SEA ICE MICROWAVE EMISSION MODELLING APPLICATIONS

Size: px
Start display at page:

Download "SEA ICE MICROWAVE EMISSION MODELLING APPLICATIONS"

Transcription

1 SEA ICE MICROWAVE EMISSION MODELLING APPLICATIONS R. T. Tonboe, S. Andersen, R. S. Gill Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen Ø, Denmark Tel.: , L. Toudal Pedersen Ørsted, bld. 348, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark ABSTRACT Applications such as: ice concentration mapping using microwave radiometer data, snow cover mapping on sea ice and microwave sounding over sea ice are affected by the variable sea ice surface emissivity. A sea ice version of MEMLS (Wiesmann & Mätzler, 1999) is used to study the sea ice emissivity. The output from a thermodynamic model using ECMWF reanalysis data is used as input to the emissivity model in order to study the seasonal variability in the Arctic Ocean. These simulations are discussed with respect to the different applications. This ongoing work is done in the EU 6 th framework programme project DAMOCLES. INTRODUCTION The Arctic sea ice cover is undergoing changes (Wadhams, 1990). The actual sea ice extent especially in summer is retreating and the area covered by sea ice is getting smaller. This has been confirmed by microwave radiometer satellite observations since At the same time the Arctic atmosphere and the sea ice surface properties are changing. Different satellite microwave radiometer ice concentration algorithms used to map sea ice extent and area have different sensitivities to the atmosphere and the ice surface properties. The sea ice trend mapped with different algorithms is therefore different. The ice surface emissivity variability is the primary error source for the microwave radiometer ice concentration estimate over the near 100% ice cover in the Arctic Ocean. The ice concentration estimate error is in fact much larger than the actual ice concentration variability so that for high ice concentrations typical for the winter ice cover in the Arctic Ocean (>98%) there is no correlation between actual ice concentration and the radiometer ice concentration estimate. This has been confirmed by extensive comparisons with SAR data. The variability of the microwave emissivity is simulated using a sea ice version of MEMLS (Wiesmann & Mätzler, 1999). The aim with our model experiments is to start understanding the microwave emission from sea ice in applications such as ice concentration mapping, snow cover mapping and correlations between sounding and window channels. The microwave emission model is used to simulate the sea ice brightness temperature (Tb) variability as a function of a seasonal snow cover. The model is a sea ice version of MEMLS (Wiesmann & Mätzler, 1999) described in Mätzler et al. (2006) and hereafter called the emission model. Snow and ice profiles collected during the GreenIce project are used as input to the emission model and output from a mass and thermodynamic sea ice model (Tonboe, 2005) is used to assess the seasonal variability of these parameters in the central Arctic Ocean. This model is hereafter called the thermodynamic model. SEASONAL VARIABILITY OF THE MICROWAVE BRIGHTNESS TEMPERATURE Figure 2 show the simulated snow surface density on multiyear ice at 82.5ºN; 0.0ºE between Fram Strait and the North Pole during the 2000/2001 winter season using ECMWF reanalysis data as input to the thermodynamic model. The simulations begin with a bare ice surface on Sep. 1., which is approximately the end of the melt season. Precipitation events less than 1kg/m 2 (<1mm SWE) are not included. The emission model is coupled to the thermodynamic model and the seasonal variability of both the brightness temperature are shown. On Jan. 23. snow precipitation combined with winds about 14m/s deposits a surface

2 snow layer of 290kg/m 3 on top of the existing 130kg/m 3 surface layer. The new surface layer gradually compacts to 330kg/m 3. Later on Feb. 13. light snow fall combined with winds about 5m/s deposits a new surface snow layer of 190kg/m 3. These snow surface density variations explains the simulated polarisation (Tbv-Tbh) variability during this period. Figure 1. The simulated snow cover depth and equilibrium free-board at 82.5N 0.0E 2000/2001. The colours of the snow surface line indicate the snow surface density. Figure 2. The simulated brightness temperatures using sea ice MEMLS and the output from the thermodynamic model shown in figure 1.

