Geography 1001: Climate & Vegetation. Review lecture 1. Review lecture 1. Energy from Sun to Earth. Review lecture 1

Size: px
Start display at page:

Download "Geography 1001: Climate & Vegetation. Review lecture 1. Review lecture 1. Energy from Sun to Earth. Review lecture 1"

Transcription

1 Geography 1001: Climate & Vegetation Instructor: Andrés Holz Agenda for Review Session: T Oct 9 th Review Session Suggestions from a student Read each questions twice Circle the [little] word(s) that are key to that question Think what should be the answer before looking at the choices Start scratching out the choices you know are wrong! Read the whole midterm before writing your answer on the computer answer sheet other questions may help you! Review lecture 1 Chapter 1 Systems a system is any ordered, interrelated set of things and their attributes Open & closed systems» Most natural systems are open Chapter 1 Systems feedback a) Positive b) Negative Review lecture 1 Chapter 1 Systems feedback a) Positive b) Negative Review lecture 1 Energy from Sun to Earth 2) Radiant or Solar energy in portions of the electromagnetic spectrum i.e. Electromagnetic Energy Figure 2.8 1

2 Questions The dominant wavelength of energy emitted by the sun is a) Shorter than that emitted by the Earth. b) Longer than that emitted by the Earth. c) The same length as that emitted by the Earth. d) It consists exclusively of radiant energy made of gamma ray, X-ray, and ultraviolet wavelengths e) B and D The Seasons Review Lecture 2 Seasonality (3) Sun s altitude above the horizon Sun s declination (latitude of the subsolar point) Daylength during the year Review Lecture 2 What causes the seasons? Reasons for seasons (5) Revolution Rotation Axial Tilt Axial Parallelism (Earth) Sphericity results in uneven insolation Questions Which of the following best explain the changing seasons? a) Perihelion and aphelion (Earth s varying distance to the sun) b) Axial parallelism or Polarity (the fact that the Earth s axis maintains its alignment during Earth s orbit around the Sun) c) Earth s revolution d) B and C only e) All of the above Review Lecture 3 Chapter 3 Atmosphere profile across latitudes 3 Criteria for the atmosphere structure Composition Heterosphere outer atmosphere Homosphere inner atmosphere 4 more important (stable) atmospheric components» N 2 ~78%; 0 2 ~21%; Ar~0.9%; CO 2 ~0.04% Temperature Thermosphere Mesosphere Stratosphere Troposphere: 90% mass of atmosphere (18 km/11 ml) Function Ionosphere Ozonosphere Review Lecture 3 Chapter 3 Atmospheric pressure, weight, & gravity Atm Pressure => Atm weight Relationship among Altitude Gravity Particles density Components Ozone concentration Cl is the one that destroys the O 3 molecule (Cl last for ~100yrs) Natural Sources Fires, volcanoes, plants, oceans, etc. Natural Factors That Affect Air Pollution Winds, topography, etc. Anthropogenic Pollution CO, Photochemical smog, Acid deposition (acid rain) Benefits of the Clean Air Act Emission Trends improved ( ; US EPA Study) 2

3 Question The part of the atmosphere that shields Earth's surface from harmful ultraviolet radiation is the. 1) tropopause 2) troposphere 3) mesosphere 4) ozonosphere The part of the atmosphere that shields Earth's surface from harmful ultraviolet radiation is the. 1) tropopause 2) troposphere 3) mesosphere 4) ozonosphere Review lecture 4 Chapter 4: Energy balance Energy pathways Transmission (passage of E through a medium) Scattering (diffuse radiation; change of light direction w/o wavelength change) Refraction (change of both light direction & wavelength) Like a prism or crystal» Refraction and rain drops» Refraction and different Temps (densities) Review lecture 4 Chapter 4: Energy balance Energy principles Insolation (amounts of E [direct & diffuse] that reaches earth and determines ecosystem types; e.g. max Insolation results in desserts) Reflection returned without being absorbed Albedo= reflectivity quality & it s f [color and texture] Role of clouds in albedo (low elevation)- and greenhouse (high elevation)-forcing effect Absorption (& heat transfer) Conversion of radiation from one form to another (e.g. short- to long-wave radiation) Review lecture 4 Chapter 4: Energy balance Radiation: E traveling through air/space Conduction Molecule to molecule transfer of heat through a medium As molecules warm vibration collisions motion in neighboring molecules transfer of heat (from hot to cold). All (Gases, liquid & solid) conduct sensible heat Gases and liquids also transfer heat by actual physical movements of the molecules Convection Energy transferred by vertical movement Advection Energy transferred by horizontally movement Questions The sky is blue because a) Dust in the atmosphere changes the black color of space to sky blue. b) Gasses in the atmosphere scatter blue light. c) Light reflects off of the oceans d) Light from the sun is mainly blue. 3

