Lecture 12: Angular Momentum and the Hadley Circulation

Size: px
Start display at page:

Download "Lecture 12: Angular Momentum and the Hadley Circulation"

Transcription

1 Lecture 12: Angular Momentum and the Hadley Circulation September 30, 2003 We learnt last time that there is a planetary radiative drive net warming in the tropics, cooling over the pole which induces an equator pole temperature gradient = (due to expansion of warm columns, contraction of cold columns) a equator pole pressure gradient force at upper levels, as sketched in Fig.1. Today we discuss the consequence of this poleward pressure gradient force. Since air tends to move down the pressure gradient and we must get a circulation. Onemightexpectringsofaircirclingtheglobetobedrivenpolewards by pressure gradient forces. Indeed, in 1753 Hadley suggested one giant meridional cell with rising motion in the tropics and descending motion at the pole, as sketched schematically in Fig.2. As the rings contract conserving the angular momentum imparted to them by the spinning Earth, eastward winds will be induced. At the poles Hadley imagined that the rings would sink and then expand outward as they flow equatorward below, generating eastward winds. Let s look at the circulation postulated by Hadley in a little more detail. 1 Angular Momentum The earth is a rather rapidly rotating planet and its spin imparts angular momentum to the atmosphere above. This angular momentum, and its conservation, imposes rather rigid constraints on the possible motions. Consider a ring of air circling the globe as shown in Fig.3. Under the influence of the poleward pressure gradient force it will move poleward, its 1

2 COLD Pole p Pressure gradient force from high to low pressure WARM p Equator Figure 1: Figure 2: The circulation envisaged by Hadley comprising one giant meridional cell stretching from equator to pole. 2

3 distance, r, from the axis of rotation will decrease and hence, conserving its angular momentum, its eastward wind, u, relative to the Earth, will increase. The angular momentum of the ring, per unit mass, is Figure 3: A = Ωr 2 + ur, the first term being the contribution from planetary rotation, and the second from the eastward wind u relative to the Earth, where r is the distance from the rotation axis. Here Ω is the rotation rate of the earth (in radians per second). Since r = a cos ϕ, A = Ωa 2 cos 2 ϕ + ua cos ϕ. (1) If we assume (for simplicity, but motivated by observation) the circulation is axisymmetric (no longitudinal variations) then angular momentum is conserved by the ring as it moves around. Now, consider the upper branch of the Hadley circulation, and suppose that, at the equator, u =0. Then the angular momentum at the equator is simply A 0 = Ωa 2. Now, if we follow this ring of air as it moves poleward and, very reasonably, assume it retains its absolute angular momentum A 0, it will acquire an eastward velocity u (ϕ) = (A 0 Ωa 2 cos 2 ϕ) a cos ϕ 3 = Ωa sin2 ϕ cos ϕ. (2)

4 This can produce a very large wind: at ϕ =10 o, u(ϕ) =14ms 1 ;at20 o, u(ϕ) =58ms 1 ;at30 o, u(ϕ) =130ms 1, and of course u(ϕ) as ϕ 90 o. By the time middle latitudes are reached, these values are completely unrealistic and are not significantly changed by invoking frictional effects at the ground. We must conclude that rings do not conserve their angular momentum as they are driven poleward in the manner postulated. Clearly, the circulation cannot go all the way to the pole as envisaged by Hadley. How far this axisymmetric circulation will extend depends (according to theory) on many factors; observations see Fig.4 tell us that it extends to about 30 o latitude 1. We conclude that something must balance the pressure gradient force. What? It turns out to be centrifugal forces (Coriolis forces) directed outward associated with the zonal motion of the ring of air relative to the earth. 1.1 Visualising the Coriolis force Consider again our ring of air. There is a centrifugal acceleration directed outwards perpendicular to the earth s axis of rotation, the vector A sketched in Fig.5: V 2 (u + Ωr)2 = = Ω 2 r +2Ωu + u2 (3) r r r Here V is the absolute velocity the fluid has viewed from an observer fixed in space looking back at the earth. Let s now consider the terms in turn: Ω 2 r - this is the centrifugal acceleration acting on a particle fixed to the earth. It is included in the gravity which is usually measured and is the reason that the earth is not a perfect sphere a fluid planet (and the earth is a fluid on geological timescales) becomes an oblate spheroid. Indeed, the equatorial radius of the earth is 24 km larger than the polar radius see Fig.6 2Ωu+ u2 - the additional centrifugal acceleration due to motion relative r u to the earth. Note that if << 1, we may neglect the term in Ωr u2. For the earth u 0.02 and so the 2Ωu term dominates. It is directed Ωr 1 If the Earth were rotating less (or more) rapidly, and other things being equal, the Hadley circulation would extend further (or less far) poleward. 4