3 Figure 3. The simulated polarisation (Tbv-Tbh) using sea ice MEMLS and the output from the thermodynamic model shown in figure 1. SNOW COVER MAPPING Passive microwave radiometer data contain information on dry snow volume on land. High correlations are found locally between snow water equivalent (SWE) and microwave brightness temperature signatures (Mätzler et al., 2006). Markus & Cavalieri (1998) further derived an empirical relationship between snow cover depth on Antarctic sea ice and the spectral gradient between 19 and 37GHz in space borne SSM/I radiometer data. However, a universal SWE algorithm for snow on ice does not exist because the brightness temperature signature is also affected by layering, crusts and volume scattering (Mätzler et al., 2006). Pulliainen et al. (1999) demonstrated how physical models including several snow parameters might be inverted to derive single snow parameters (SWE) using space borne radiometer data. This approach seems promising also for future sea ice snow cover mapping. A significant effort is needed to bring these algorithms up to operational standard. WINDOW SOUNDING CHANNEL RELATIONS The assimilation of atmospheric parameters derived from microwave satellite data e.g. AMSU has a significant impact on both global (ECMWF) and regional (HIRLAM) weather prediction models (Prigent et al., 2004). The principle is to separate the atmospheric emissivity from the surface emissivity in the Tb measurements from space, thus the atmospheric part is parameterised in terms of temperature or water vapour. The surface emissivity, which is high for sea ice compared to open water, can be determined at frequencies where the atmosphere is largely transparent in the atmospheric windows. This allows referring the emissivities at sounding frequencies to those at the window frequencies by interpolation using emission models. Temperature sounding uses frequencies around 50GHz and humidity sounding uses frequency >85GHz. Figure 4 shows the relations between different channels. The data are simulated seasonal variability with the coupled thermodynamic and emissivity model described above.

4 Figure 4. Simulated relations between channels using the simulated ice floe in figure 1. SEA ICE CONCENTRATION The observed sensitivity of the different ice concentration algorithms using SSM/I satellite data e.g. NASA Team, Bootstrap and Near90 GHz to the atmosphere or surface brightness temperature is different as shown in Figure 5 for a case in the Arctic Ocean. SAR images show that the real ice concentration is stable. The sea ice emissivity normally varies during winter because of ice growth, snowfall, diurnal cycling and snow/ice metamorphism. Warm air outbreaks (Figure 5) over consolidated sea ice pack in the Arctic Ocean during winter offer a possibility to investigate the sensitivity of the ice concentration estimate to changes in the snow and ice cover emissivity in the course of days. While the actual ice concentrations remain close to 100% during and after the advection of warm air followed by snowfall and possibly rain, the formation of depth hoar and icy layers in the snow pack and in general the metamorphism accelerates as described in e.g. Drinkwater et al. (1995) and Garrity (1992). The changes are persistent but recover in the course of months with new snow accumulation, ice drift and new-ice formation. Emission models can be used to compute and analyse the sensitivity of the retrieved ice concentration to the microphysical properties of the snow and ice and to select and develop algorithms with low sensitivity to variations in the surface emissivity. Figure 6 shows the modelled sensitivity of the NASA Team ice concentration to the density of the upper snow layer and correlation length (grain size) of the bottom 1cm snow layer.