4 Questions is the passage of shortwave and longwave energy through either the atmosphere or water. Questions is the passage of shortwave and longwave energy through either the atmosphere or water. 1) Transmission 2) Scattering 3) Absorption 4) Refraction 1) Transmission 2) Scattering 3) Absorption 4) Refraction Review Lecture 5 Chapter 4: Energy balance Energy balances in the troposphere The Greenhouse Effect and Atmospheric Warming» Atmosphere absorbs heat energy» Greenhouse traps heat vs. Atmosphere delays transfer of heat Clouds and Earth s Greenhouse (high vs. low elevation clouds) Earth Atmosphere Radiation Balance Review Lecture 5 Chapter 4: Energy balance Energy balances in the troposphere at earth s surface Daily Radiation Patterns Simplified Surface Energy Balance Daily Radiation Patterns Review Lecture 5 Temperature Concepts and Measurement (scales) Principal Temperature Controls Latitude Affects insolation Altitude High altitude has greater daily range High altitude has lower annual average Cloud Cover High albedo Moderate temperatures cooler days, warmer nights Land-Water differences Figure

5 Review Lecture 5 Land Water Heating Differences Evaporation Transparency Specific heat Movement Sea-surface temperatures Continentality & Maritime effects Review Lecture 5 Earth s Temperature Patterns January Temperature Map Thermal equator movement southward More pronounced over large continents July Temperature Map Thermal equator movement northward More pronounced over large continents Annual Temperature Range Map Continentality Question Generally speaking, water changes temperature more slowly than soil or rock because of its higher. Question Generally speaking, water changes temperature more slowly than soil or rock because of its higher. 1) specific temperature 2) volume 3) absolute heat 4) specific heat 1) specific temperature 2) volume 3) absolute heat 4) specific heat Review Lecture 6 Review Lecture 6 Air pressure and winds Wind Essentials Air pressure Gravity Motion, size and number temperature & density density and Its Measurement Mercury barometer Aneroid barometer Wind Description and Measurement Driving Forces within the Atmosphere Responsible for vertical winds Gravity force Responsible for horizontal winds Pressure Gradient (Force; PGF) Can get the wind going from zero: Pressure gradient results from Diff in Temp & Density of air» Cold air more dense heavier sinks higher P» Hot air less dense lighter rises lower P 5

6 Global wind direction: in a Non-rotating earth Review Lecture 6 Driving Forces within the Atmosphere Responsible for horizontal winds Can only affect objects when already moving: Coriolis Effect (Acceleration)» Deflection effect of anything that is moving (air, ocean streams, airplanes, etc..) due to the rotating effect of our earth.» Coriolis pulls toward a 90 from the wind movement (to the wind s right in the NH & vice versa in SH)» Its strength is a function of speed of wind (the slower the wind the weaker the Coriolis) Review Lecture 6 Driving Forces within the Atmosphere Responsible for horizontal winds Can only affect objects when already moving: Coriolis Effect (Acceleration) At higher elevation (in the Upper Atmosphere), Coriolis is at balance with PGF: Geostrophic balance winds remain between isobars. At lower elevation, winds gets in contact with mountains and earth surface friction» Friction drags wind bag (slows it down) weakens Coriolis geostrophic balance breaks winds crosses Isobars. Question A bird at F traveling with the predominant winds would, most likely, end up near. 1) A 2) D 3) I 4) J Question A bird at F traveling with the predominant winds would, most likely, end up near. 1) A 2) D 3) I 4) J Review Lecture 7 Atmospheric Patterns of Motion Hadley Cells, Ferrel Cells, & Polar Cells Primary High-Pressure and Low-Pressure Areas Equatorial low-pressure trough Inter-Tropical Convergence Zone (ITCZ) Trade winds Polar high-pressure cells Polar easterlies Antarctic high 6

