the Atmospheric Climate François Lott, LMD/CNRS, Ecole Normale Supérieure, Paris flott@lmd.ens.fr 1)Dynamical impact of mountains on atmospheric flows 3)Non-orographic gravity

More information

Lecture 1 ATS 601. Thomas Birner, CSU. ATS 601 Lecture 1

Lecture 1 ATS 601. Thomas Birner, CSU. ATS 601 Lecture 1 Lecture 1 ATS 601 Thomas Birner, CSU About your Instructor: Thomas Birner Assistant Professor, joined CSU 10/2008 M.Sc. Physics (Condensed Matter Theory), U of Leipzig, Germany Ph.D. Atmospheric Science

More information

Symmetry methods in dynamic meteorology

Symmetry methods in dynamic meteorology Symmetry methods in dynamic meteorology p. 1/12 Symmetry methods in dynamic meteorology Applications of Computer Algebra 2008 Alexander Bihlo alexander.bihlo@univie.ac.at Department of Meteorology and

More information

2. Conservation laws and basic equations

2. Conservation laws and basic equations 2. Conservation laws and basic equations Equatorial region is mapped well by cylindrical (Mercator) projection: eastward, northward, upward (local Cartesian) coordinates:,, velocity vector:,,,, material

More information

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:.29/, 1 2 Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability Daniela I.V. Domeisen, 1 R.

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada Dynamics of interacting vortices on trapped Bose-Einstein condensates Pedro J. Torres University of Granada Joint work with: P.G. Kevrekidis (University of Massachusetts, USA) Ricardo Carretero-González

More information

2 General Relativity. 2.1 Curved 2D and 3D space

2 General Relativity. 2.1 Curved 2D and 3D space 22 2 General Relativity The general theory of relativity (Einstein 1915) is the theory of gravity. General relativity ( Einstein s theory ) replaced the previous theory of gravity, Newton s theory. The

More information

CONSERVATION LAWS ON THE SPHERE: FROM SHALLOW WATER TO BURGERS. Matania Ben-Artzi

CONSERVATION LAWS ON THE SPHERE: FROM SHALLOW WATER TO BURGERS. Matania Ben-Artzi CONSERVATION LAWS ON THE SPHERE: FROM SHALLOW WATER TO BURGERS Matania Ben-Artzi Institute of Mathematics, Hebrew University, Jerusalem, Israel Advances in Applied Mathematics IN MEMORIAM OF PROFESSOR

More information

Potential Theory and the Static Gravity Field of the Earth

Potential Theory and the Static Gravity Field of the Earth TOGP 00054 a0005 3.02 Potential Theory and the Static Gravity Field of the Earth C. Jekeli, The Ohio State University, Columbus, OH, USA ª 2007 Elsevier Ltd. All rights reserved. g0005 g0010 g0015 g0020

More information

Chapter 2. The continuous equations

Chapter 2. The continuous equations Chapter. The continuous equations Fig. 1.: Schematic of a forecast with slowly varying weather-related variations and superimposed high frequency Lamb waves. Note that even though the forecast of the slow

More information

An inherently mass-conserving semi-implicit semi-lagrangian discretization of the deep-atmosphere global non-hydrostatic equations

An inherently mass-conserving semi-implicit semi-lagrangian discretization of the deep-atmosphere global non-hydrostatic equations Quarterly Journalof the RoyalMeteorologicalSociety Q. J. R. Meteorol. Soc. : July DOI:./qj. n inherently mass-conserving semi-implicit semi-lagrangian discretization of the deep-atmosphere global non-hydrostatic

More information

DSJRA-55 Product Users Handbook. Climate Prediction Division Global Environment and Marine Department Japan Meteorological Agency July 2017

DSJRA-55 Product Users Handbook. Climate Prediction Division Global Environment and Marine Department Japan Meteorological Agency July 2017 DSJRA-55 Product Users Handbook Climate Prediction Division Global Environment and Marine Department Japan Meteorological Agency July 2017 Change record Version Date Remarks 1.0 13 July 2017 First version

More information

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE INTRODUCTION V. Guryanov, A. Fahrutdinova, S. Yurtaeva Kazan State University, Kazan, Russia When constructing empirical

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

1 The satellite altimeter measurement

1 The satellite altimeter measurement 1 The satellite altimeter measurement In the ideal case, a satellite altimeter measurement is equal to the instantaneous distance between the satellite s geocenter and the ocean surface. However, an altimeter