5 Figure 5 (left). The measured ice concentration estimate using 3 different algorithms during a warm air intrusion in the Arctic Ocean. The real ice concentration is approximately constant near 100% and the apparent changes are due to the variable atmospheric and surface emissivity. Figure 6 (right). The simulated ice concentration using the NASA Team algorithm. Here the upper snow layer density and the snow grain size (correlation length) are varied in the model. CONCLUSIONS Several important applications such as sea ice concentration mapping using microwave radiometers, sea ice snow mapping, atmospheric sounding of the semi-transparent atmosphere suffer from sea ice emissivity variations. A sea ice microwave emission model has been tested and the seasonal variability simulated by coupling the emission model to a thermodynamic model for sea ice. Improvements to the models have been identified and the further developments will be conducted in the EU 6 th framework programme project DAMOCLES which is at the same time the EU commisions contribution to IPY ( ). REFERENCES Drinkwater, M. R., R. Hosseinmostafa, & P. Gogineni (1995). C-band backscatter measurements of winter sea ice in the Weddell Sea, Antarctica. International Journal of Remote Sensing 16(17), Garrity, C. (1992). Characterisation of snow on floating ice and case studies of brightness temperature changes during the onset of melt. In: F. D. Carsey (Ed.). Microwave remote sensing of sea ice, Geophysical monograph 68 (pp ). Washington DC: American Geophysical Union. Jordan, R., E. Andreas, & A. Makshtas. Heat budget of snow covered sea ice at North Pole 4. Journal of Geophysical Research 104(C4), , Marbouty, D. An experimental study of temperature gradient metamorphism. Journal of Glaciology 26(94), , Markus, T. & D. J. Cavalieri. Snow depth distribution over sea ice in the southern ocean from satellite passive microwave data. Antarctic Sea Ice, Antarctic Research Series 74, 19-39, Mätzler et al., (Eds.), Thermal Microwave Radiation - Applications for Remote Sensing, IEE Electromagnetic Waves Series, London, UK, Pulliainen, J., J. Grandell & M. Hallikainen. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Transactions on Geoscience and Remote Sensing 37, , Sturm, M. & J. Holmgren. Difference in compaction behaviour of three climate classes of snow. Annals of Glaciology 26, , Tonboe, R. A mass and thermodynamic model for sea ice. Danish Meteorological Institute Scientific Report 05-10, 2005.

6 Ulaby, F. T., R. K. Moore & A. K. Fung. Microwave Remote Sensing, from Theory to Applications, vol. 3. Dedham MA: Artech House, Wadhams, P. Evidence for thinning of the Arctic ice cover north of Greenland. Nature 345, , Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov & R. Colony. Snow Depth on Arctic Sea Ice. Journal of Climate 12, , Wiesmann, A. & C. Mätzler (1999). Microwave emission model of layered snowpacks. Remote Sensing of Environment 70, Prigent, C., F. Chevallier, F. Karbou, P.Bauer, G. Kelly. AMSU-A land surface emissivity estimation for numerical weather prediction. NWP SAF, document no. NWPSAF-EC-TR- 009, EUMETSAT, 2004.

Snow on sea ice retrieval using microwave radiometer data. Rasmus Tonboe and Lise Kilic Danish Meteorological Institute Observatoire de Paris

Snow on sea ice retrieval using microwave radiometer data. Rasmus Tonboe and Lise Kilic Danish Meteorological Institute Observatoire de Paris Snow on sea ice retrieval using microwave radiometer data Rasmus Tonboe and Lise Kilic Danish Meteorological Institute Observatoire de Paris We know something about snow The temperature gradient within

More information

Danish Meteorological Institute Ministry of Transport and Energy

Danish Meteorological Institute Ministry of Transport and Energy Ministry of Transport and Energy Scientific Report 05-10 A mass and thermodynamic model for sea ice Rasmus Tonboe Figure 1 Polarstern in Fram Strait spring 2003. Copenhagen 2005 www.dmi.dk/dmi/sr05-10

More information

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS Anna Kontu 1 and Jouni Pulliainen 1 1. Finnish Meteorological Institute, Arctic Research,

More information

IOMASA SEA ICE DEVELOPMENTS

IOMASA SEA ICE DEVELOPMENTS IOMASA SEA ICE DEVELOPMENTS Soren Andersen, Rasmus Tonboe, Morten Lind Danish Meteorological Institute, Lyngbyvej 100,DK-2100 Copenhagen O Georg Heygster, Christian Melsheimer, University of Bremen, Germany