7 Review Lecture 7 Atmospheric Patterns of Motion Hadley Cells, Ferrel Cells, & Polar Cells Primary High-Pressure and Low-Pressure Areas Subtropical high-pressure cells Westerlies Bermuda high Azores high Pacific high Subpolar low-pressure cells Aleutian low Icelandic low Polar front Figure 6.13 General Atmospheric Circulation General Atmospheric Circulation Review Lecture 7 Atmospheric Patterns of Motion Upper Atmospheric Circulation: Earth s rotating is responsible for Rossby waves Jet stream: Its characteristics depend on Seasonality Location of high and low pressure systems Warm and cold air Figure 6.13 Review Lecture 7 Local Winds Day vs. Night patterns Land-sea breezes Mountain-valley breezes Question Point = a thermal high pressure area. 1) B 2) D 3) F 4) H 7

8 Question Point = a thermal high pressure area ) B 2) D 3) F 4) H A lapse rate is a change of with height. 1) wind speed 2) relative humidity 3) temperature 4) pressure A lapse rate is a change of with height The process of occurs when air is forcibly pushed up a mountain slope. 1) wind speed 2) relative humidity 3) temperature 4) pressure 1) orographic 2) convection 3) convergent 4) frontal The process of occurs when air is forcibly pushed up a mountain slope. 1) orographic 2) convection 3) convergent 4) frontal Review Lecture 9 Air Masses Moisture Temperature F (latitude) Modification (e.g. lake effects) Atmospheric Lifting Mechanisms Convergent (e.g. ITCZ) Convectional (e.g. parking lot) Orographic Frontal Cold & warm fronts 8

9 Review Lecture 9 Midlatitude Cyclonic Systems Migrating low-pressure with converging, ascending air in spirals Generated by PGF, Coriolis, and Friction Life cycle of a mid-latitude cyclone Cyclogenesis (Birth) Open Stage Occluded stage Dissolving stage (Death) Review Lecture 9 Water Resources: The Hydrologic Cycle Water Withdrawal by Sector fronts travel faster than fronts. 1) Cold/warm 2) Warm/cold 3) Stationary/ occluded 4) Midlatitude/ tropical Figure fronts travel faster than fronts On a worldwide basis, the majority of water withdrawal occurs for use. 1) Cold/warm 2) Warm/cold 3) Stationary/ occluded 4) Midlatitude/ tropical 1) industrial 2) domestic 3) agricultural 4) urban 9

10 09.10 On a worldwide basis, the majority of water withdrawal occurs for use. 1) industrial 2) domestic 3) agricultural 4) urban Review Lecture 11 Climate components & relationships Insolation Temperature Pressure Air Masses Precipitation Köppen Climate Classification Hierarchical Criteria Average monthly temperatures Average monthly precipitation Total annual precipitation Review Lecture 11 Climate components & relationships Köppen Climate Classification Hierarchical Criteria Benefits It correlates reasonably with actual world Standard worldwide and readily available data Drawbacks Winds, temps extremes, precipitation intensity, amount of sunshine, cloud cover, or net radiation The causes of precipitation or temperature patterns Classification Categories (based purely on temperature criteria) Köppen-Geiger Climate System Earth s Climate Classification A-Tropical equatorial & tropical latitudes, humid & warm C-Mesothermal mid-latitudes, mild winters D-Microthermal mid- & high-latitudes, cold winters E- Polar high latitudes and polar regions, no warm seasons H- Highland compares to lowlands at the same latitude, highlands have lower temperatures B-Desert permanent moisture deficits*. More Transpiration than Precipitation The climates have virtually no winter due to consistent daylength and an almost perpendicular sun angle The climates have virtually no winter due to consistent daylength and an almost perpendicular sun angle. 1) A 2) B 3) C 4) D 1) A 2) B 3) C 4) D 10

11 Climate anomalies: natural climate change El Niño Southern Oscillation (ENSO) Fisheries Change in the water temperatures of the tropical pacific El Niño: Movement of tropical warm waters in the Pacific ocean from W to E. La Niña: Movement of tropical warm waters in the Pacific ocean from E to W, Each phase last ~6-18 months (& average periodicity of whole cycle is ~3-6 years) Also the best known oscillation (so far). Pacific Decadal Oscillation (PDO) Fisheries Long-lived El Niño-like pattern of Pacific climate variability Operates on longer 20 to 30 year periods Climate anomalies: natural climate change North Atlantic Oscillation (NAO) Large scale pressure anomaly between the polar low and the subtropical high during the winter season (December through March) Operates on 20 to 30 year periods, also Atlantic Multidecadal Oscillation (AMO) Occurs in Atlantic between the equator and Greenland A multidecadal (50-70 year timescale) pattern of North Atlantic oceanatmosphere variability When the AMO is positive (warm Atlantic) there is less rainfall over most of the United States During warm phases of the AMO, the numbers of tropical storms that mature into severe hurricanes is much greater than during cool phases Questions Natural climatic anomalies influence our atmosphere and earth s climate. A couple of them where first noticed by coastal fisheries. Which of these latter anomalies is least understood these days PDO AMO ENSO NAO AAO 11