5 Figure 4: The meridional overturning streamfunction of the atmosphere in annual mean, DJF and JJA conditons. Units are in kg/sec. Flow circulates around positive (negative) centers in a clockwise (anti-clockwise) sense. Thus, in the annual mean, air rises just north of the equator and sinks around ±30 o. 5

6 Figure 5: outward perpendicular to the axis of rotation and can be resolved: perpendicular to the earth s surface - vector B in the diagram and parallel to the earth s surface - vector C in the diagram. Component B changes the weight of the ring slightly - it is very small compared to g, the acceleration due to gravity, and so unimportant. Component C, parallel to the earth s surface, is the Coriolis acceleration: 2Ω sin ϕ u So there is a centrifugal force directed toward the equator because of the motionoftheringofairrelativetotheearth. Itisthisforcethatbalancesthe pressure gradient force associated with the sloping isobaric surfaces induced by the pole-equator temperature gradient. Let s postulate a balance between the Coriolis force and the pressuregradient force ρadϕdz {z } 2Ω sin ϕu {z } mass acceleration = p ϕ dϕdz {z } p_grad 6

7 Figure 6: Introducing a coordinate y which points northwards on the earth s surface, dy = adϕ, the above reduces to: where fu+ 1 p ρ y =0 (4) f =2Ω sin ϕ (5) is known as the Coriolis parameter, the component of the Earth s rotation resolved in the direction of gravity. Eq.(4) is a special case of the geostrophic balance which we will be discussing in much more detail in later lectures a balance between pressure gradient forces and Coriolis forces - it is one of the most important concepts in the dynamics of rotating fluids. Whatdoesitimplyaboutthemagnitude of the wind? Using the hydrostatic relation to write 1 z as g where z is the geopotential height of, for example, the 500mb surface, geostrophic balance implies ρ y awindofstrength: u = g f p y z L = =10ms 1 7

8 Figure 7: wherewehaveassumedthatthe500mbsurfaceslantsdownby z =500m in L = 5000km, roughly consistent with the observations we looked at last time. Thus centrifugal forces acting on a ring of air moving at a speed of 10ms 1 relative to the ground, are of sufficient magnitude to balance the poleward pressure gradient force associated with the pole-equator temperature gradient. The above considerations, then, suggest we should observe zonal winds of a magnitude of some 10ms 1. This, indeed, is just what we observe see Fig.8. 8

9 Figure 8: Meridional cross-section of zonal wind (ms 1 ) under annual mean conditions (top), DJF (December, January, February ) (middle) and JJA (June, July, August) (bottom) conditions. 9

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry Chapter 4 THE HADLEY CIRCULATION The early work on the mean meridional circulation of the tropics was motivated by observations of the trade winds. Halley (1686) and Hadley (1735) concluded that the trade

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

The Circulation of the Atmosphere:

The Circulation of the Atmosphere: The Circulation of the Atmosphere: Laboratory Experiments (see next slide) Fluid held in an annular container is at rest and is subjected to a temperature gradient. The less dense fluid near the warm wall

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April

GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April 1 The Gulf Stream has a dramatic thermal-wind signature : the sloping isotherms and isohalines (hence isopycnals) not only

More information

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC):

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): Laure Zanna 10/17/05 Introduction to Physical Oceanography Homework 3 - Solutions 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): (a) Looking on the web you can find a lot

More information

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by

+ ω = 0, (1) (b) In geometric height coordinates in the rotating frame of the Earth, momentum balance for an inviscid fluid is given by Problem Sheet 1: Due Thurs 3rd Feb 1. Primitive equations in different coordinate systems (a) Using Lagrangian considerations and starting from an infinitesimal mass element in cartesian coordinates (x,y,z)

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere DEAPS Activity 3 Weather systems and the general circulation of the atmosphere Lodovica Illari 1 Introduction What is responsible for stormy weather? What causes relatively warm temperatures one day and

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Cloud Fraction Dice Results from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

g (z) = 1 (1 + z/a) = 1

g (z) = 1 (1 + z/a) = 1 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

Lecture 20: Taylor Proudman Theorem

Lecture 20: Taylor Proudman Theorem Lecture 20: Taylor Proudman Theorem October 23, 2003 1 The Taylor-Proudman Theorem We have seen (last time) that if the flow is sufficiently slow and steady (small Rossby number) and frictionless (F small),

More information

Goal: Understand the dynamics and thermodynamics of the Hadley circulation

Goal: Understand the dynamics and thermodynamics of the Hadley circulation Description of the zonal mean tropical overturning (or Hadley) circulation Some simple dynamical and thermodynamic models of the Hadley circulation* The Hadley circulation in a global circulation context