More information

Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var

Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var Abstract Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var Vibeke W. Thyness 1, Leif Toudal Pedersen 2, Harald Schyberg 1, Frank T. Tveter 1 1 Norwegian Meteorological Institute (met.no) Box 43 Blindern,

More information

Microwave Remote Sensing of Sea Ice

Microwave Remote Sensing of Sea Ice Microwave Remote Sensing of Sea Ice What is Sea Ice? Passive Microwave Remote Sensing of Sea Ice Basics Sea Ice Concentration Active Microwave Remote Sensing of Sea Ice Basics Sea Ice Type Sea Ice Motion

More information

Lise Kilic 1, Rasmus Tage Tonboe 2, Catherine Prigent 1, and Georg Heygster 3

Lise Kilic 1, Rasmus Tage Tonboe 2, Catherine Prigent 1, and Georg Heygster 3 Estimating the snow depth, the snow-ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and Ice Mass Balance buoys data Lise Kilic

More information

OSI SAF Sea Ice products

OSI SAF Sea Ice products OSI SAF Sea Ice products Lars-Anders Brevik, Gorm Dybkjær, Steinar Eastwood, Øystein Godøy, Mari Anne Killie, Thomas Lavergne, Rasmus Tonboe, Signe Aaboe Norwegian Meteorological Institute Danish Meteorological

More information

Algorithm theoretical basis document for the OSI SAF 50GHz sea ice emissivity model

Algorithm theoretical basis document for the OSI SAF 50GHz sea ice emissivity model Algorithm theoretical basis document for the OSI SAF 50GHz sea ice emissivity model OSI-404-a Version: 2.2 Date: 01/05/2018 Rasmus T. Tonboe Document Change record Document version Software version Date

More information

Energy and Mass Balance Snow Model. Department of Civil and Environmental Engineering University of Washington

Energy and Mass Balance Snow Model. Department of Civil and Environmental Engineering University of Washington SnowSTAR2002 STAR2002 TransectReconstruction ti Ui Using a Multilayered Energy and Mass Balance Snow Model Xiaogang Shi and Dennis P. Lettenmaier Department of Civil and Environmental Engineering University

More information

The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study

The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study doi:10.5194/tc-8-891-2014 Author(s) 2014. CC Attribution 3.0 License. The Cryosphere Open Access The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer:

More information

Extending the use of surface-sensitive microwave channels in the ECMWF system

Extending the use of surface-sensitive microwave channels in the ECMWF system Extending the use of surface-sensitive microwave channels in the ECMWF system Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United

More information

EUMETSAT STATUS AND PLANS

EUMETSAT STATUS AND PLANS 1 EUM/TSS/VWG/15/826793 07/10/2015 EUMETSAT STATUS AND PLANS François Montagner, Marine Applications Manager, EUMETSAT WMO Polar Space Task Group 5 5-7 October 2015, DLR, Oberpfaffenhofen PSTG Strategic

More information

Snow thickness retrieval from L-band brightness temperatures: a model comparison

Snow thickness retrieval from L-band brightness temperatures: a model comparison Annals of Glaciology 56(69) 2015 doi: 10.3189/2015AoG69A886 9 Snow thickness retrieval from L-band brightness temperatures: a model comparison Nina MAASS, 1 Lars KALESCHKE, 1 Xiangshan TIAN-KUNZE, 1 Rasmus

More information

Microwave emissivity of freshwater ice Part II: Modelling the Great Bear and Great Slave Lakes

Microwave emissivity of freshwater ice Part II: Modelling the Great Bear and Great Slave Lakes arxiv:1207.4488v2 [physics.ao-ph] 9 Aug 2012 Microwave emissivity of freshwater ice Part II: Modelling the Great Bear and Great Slave Lakes Peter Mills Peteysoft Foundation petey@peteysoft.org November