GEO1010 tirsdag

GEO1010 tirsdag GEO1010 tirsdag 31.08.2010 Jørn Kristiansen; jornk@met.no I dag: Først litt repetisjon Stråling (kap. 4) Atmosfærens sirkulasjon (kap. 6) Latitudinal Geographic Zones Figure 1.12 jkl TØRR ATMOSFÆRE Temperature

More information

The Atmosphere - Chapter Characteristics of the Atmosphere

The Atmosphere - Chapter Characteristics of the Atmosphere Section Objectives Describe the composition of Earth s atmosphere. Explain how two types of barometers work. Identify the layers of the atmosphere. Identify two effects of air pollution. The Atmosphere

More information

The Atmosphere. Characteristics of the Atmosphere. Section 23.1 Objectives. Chapter 23. Chapter 23 Modern Earth Science. Section 1

The Atmosphere. Characteristics of the Atmosphere. Section 23.1 Objectives. Chapter 23. Chapter 23 Modern Earth Science. Section 1 The Atmosphere Chapter 23 Modern Earth Science Characteristics of the Atmosphere Chapter 23 Section 1 Section 23.1 Objectives Describe the composition of Earth s atmosphere. Explain how two types of barometers

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

COMPOSITION OF THE ATMOSPHERE

COMPOSITION OF THE ATMOSPHERE Skills Worksheet Directed Reading Section: Characteristics of the Atmosphere 1. Define atmosphere. 2. Describe two important functions served by Earth s atmosphere. COMPOSITION OF THE ATMOSPHERE 3. The

More information

Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect 8.

Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect 8. Matching (2 points each) 1. weather 2. climate 3. Greenhouse Effect 4. Convection Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect

More information

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1. Climate Chap. 2 Introduction I. Forces that drive climate and their global patterns A. Solar Input Earth s energy budget B. Seasonal cycles C. Atmospheric circulation D. Oceanic circulation E. Landform

More information

Climate and the Atmosphere

Climate and the Atmosphere Climate and Biomes Climate Objectives: Understand how weather is affected by: 1. Variations in the amount of incoming solar radiation 2. The earth s annual path around the sun 3. The earth s daily rotation

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Introductory Oceanography Instructor: Ray Rector Atmospheric Circulation Key Topics Composition and Structure Solar Heating and Convection The Coriolis Effect Global Wind Patterns

More information

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere? The Atmosphere Introduction to atmosphere, weather, and climate Where is the atmosphere? Everywhere! Completely surrounds Earth February 20, 2010 What makes up the atmosphere? Argon Inert gas 1% Variable

More information

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES Physical Geography (Geog. 300) Prof. Hugh Howard American River College RADIATION FROM the SUN SOLAR RADIATION Primarily shortwave (UV-SIR) Insolation Incoming

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Match (one-to-one) the following (1 5) from the list (A E) below.

Match (one-to-one) the following (1 5) from the list (A E) below. GEO 302C EXAM 1 Spring 2009 Name UID You may not refer to any other materials during the exam. For each question (except otherwise explicitly stated), select the best answer for that question. Read all

More information

THE ATMOSPHERE IN MOTION

THE ATMOSPHERE IN MOTION Funding provided by NOAA Sectoral Applications Research Project THE ATMOSPHERE IN MOTION Basic Climatology Oklahoma Climatological Survey Factor 1: Our Energy Source Hi, I m the Sun! I provide 99.9999+

More information

Science Chapter 13,14,15

Science Chapter 13,14,15 Science 1206 Chapter 13,14,15 1 Weather dynamics is the study of how the motion of water and air causes weather patterns. Energy from the Sun drives the motion of clouds, air, and water. Earth s tilt at

More information

Background: What is Weather?

Background: What is Weather? Weather Maps Background: What is Weather? Weather is the day-to-day state of the atmosphere. The interaction of three important factors result in weather systems: air temperature, air pressure, and the

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

CHAPTER 6 Air-Sea Interaction Pearson Education, Inc.