More information

7 The General Circulation

7 The General Circulation 7 The General Circulation 7.1 The axisymmetric state At the beginning of the class, we discussed the nonlinear, inviscid, axisymmetric theory of the meridional structure of the atmosphere. The important

More information

Ocean dynamics: the wind-driven circulation

Ocean dynamics: the wind-driven circulation Ocean dynamics: the wind-driven circulation Weston Anderson March 13, 2017 Contents 1 Introduction 1 2 The wind driven circulation (Ekman Transport) 3 3 Sverdrup flow 5 4 Western boundary currents (western

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Start heated bottle experiment Scientific Practice Observe nature Develop a model*/hypothesis for what is happening Carry out experiments Make

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

ESS15 Lecture 10. Winds and weather The Coriolis force Global circulations of atmosphere & ocean Weather vs. Climate

ESS15 Lecture 10. Winds and weather The Coriolis force Global circulations of atmosphere & ocean Weather vs. Climate ESS15 Lecture 10 Winds and weather The Coriolis force Global circulations of atmosphere & ocean Weather vs. Climate Earth s energy imbalances, winds, and the global circulation of the atmopshere. Please

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

X Y. Equator. Question 1

X Y. Equator. Question 1 Question 1 The schematic below shows the Hadley circulation in the Earth s tropical atmosphere around the spring equinox. Air rises from the equator and moves poleward in both hemispheres before descending

More information

Lecture 5: Atmospheric General Circulation and Climate

Lecture 5: Atmospheric General Circulation and Climate Lecture 5: Atmospheric General Circulation and Climate Geostrophic balance Zonal-mean circulation Transients and eddies Meridional energy transport Moist static energy Angular momentum balance Atmosphere

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

The meteorology of monsoons

The meteorology of monsoons 978--521-84799-5 - The Asian Monsoon: Causes, History and Effects 1 The meteorology of monsoons 1.1 Introduction Monsoon circulations are major features of the tropical atmosphere, which, primarily through

More information

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Planetary Atmospheres Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Photochemistry We can characterize chemical reactions in the atmosphere in the following way: 1. Photolysis:

More information

General Atmospheric Circulation

General Atmospheric Circulation General Atmospheric Circulation Take away Concepts and Ideas Global circulation: The mean meridional (N-S) circulation Trade winds and westerlies The Jet Stream Earth s climate zones Monsoonal climate

More information

1/25/2010. Circulation and vorticity are the two primary

1/25/2010. Circulation and vorticity are the two primary Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Equatorial Superrotation on Tidally Locked Exoplanets

Equatorial Superrotation on Tidally Locked Exoplanets Equatorial Superrotation on Tidally Locked Exoplanets Adam P. Showman University of Arizona Lorenzo M. Polvani Columbia University Synopsis Most 3D atmospheric circulation models of tidally locked exoplanets

More information

Solution to Problems #1. I. Information Given or Otherwise Known. = 28 m/s. Heading of the ultralight aircraft!! h

Solution to Problems #1. I. Information Given or Otherwise Known. = 28 m/s. Heading of the ultralight aircraft!! h METR 520: Atmospheric Dynamics II Dr. Dave Dempsey Dept. of Geosciences, SFSU Spring 2012 Solution to Problems 1 Problem 1 An ultralight aircraft is flying. I. Information Given or Otherwise Known Horizontal

More information

1 The circulation of a zonally symmetric atmosphere. 1.1 Angular momentum conservation and its implications

1 The circulation of a zonally symmetric atmosphere. 1.1 Angular momentum conservation and its implications 1 The circulation of a zonally symmetric atmosphere We will begin our attempts to understand the big picture of the structure of the atmosphere by asking about what theory predicts if we ignore eddies

More information

Tropical Meridional Circulations: The Hadley Cell

Tropical Meridional Circulations: The Hadley Cell Tropical Meridional Circulations: The Hadley Cell Introduction Throughout much of the previous sections, we have alluded to but not fully described the mean meridional overturning circulation of the tropics

More information

Today. Jovian planets

Today. Jovian planets Today Jovian planets Global Wind Patterns Heat transport Global winds blow in distinctive patterns: Equatorial: E to W Mid-latitudes: W to E High latitudes: E to W 2014 Pearson Education, Inc. Circulation

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes NAME: SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

Lecture 11: Meridonal structure of the atmosphere

Lecture 11: Meridonal structure of the atmosphere Lecture 11: Meridonal structure of the atmosphere September 28, 2003 1 Meridional structure of the atmosphere In previous lectures we have focussed on the vertical structure of the atmosphere. Today, we