More information

Remote sensing with FAAM to evaluate model performance

Remote sensing with FAAM to evaluate model performance Remote sensing with FAAM to evaluate model performance YOPP-UK Workshop Chawn Harlow, Exeter 10 November 2015 Contents This presentation covers the following areas Introduce myself Focus of radiation research

More information

SMOSIce L-Band Radiometry for Sea Ice Applications

SMOSIce L-Band Radiometry for Sea Ice Applications Institute of Environmental Physics University of Bremen SMOSIce L-Band Radiometry for Sea Ice Applications Georg Heygster 1), Christian Haas 2), Lars Kaleschke 3), Helge Rebhan 5), Detlef Stammer 3), Rasmus

More information

Spectral Albedos. a: dry snow. b: wet new snow. c: melting old snow. a: cold MY ice. b: melting MY ice. d: frozen pond. c: melting FY white ice

Spectral Albedos. a: dry snow. b: wet new snow. c: melting old snow. a: cold MY ice. b: melting MY ice. d: frozen pond. c: melting FY white ice Spectral Albedos a: dry snow b: wet new snow a: cold MY ice c: melting old snow b: melting MY ice d: frozen pond c: melting FY white ice d: melting FY blue ice e: early MY pond e: ageing ponds Extinction

More information

From L1 to L2 for sea ice concentration. Rasmus Tonboe Danish Meteorological Institute EUMETSAT OSISAF

From L1 to L2 for sea ice concentration. Rasmus Tonboe Danish Meteorological Institute EUMETSAT OSISAF From L1 to L2 for sea ice concentration Rasmus Tonboe Danish Meteorological Institute EUMETSAT OSISAF Sea-ice concentration = sea-ice surface fraction Water Ice e.g. Kern et al. 2016, The Cryosphere

More information

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Christian Mätzler (Retired from University of Bern) Now consultant for Gamma Remote Sensing, Switzerland matzler@iap.unibe.ch TERENO

More information

Passive Microwave Physics & Basics. Edward Kim NASA/GSFC

Passive Microwave Physics & Basics. Edward Kim NASA/GSFC Passive Microwave Physics & Basics Edward Kim NASA/GSFC ed.kim@nasa.gov NASA Snow Remote Sensing Workshop, Boulder CO, Aug 14 16, 2013 1 Contents How does passive microwave sensing of snow work? What are

More information

Towards a better use of AMSU over land at ECMWF

Towards a better use of AMSU over land at ECMWF Towards a better use of AMSU over land at ECMWF Blazej Krzeminski 1), Niels Bormann 1), Fatima Karbou 2) and Peter Bauer 1) 1) European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park,

More information

Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica GUEDJ Stephanie, KARBOU Fatima and RABIER Florence

Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica GUEDJ Stephanie, KARBOU Fatima and RABIER Florence Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica GUEDJ Stephanie, KARBOU Fatima and RABIER Florence International TOVS Study Conference, Monterey, California

More information

The EUMETSAT OSI SAF Sea Ice Concentration Algorithm. Algorithm Theoretical Basis Document

The EUMETSAT OSI SAF Sea Ice Concentration Algorithm. Algorithm Theoretical Basis Document Ocean & Sea Ice SAF The EUMETSAT OSI SAF Sea Ice Concentration Algorithm Algorithm Theoretical Basis Document Product OSI-401-b Version 1.4 July 2015 Rasmus Tonboe and John Lavelle SAF/OSI/CDOP/DMI/SCI/MA/189

More information

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation Correcting Microwave Precipitation Retrievals for near- Surface Evaporation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Københavns Universitet

Københavns Universitet university of copenhagen Københavns Universitet The EUMETSAT sea ice concentration climate data record Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas Mossor;

More information

Passive Microwave Sea Ice Concentration Climate Data Record

Passive Microwave Sea Ice Concentration Climate Data Record Passive Microwave Sea Ice Concentration Climate Data Record 1. Intent of This Document and POC 1a) This document is intended for users who wish to compare satellite derived observations with climate model

More information

Helsinki Testbed - a contribution to NASA's Global Precipitation Measurement (GPM) mission