CHAPTER 6 Air-Sea Interaction Pearson Education, Inc. CHAPTER 6 Air-Sea Interaction Chapter Overview The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Week: Dates: 3/2 3/20 Unit: Climate

Week: Dates: 3/2 3/20 Unit: Climate clementaged.weebly.com Name: EVEN Period: Week: 28 30 Dates: 3/2 3/20 Unit: Climate Monday Tuesday Wednesday Thursday Friday 2 O 3 E *Vocabulary *Water in the Atmosphere and Clouds Notes *Cloud Drawings

More information

The Atmosphere and Atmospheric Energy Chapter 3 and 4

The Atmosphere and Atmospheric Energy Chapter 3 and 4 The Atmosphere and Atmospheric Energy Chapter 3 and 4 Size of the Earth s Atmosphere Atmosphere produced over 4.6 billion years of development Protects us from radiation Completely surrounds the earth

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

ATMOSPHERE PACKET CHAPTER 22 PAGES Section 1 page 546

ATMOSPHERE PACKET CHAPTER 22 PAGES Section 1 page 546 Name: Period: ATMOSPHERE PACKET CHAPTER 22 PAGES 546-564 Section 1 page 546 1. Identify five main components of the atmosphere 2. Explain the cause of atmospheric pressure. 3. Why is atmospheric pressure

More information

Final Weather Unit Study Guide

Final Weather Unit Study Guide Name: Atmospheric Composition and Layers Altitude Atmosphere Composition Troposphere Air Pressure Stratosphere Mesosphere Thermosphere Exosphere Ionosphere Sample Questions: Final Weather Unit Study Guide

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

WEATHER. Review Note Cards

WEATHER. Review Note Cards WEATHER Review Note Cards Thermometer Weather instrument that measures air temperature Units include F, C, and K ESRT 13 Sling Psychrometer Weather instrument that measures relative humidity and dewpoint

More information

Common Elements: Nitrogen, 78%

Common Elements: Nitrogen, 78% Chapter 23 Notes Name: Period: 23.1 CHARACTERISTICS OF THE ATMOSPHERE The atmosphere is a layer of that surrounds the earth and influences all living things. Meteorology is the study of the. WHAT S IN

More information

Science 1206 Chapter 1 - Inquiring about Weather

Science 1206 Chapter 1 - Inquiring about Weather Science 1206 Chapter 1 - Inquiring about Weather 1.1 - The Atmosphere: Energy Transfer and Properties (pp. 10-25) Weather and the Atmosphere weather the physical conditions of the atmosphere at a specific

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

Name the surface winds that blow between 0 and 30. GEO 101, February 25, 2014 Monsoon Global circulation aloft El Niño Atmospheric water

Name the surface winds that blow between 0 and 30. GEO 101, February 25, 2014 Monsoon Global circulation aloft El Niño Atmospheric water GEO 101, February 25, 2014 Monsoon Global circulation aloft El Niño Atmospheric water Name the surface winds that blow between 0 and 30 What is the atmospheric pressure at 0? What is the atmospheric pressure

More information

Chapter 8 Circulation of the Atmosphere

Chapter 8 Circulation of the Atmosphere Chapter 8 Circulation of the Atmosphere The Atmosphere Moves in Response to Uneven Solar Heating and Earth s s Rotation Solar Radiation - initial source of energy to the Earth. It can be absorbed, reflected

More information

Meteorology Practice Test

Meteorology Practice Test Meteorology Practice Test 1. Transition zones between two air masses of different densities are called what? 2. A front occurs when a cold air mass replaces a warmer one. 3. A front occurs when a warm

More information

Quiz 2 Review Questions

Quiz 2 Review Questions Quiz 2 Review Questions Chapter 7 Lectures: Winds and Global Winds and Global Winds cont 1) What is the thermal circulation (thermal wind) and how does it form? When we have this type of circulation, how

More information

Earth s Climate Patterns

Earth s Climate Patterns Earth s Climate Patterns Reading: Chapter 17, GSF 10/2/09 Also Jackson (linked on course web site) 1 What aspects of climate affect plant distributions? Climate: long-term distribution of weather in an

More information

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere Earth s atmospheric layers Earth s atmosphere is the layer of gases that surrounds the planet and makes conditions on Earth suitable for living things. Layers Earth s atmosphere is divided into several

More information

The Atmosphere Made up of mainly two gases: Nitrogen 78% Oxygen 21% Trace Gases 1%

The Atmosphere Made up of mainly two gases: Nitrogen 78% Oxygen 21% Trace Gases 1% The Atmosphere 18.1 The Atmosphere Made up of mainly two gases: Nitrogen 78% Oxygen 21% Trace Gases 1% Layers of the Atmosphere made made up of 5 layers: Troposphere Stratosphere Mesosphere Ionosphere

More information

In the space provided, write the letter of the description that best matches the term or phrase. as waves. thermosphere

In the space provided, write the letter of the description that best matches the term or phrase. as waves. thermosphere Skills Worksheet Concept Review In the space provided, write the letter of the description that best matches the term or phrase. 1. layers of the atmosphere 2. radiation 3. conduction 4. convection 5.