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it ATMO 436a The General Circulation Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it Scales of Atmospheric Motion vs. Lifespan The general circulation Atmospheric oscillations

More information

Geostrophy & Thermal wind

Geostrophy & Thermal wind Lecture 10 Geostrophy & Thermal wind 10.1 f and β planes These are planes that are tangent to the earth (taken to be spherical) at a point of interest. The z ais is perpendicular to the plane (anti-parallel

More information

A Summary of Some Important Points about the Coriolis Force/Mass. D a U a Dt. 1 ρ

A Summary of Some Important Points about the Coriolis Force/Mass. D a U a Dt. 1 ρ A Summary of Some Important Points about the Coriolis Force/Mass Introduction Newton s Second Law applied to fluids (also called the Navier-Stokes Equation) in an inertial, or absolute that is, unaccelerated,

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Isentropic flows and monsoonal circulations

Isentropic flows and monsoonal circulations Isentropic flows and monsoonal circulations Olivier Pauluis (NYU) Monsoons- Past, Present and future May 20th, 2015 Caltech, Pasadena Outline Introduction Global monsoon in isentropic coordinates Dry ventilation

More information

7 Balanced Motion. 7.1 Return of the...scale analysis for hydrostatic balance! CSU ATS601 Fall 2015

7 Balanced Motion. 7.1 Return of the...scale analysis for hydrostatic balance! CSU ATS601 Fall 2015 7 Balanced Motion We previously discussed the concept of balance earlier, in the context of hydrostatic balance. Recall that the balanced condition means no accelerations (balance of forces). That is,

More information

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise.

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise. Chapter 4 4.1 The Circulation Theorem Circulation is a measure of rotation. It is calculated for a closed contour by taking the line integral of the velocity component tangent to the contour evaluated

More information

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

Astronomy 6570 Physics of the Planets

Astronomy 6570 Physics of the Planets Astronomy 6570 Physics of the Planets Planetary Rotation, Figures, and Gravity Fields Topics to be covered: 1. Rotational distortion & oblateness 2. Gravity field of an oblate planet 3. Free & forced planetary

More information

ROSSBY WAVE PROPAGATION

ROSSBY WAVE PROPAGATION ROSSBY WAVE PROPAGATION (PHH lecture 4) The presence of a gradient of PV (or q.-g. p.v.) allows slow wave motions generally called Rossby waves These waves arise through the Rossby restoration mechanism,

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance

Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance November 5, 2003 Today we are going to study vertical sections through the ocean and discuss what we can learn about

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

The Equations of Motion in a Rotating Coordinate System. Chapter 3

The Equations of Motion in a Rotating Coordinate System. Chapter 3 The Equations of Motion in a Rotating Coordinate System Chapter 3 Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study

More information

2. Conservation laws and basic equations

2. Conservation laws and basic equations 2. Conservation laws and basic equations Equatorial region is mapped well by cylindrical (Mercator) projection: eastward, northward, upward (local Cartesian) coordinates:,, velocity vector:,,,, material

More information

Dust devils, water spouts, tornados

Dust devils, water spouts, tornados Balanced flow Things we know Primitive equations are very comprehensive, but there may be a number of vast simplifications that may be relevant (e.g., geostrophic balance). Seems that there are things

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wek > 0 VEk wek < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its

More information

Dynamics II: rotation L. Talley SIO 210 Fall, 2011

Dynamics II: rotation L. Talley SIO 210 Fall, 2011 Dynamics II: rotation L. Talley SIO 210 Fall, 2011 DATES: Oct. 24: second problem due Oct. 24: short info about your project topic Oct. 31: mid-term Nov. 14: project due Rotation definitions Centrifugal

More information

1. tangential stresses at the ocean s surface due to the prevailing wind systems - the wind-driven circulation and

1. tangential stresses at the ocean s surface due to the prevailing wind systems - the wind-driven circulation and Chapter 9 The wind-driven circulation [Hartmann, Ch. 7 (7.4-7.5)] There are two causes of the circulation of the ocean: 1. tangential stresses at the ocean s surface due to the prevailing wind systems

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

Imperial College London

Imperial College London Solar Influence on Stratosphere-Troposphere Dynamical Coupling Isla Simpson, Joanna D. Haigh, Space and Atmospheric Physics, Imperial College London Mike Blackburn, Department of Meteorology, University

More information

EATS Notes 1. Some course material will be online at

EATS Notes 1. Some course material will be online at EATS 3040-2015 Notes 1 14 Aug 2015 Some course material will be online at http://www.yorku.ca/pat/esse3040/ HH = Holton and Hakim. An Introduction to Dynamic Meteorology, 5th Edition. Most of the images