Helsinki Testbed - a contribution to NASA's Global Precipitation Measurement (GPM) mission Helsinki Testbed - a contribution to NASA's Global Precipitation Measurement (GPM) mission Ubicasting workshop, September 10, 2008 Jarkko Koskinen, Jarmo Koistinen, Jouni Pulliainen, Elena Saltikoff, David

More information

THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA NEVADA, USA

THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA NEVADA, USA MICHAEL DURAND (DURAND.8@OSU.EDU), DONGYUE LI, STEVE MARGULIS Photo: Danielle Perrot THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA

More information

Studying snow cover in European Russia with the use of remote sensing methods

Studying snow cover in European Russia with the use of remote sensing methods 40 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Studying snow cover in European Russia with the use

More information

A Microwave Snow Emissivity Model

A Microwave Snow Emissivity Model A Microwave Snow Emissivity Model Fuzhong Weng Joint Center for Satellite Data Assimilation NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland and Banghua Yan Decision Systems Technologies

More information

Sea Ice Extension and Concentration from SAC-D MWR Data

Sea Ice Extension and Concentration from SAC-D MWR Data Sea Ice Extension and Concentration from SAC-D MWR Data Project N 24/10 Federico Carballo 1, Sergio Masuelli 2, Héctor Salgado 1, Martín Labanda 2 and Sandra Barreira 1 1 Servicio de Hidrografía Naval,

More information

Cliquez pour modifier le style des sous-titres du masque

Cliquez pour modifier le style des sous-titres du masque Techniques for modelling land, snow and sea ice emission and scattering in support of data assimilation Fatima Karbou CNRM-GAME, Cliquez pour modifier le stylemétéo-france du titre & CNRS Saint Martin

More information

Remote sensing of sea ice

Remote sensing of sea ice Remote sensing of sea ice Ice concentration/extent Age/type Drift Melting Thickness Christian Haas Remote Sensing Methods Passive: senses shortwave (visible), thermal (infrared) or microwave radiation

More information

EVALUATION OF ARCTIC OPERATIONAL PASSIVE MICROWAVE PRODUCTS: A CASE STUDY IN THE BARENTS SEA DURING OCTOBER 2001

EVALUATION OF ARCTIC OPERATIONAL PASSIVE MICROWAVE PRODUCTS: A CASE STUDY IN THE BARENTS SEA DURING OCTOBER 2001 Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research EVALUATION

More information

Towards the use of SAR observations from Sentinel-1 to study snowpack properties in Alpine regions

Towards the use of SAR observations from Sentinel-1 to study snowpack properties in Alpine regions Towards the use of SAR observations from Sentinel-1 to study snowpack properties in Alpine regions Gaëlle Veyssière, Fatima Karbou, Samuel Morin et Vincent Vionnet CNRM-GAME /Centre d Etude de la Neige

More information

F O U N D A T I O N A L C O U R S E

F O U N D A T I O N A L C O U R S E F O U N D A T I O N A L C O U R S E December 6, 2018 Satellite Foundational Course for JPSS (SatFC-J) F O U N D A T I O N A L C O U R S E Introduction to Microwave Remote Sensing (with a focus on passive

More information

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Christophe Accadia, Sabatino Di Michele, Vinia Mattioli, Jörg Ackermann, Sreerekha Thonipparambil,

More information

Summary The present report describes one possible way to correct radiometric measurements of the SSM/I (Special Sensor Microwave Imager) at 85.5 GHz f

Summary The present report describes one possible way to correct radiometric measurements of the SSM/I (Special Sensor Microwave Imager) at 85.5 GHz f Compensating for atmospheric eects on passive radiometry at 85.5 GHz using a radiative transfer model and NWP model data Stefan Kern Institute of Environmental Physics University of Bremen, 28334 Bremen,

More information

Scientific Report Microphysical measurements important for microwave remote sensing of sea ice Field guide