More information

Ch22&23 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch22&23 Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch22&23 Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The two most abundant compounds in the atmosphere are carbon dioxide and a. particulates.

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

UNIT 13: WEATHER AND CLIMATE

UNIT 13: WEATHER AND CLIMATE UNIT 13: WEATHER AND CLIMATE After Unit 13 you should be able to: o Be able to use Selected Properties of Earth s Atmosphere, Planetary Wind and Moisture Belts in the Troposphere, Temperature, Pressure,

More information

Climate System. Sophie Zechmeister-Boltenstern

Climate System. Sophie Zechmeister-Boltenstern Climate System Sophie Zechmeister-Boltenstern Reference: Chapin F. St., Matson P., Mooney Harold A. 2002 Principles of Terrestrial Ecosystem Ecology. Springer, Berlin, 490 p. Structure of this lecture

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

Physical Geography 1st Exam

Physical Geography 1st Exam Physical Geography 1st Exam 1. What is the difference between physical and cultural geography? a. Physical geography primarily involves the study of social science, whereas cultural geography primarily

More information

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object Example: Sunlight warms your face without necessarily heating the air Shorter waves carry more energy

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Clouds, Precipitation

Clouds, Precipitation ES 106 Clouds, Precipitation I. Condensation and cloud formation A. Condensation nuclei necessary for clouds to form 1. dust, pollen, salt, smoke 2. at sub-freezing temperature, form by deposition of water

More information

1. CLIMATOLOGY: 2. ATMOSPHERIC CHEMISTRY:

1. CLIMATOLOGY: 2. ATMOSPHERIC CHEMISTRY: What is meteorology? A. METEOROLOGY: an atmospheric science that studies the day to day changes in the atmosphere 1. ATMOSPHERE: the blanket of gas that surrounds the surface of Earth; the air 2. WEATHER:

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 16 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

- continental vs. marine regimes

- continental vs. marine regimes (1 of 14) Further Reading: Chapter 05 of the text book Outline - continental vs. marine regimes - temperature structure of the atmosphere - seasonal variations - urban heat island (2 of 14) Introduction

More information

surrounds Earth and protects it somewhat from solar radiation. Like all other matter, air has weight,

surrounds Earth and protects it somewhat from solar radiation. Like all other matter, air has weight, The air that we breathe comes from the atmosphere, a thin gaseous layer that surrounds Earth and protects it somewhat from solar radiation. Like all other matter, air has weight, but this weight varies

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Weather & Ocean Currents

Weather & Ocean Currents Weather & Ocean Currents Earth is heated unevenly Causes: Earth is round Earth is tilted on an axis Earth s orbit is eliptical Effects: Convection = vertical circular currents caused by temperature differences

More information

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Chapter 4 Lesson 1: Describing Earth s Atmosphere Chapter 4 Lesson 1: Describing Earth s Atmosphere Vocabulary Importance of Earth s Atmosphere The atmosphere is a thin layer of gases surrounding Earth. o Contains the oxygen and water needed for life.

More information

Energy Transfer in the Atmosphere

Energy Transfer in the Atmosphere Energy Transfer in the Atmosphere Textbook pages 436 459 Section 10.2 Summary Before You Read What do you think causes wind? Write your thoughts in the lines below. Mark the Text In Your Own Words Highlight

More information

ESS 111 Climate & Global Change. Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts

ESS 111 Climate & Global Change. Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts ESS 111 Climate & Global Change Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts Weather is the state of the atmosphere at a given place and time. For example, right now, the temperature

More information

Unit Three Worksheet Meteorology/Oceanography 2 WS GE U3 2

Unit Three Worksheet Meteorology/Oceanography 2 WS GE U3 2 Unit Three Worksheet Meteorology/Oceanography 2 WS GE U3 2 Name Period Section 17.3 1. 2. 3. 4. 5. 6. 7. 8. Of the following, which is NOT a factor that controls temperature? (C) latitude (D) longitude