More information

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key NAME: psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100

More information

Lab Ten Introduction to General Circulation and Angular Momentum

Lab Ten Introduction to General Circulation and Angular Momentum Question 1 (15 points) Lab Ten Introduction to General Circulation and Angular Momentum a.) (5 points) Examining the diagram above, between which latitudes is there net heating and between which latitudes

More information

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms,

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms, Chapter 1 Notes A Note About Coordinates We nearly always use a coordinate system in this class where the vertical, ˆk, is normal to the Earth s surface and the x-direction, î, points to the east and the

More information

EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather

EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA kushnir@ldeo.columbia.edu

More information

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do not change

More information

The general circulation of the atmosphere

The general circulation of the atmosphere Chapter 8 The general circulation of the atmosphere In this chapter we return to our discussion of the large-scale circulation of the atmosphere and make use of the dynamical ideas developed in the previous

More information

Dynamics of the Earth

Dynamics of the Earth Time Dynamics of the Earth Historically, a day is a time interval between successive upper transits of a given celestial reference point. upper transit the passage of a body across the celestial meridian

More information

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall Lecture 8 Monsoons and the seasonal variation of tropical circulation and rainfall According to the second hypothesis, the monsoon is a manifestation of the seasonal variation of the tropical circulation

More information

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0 References Held, Isaac M., and Hou, A. Y., 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515-533. Held, Isaac M., and Suarez, M. J., 1994: A proposal

More information

Lecture D15 - Gravitational Attraction. The Earth as a Non-Inertial Reference Frame

Lecture D15 - Gravitational Attraction. The Earth as a Non-Inertial Reference Frame J. Peraire 16.07 Dynamics Fall 2004 Version 1.3 Lecture D15 - Gravitational Attraction. The Earth as a Non-Inertial Reference Frame Gravitational attraction The Law of Universal Attraction was already

More information

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity ESCI 34 tmospheric Dynamics I Lesson 1 Vorticity Reference: n Introduction to Dynamic Meteorology (4 rd edition), Holton n Informal Introduction to Theoretical Fluid Mechanics, Lighthill Reading: Martin,

More information

Synoptic Meteorology I: Other Force Balances

Synoptic Meteorology I: Other Force Balances Synoptic Meteorology I: Other Force Balances For Further Reading Section.1.3 of Mid-Latitude Atmospheric Dynamics by J. Martin provides a discussion of the frictional force and considerations related to

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

ENVIRONMENTAL MANAGEMENT I

ENVIRONMENTAL MANAGEMENT I ENVIRONMENTAL MANAGEMENT I Environmental science is the study of the interaction of humans with the natural environment. The environment includes all conditions that surround living organisms: Climate

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Contents

More information

2. Temperature, Pressure, Wind, and Minor Constituents.

2. Temperature, Pressure, Wind, and Minor Constituents. 2. Temperature, Pressure, Wind, and Minor Constituents. 2. Distributions of temperature, pressure and wind. Close examination of Figs..7-.0 of MS reveals te following features tat cry out for explanation:

More information

Circulation and Vorticity

Circulation and Vorticity Circulation and Vorticity Example: Rotation in the atmosphere water vapor satellite animation Circulation a macroscopic measure of rotation for a finite area of a fluid Vorticity a microscopic measure

More information

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations Chapter 3 Shallow Water Equations and the Ocean Over most of the globe the ocean has a rather distinctive vertical structure, with an upper layer ranging from 20 m to 200 m in thickness, consisting of

More information

Circulation and Vorticity. The tangential linear velocity of a parcel on a rotating body is related to angular velocity of the body by the relation

Circulation and Vorticity. The tangential linear velocity of a parcel on a rotating body is related to angular velocity of the body by the relation Circulation and Vorticity 1. Conservation of Absolute Angular Momentum The tangential linear velocity of a parcel on a rotating body is related to angular velocity of the body by the relation V = ωr (1)

More information

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean Lecture 3: Weather/Disturbance Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies Transient and Eddy Transient: deviations from time mean Time Mean Eddy: deviations

More information

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations Cristiana Stan School and Conference on the General Circulation of the Atmosphere and Oceans: a Modern Perspective

More information

ATS 421/521. Climate Modeling. Spring 2015

ATS 421/521. Climate Modeling. Spring 2015 ATS 421/521 Climate Modeling Spring 2015 Lecture 9 Hadley Circulation (Held and Hou, 1980) General Circulation Models (tetbook chapter 3.2.3; course notes chapter 5.3) The Primitive Equations (tetbook

More information