More information

A mechanistic model study of quasi-stationary wave reflection. D.A. Ortland T.J. Dunkerton NorthWest Research Associates Bellevue WA

A mechanistic model study of quasi-stationary wave reflection. D.A. Ortland T.J. Dunkerton NorthWest Research Associates Bellevue WA A mechanistic model study of quasi-stationary wave reflection D.A. Ortland T.J. Dunkerton ortland@nwra.com NorthWest Research Associates Bellevue WA Quasi-stationary flow Describe in terms of zonal mean

More information

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute Facts about the atmosphere The atmosphere is kept in place on Earth by gravity The Earth-Atmosphere system

More information

MS-GWaves / GWING: Towards UA-ICON A non-hydrostatic global model for studying gravity waves from troposphere to thermosphere

MS-GWaves / GWING: Towards UA-ICON A non-hydrostatic global model for studying gravity waves from troposphere to thermosphere MS-GWaves / GWING: Towards UA-ICON A non-hydrostatic global model for studying gravity waves from troposphere to thermosphere Sebastian Borchert, Günther Zängl, Michael Baldauf (1), Guidi Zhou, Hauke Schmidt,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

Non-hydrostatic sound-proof equations of motion for gravity-dominated compressible fl ows. Thomas Dubos

Non-hydrostatic sound-proof equations of motion for gravity-dominated compressible fl ows. Thomas Dubos Non-hydrostatic sound-proof of for gravity-dominated compressible fl ows Thomas Dubos Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, Palaiseau, France Fabrice Voitus Centre National de

More information

EAS372 Open Book Final Exam 11 April, 2013

EAS372 Open Book Final Exam 11 April, 2013 EAS372 Open Book Final Exam 11 April, 2013 Professor: J.D. Wilson Time available: 2 hours Value: 30% Please check the Terminology, Equations and Data section before beginning your responses. Answer all

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

Lecture 4. Coordinate Systems & Projections

Lecture 4. Coordinate Systems & Projections Lecture 4 Coordinate Systems & Projections Outline Geodesy Geoids Ellipsoids Geographic Coordinate Systems Magnetic North vs. True North Datums Projections Applying Coordinate Systems and Projections Why

More information

General Relativity I

General Relativity I General Relativity I presented by John T. Whelan The University of Texas at Brownsville whelan@phys.utb.edu LIGO Livingston SURF Lecture 2002 July 5 General Relativity Lectures I. Today (JTW): Special

More information

Aspherical Gravitational Field II

Aspherical Gravitational Field II Aspherical Gravitational Field II p. 1/19 Aspherical Gravitational Field II Modeling the Space Environment Manuel Ruiz Delgado European Masters in Aeronautics and Space E.T.S.I. Aeronáuticos Universidad

More information

The Hamiltonian Particle-Mesh Method for the Spherical Shallow Water Equations

The Hamiltonian Particle-Mesh Method for the Spherical Shallow Water Equations The Hamiltonian Particle-Mesh Method for the Spherical Shallow Water Equations Jason Fran CWI P.O. Box 94079, 1090 GB Amsterdam, The Netherlands Sebastian Reich Department of Mathematics, Imperial College

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

Waves in Planetary Atmospheres R. L. Walterscheid

Waves in Planetary Atmospheres R. L. Walterscheid Waves in Planetary Atmospheres R. L. Walterscheid 2008 The Aerospace Corporation The Wave Zoo Lighthill, Comm. Pure Appl. Math., 20, 1967 Wave-Deformed Antarctic Vortex Courtesy of VORCORE Project, Vial

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

GRACE Gravity Model GGM02

GRACE Gravity Model GGM02 GRACE Gravity Model GGM02 The GGM02S gravity model was estimated with 363 days (spanning April 2002 through December 2003) of GRACE K-band range-rate, attitude, and accelerometer data. No Kaula constraint,

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

NR402 GIS Applications in Natural Resources Lesson 4 Map Projections

NR402 GIS Applications in Natural Resources Lesson 4 Map Projections NR402 GIS Applications in Natural Resources Lesson 4 Map Projections From http://www.or.blm.gov/gis/ 1 Geographic coordinates Coordinates are expressed as Latitude and Longitude in Degrees, Minutes, Seconds

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information