More information

Environmental Science Chapter 13 Atmosphere and Climate Change Review

Environmental Science Chapter 13 Atmosphere and Climate Change Review Environmental Science Chapter 13 Atmosphere and Climate Change Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Climate in a region is a. the long-term,

More information

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long period of time Many factors influence weather & climate

More information

The main components of Earth that affects weather are: 1)

The main components of Earth that affects weather are: 1) Weather Dynamics Weather Dynamics: The main components of Earth that affects weather are: 1) 2) 3) What's the difference between weather and climate? Weather -. ex. weeks weather in St. John's ion January

More information

10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp of BC Science 10)

10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp of BC Science 10) 10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp. 424-435 of BC Science 10) kinetic molecular theory: explains that matter is made up of tiny that are constantly. These atoms

More information

Meteorology Study Guide

Meteorology Study Guide Name: Date: Meteorology Study Guide 1. Label the following steps in the water cycle diagram. Be sure to include arrows to show the flow of water through the cycle. - Transpiration - Precipitation -Evaporation

More information

Name Period 4 th Six Weeks Notes 2013 Weather

Name Period 4 th Six Weeks Notes 2013 Weather Name Period 4 th Six Weeks Notes 2013 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

The Atmosphere. All weather occurs here 99% of water vapor found here ~75 % of total mass of the atmosphere

The Atmosphere. All weather occurs here 99% of water vapor found here ~75 % of total mass of the atmosphere The Atmosphere Structure/Layers Contains 4 major layers See E.S.R.T pg 14 o Troposphere All weather occurs here 99% of water vapor found here ~75 % of total mass of the atmosphere o Stratosphere Contains

More information

Weather Systems Study Guide:

Weather Systems Study Guide: Weather Systems Study Guide: 1. Draw a diagram of Earth s water cycle and label each part. 2. Explain how the water cycle works. 3. What happens in the troposphere and stratosphere? Atmosphere Level What

More information

Climate versus Weather

Climate versus Weather Climate versus Weather What is climate? Climate is the average weather usually taken over a 30-year time period for a particular region and time period. Climate is not the same as weather, but rather,

More information

Final Review Meteorology

Final Review Meteorology Final Review Meteorology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is an example of climate? a. A sudden snowstorm resulted

More information

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long period of time Many factors influence weather & climate

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of 2. The dark, cooler areas on the sun s surface are 3. When hydrogen nuclei fuse they form 4. Einstein s equation is 5. The

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 1: Earth's Atmosphere Section 2: Energy Transfer in the Atmosphere Section 3: Air Movement 1 Earth s Atmosphere Importance of the Atmosphere Earth's atmosphere

More information

Let s Think for a Second

Let s Think for a Second Weather and Climate Let s Think for a Second Why is weather important in Ohio? Is climate important in Ohio? Spend 2 minutes sharing your thoughts with 1 partner. First, Let s Watch This. http://video.nationalgeographic.com/video/science/earthsci/climate-weather-sci/

More information

East Penn School District Curriculum and Instruction

East Penn School District Curriculum and Instruction East Penn School District Curriculum and Instruction Curriculum for: Meteorology Course(s): Meteorology Grades: 10-12 Department: Science Length of Period (average minutes): 42 Periods per cycle: 6 Length

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

What a Hurricane Needs to Develop

What a Hurricane Needs to Develop Weather Weather is the current atmospheric conditions, such as air temperature, wind speed, wind direction, cloud cover, precipitation, relative humidity, air pressure, etc. 8.10B: global patterns of atmospheric

More information

ATMOSPHERIC CIRCULATION AND WIND

ATMOSPHERIC CIRCULATION AND WIND ATMOSPHERIC CIRCULATION AND WIND The source of water for precipitation is the moisture laden air masses that circulate through the atmosphere. Atmospheric circulation is affected by the location on the

More information

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves Skills Worksheet Directed Reading Section: Solar Energy and the Atmosphere 1. How is Earth s atmosphere heated? 2. Name the two primary sources of heat in the atmosphere. RADIATION In the space provided,

More information

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Answer ALL questions Total possible points;50 Number of pages:8 Part A: Multiple Choice (1 point each) [total 24] Answer all Questions by marking the corresponding number on the

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

16 Global Climate. Learning Goals. Summary. After studying this chapter, students should be able to:

16 Global Climate. Learning Goals. Summary. After studying this chapter, students should be able to: 16 Global Climate Learning Goals After studying this chapter, students should be able to: 1. associate the world s six major vegetation biomes to climate (pp. 406 408); 2. describe methods for classifying

More information

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun Insolation and Temperature variation Atmosphere: blanket of air surrounding earth Without our atmosphere: cold, quiet, cratered place Dynamic: currents and circulation cells June 23, 2008 Atmosphere important

More information

K32: The Structure of the Earth s Atmosphere

K32: The Structure of the Earth s Atmosphere K32: The Structure of the Earth s Atmosphere Chemical composition Vertical Layers Temperature structure Coriolis Force and horizontal structure Hadley Cells and Heat sources Current Molecular Composition

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

The Atmosphere of Earth

The Atmosphere of Earth The Atmosphere of Earth The probability of a storm can be predicted, but nothing can be done to stop or slow a storm. Understanding the atmosphere may help in predicting weather changes, but it is doubtful

More information

The order of the atmosphere layers. Unique characteristics of each layer. What do the temperatures do in each layer? Why is the temperature of the

The order of the atmosphere layers. Unique characteristics of each layer. What do the temperatures do in each layer? Why is the temperature of the Atmosphere Review Atmosphere Unit Review Plan Layers of Atmosphere Composition of Atmosphere Characteristics of Layers and Atmosphere Heat Transfer Global winds Importance of Atmosphere The order of the

More information

78% : component of atmosphere! 21% : 1% : Changes depending on origin of air: - originated over - originated over Ozone = O 3 Definition:

78% : component of atmosphere! 21% : 1% : Changes depending on origin of air: - originated over - originated over Ozone = O 3 Definition: Unit 6 Part 1 Meteorology Name: Composition and Structure of the Atmosphere SWBAT: Describe the composition of the atmosphere. Diagram/describe the layers of the earth s atmosphere. Weather Climate Atmospheric

More information

Chapter 9 External Energy Fuels Weather and Climate

Chapter 9 External Energy Fuels Weather and Climate Natural Disasters Tenth Edition Chapter 9 External Energy Fuels Weather and Climate Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9-1 Weather Versus Climate

More information

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it ATMO 436a The General Circulation Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it Scales of Atmospheric Motion vs. Lifespan The general circulation Atmospheric oscillations

More information

Global Circulation. Local weather doesn t come from all directions equally Everyone s weather is part of the global circulation pattern

Global Circulation. Local weather doesn t come from all directions equally Everyone s weather is part of the global circulation pattern Global Circulation Local weather doesn t come from all directions equally Everyone s weather is part of the global circulation pattern Wind rose shows % frequency of winds around the compass 1 Global Circulation

More information

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth.

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth. Meteorology I. The Atmosphere - the thin envelope of gas that surrounds the earth. A. Atmospheric Structure - the atmosphere is divided into five distinct layers that are based on their unique characteristics.

More information

Factors That Affect Climate

Factors That Affect Climate Factors That Affect Climate Factors That Affect Climate Latitude As latitude (horizontal lines) increases, the intensity of solar energy decreases. The tropical zone is between the tropic of Cancer and

More information

CORE CONCEPTS WEATHER AND CLIMATE

CORE CONCEPTS WEATHER AND CLIMATE CORE CONCEPTS WEATHER AND CLIMATE Key Prior Knowledge (from the 5 th Grade Matter and Energy Units) Thermal energy can be transported through radiation, conduction, and convection. The transfer of enough

More information

ENVIRONMENTAL MANAGEMENT I

ENVIRONMENTAL MANAGEMENT I ENVIRONMENTAL MANAGEMENT I Environmental science is the study of the interaction of humans with the natural environment. The environment includes all conditions that surround living organisms: Climate

More information

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

2. Fargo, North Dakota receives more snow than Charleston, South Carolina. 2015 National Tournament Division B Meteorology Section 1: Weather versus Climate Chose the answer that best answers the question 1. The sky is partly cloudy this morning in Lincoln, Nebraska. 2. Fargo,

More information

Lecture 4 Air Temperature. Measuring Temperature. Measuring Temperature. Surface & Air Temperature. Environmental Contrasts 3/27/2012

Lecture 4 Air Temperature. Measuring Temperature. Measuring Temperature. Surface & Air Temperature. Environmental Contrasts 3/27/2012 Lecture 4 Air Temperature Geo210 An Introduction to Physical Geography Temperature Concepts and Measurement Temperature the average kinetic energy (motion) of molecules of matter Temperature Scales Fahrenheit

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information