Scientific Report Microphysical measurements important for microwave remote sensing of sea ice Field guide Ministry of Transport and Energy Scientific Report Microphysical measurements important for microwave remote sensing of sea ice Field guide Rasmus Tonboe, Susanne Hanson 2 1 Danish Meteorological Institute,

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK Ju-Hye Kim 1, Jeon-Ho Kang 1, Hyoung-Wook Chun 1, and Sihye Lee 1 (1) Korea Institute of Atmospheric

More information

OPERATIONAL MODELING OF THE AUTUMN ICE ADVANCE IN THE BARENTS SEA

OPERATIONAL MODELING OF THE AUTUMN ICE ADVANCE IN THE BARENTS SEA Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research OPERATIONAL

More information

Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR

Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR 1. Introduction Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR Dr. Alfred Chang and Dr. Richard Kelly NASA/GSFC The development of a snow depth retrieval algorithm for ADEOS II AMSR has

More information

The Arctic Energy Budget

The Arctic Energy Budget The Arctic Energy Budget The global heat engine [courtesy Kevin Trenberth, NCAR]. Differential solar heating between low and high latitudes gives rise to a circulation of the atmosphere and ocean that

More information

Discritnination of a wet snow cover using passive tnicrowa ve satellite data

Discritnination of a wet snow cover using passive tnicrowa ve satellite data Annals of Glaciology 17 1993 International Glaciological Society Discritnination of a wet snow cover using passive tnicrowa ve satellite data A. E. WALKER AND B. E. GOODISON Canadian Climate Centre, 4905

More information

Presentation of met.no s experience and expertise related to high resolution reanalysis

Presentation of met.no s experience and expertise related to high resolution reanalysis Presentation of met.no s experience and expertise related to high resolution reanalysis Oyvind Saetra, Ole Einar Tveito, Harald Schyberg and Lars Anders Breivik Norwegian Meteorological Institute Daily

More information

Ice Surface temperatures, status and utility. Jacob Høyer, Gorm Dybkjær, Rasmus Tonboe and Eva Howe Center for Ocean and Ice, DMI

Ice Surface temperatures, status and utility. Jacob Høyer, Gorm Dybkjær, Rasmus Tonboe and Eva Howe Center for Ocean and Ice, DMI Ice Surface temperatures, status and utility Jacob Høyer, Gorm Dybkjær, Rasmus Tonboe and Eva Howe Center for Ocean and Ice, DMI Outline Motivation for IST data production IST from satellite Infrared Passive

More information

Analysis of Antarctic Sea Ice Extent based on NIC and AMSR-E data Burcu Cicek and Penelope Wagner

Analysis of Antarctic Sea Ice Extent based on NIC and AMSR-E data Burcu Cicek and Penelope Wagner Analysis of Antarctic Sea Ice Extent based on NIC and AMSR-E data Burcu Cicek and Penelope Wagner 1. Abstract The extent of the Antarctica sea ice is not accurately defined only using low resolution microwave

More information

A New Microwave Snow Emissivity Model

A New Microwave Snow Emissivity Model A New Microwave Snow Emissivity Model Fuzhong Weng 1,2 1. Joint Center for Satellite Data Assimilation 2. NOAA/NESDIS/Office of Research and Applications Banghua Yan DSTI. Inc The 13 th International TOVS

More information

The Polar Sea Ice Cover from Aqua/AMSR-E

The Polar Sea Ice Cover from Aqua/AMSR-E The Polar Sea Ice Cover from Aqua/AMSR-E Fumihiko Nishio Chiba University Center for Environmental Remote Sensing 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan fnishio@cr.chiba-u.ac.jp Abstract Historical

More information

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU Frederick W. Chen*, David H. Staelin, and Chinnawat Surussavadee Massachusetts Institute of Technology,

More information

ECMWF. ECMWF Land Surface Analysis: Current status and developments. P. de Rosnay M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J.

ECMWF. ECMWF Land Surface Analysis: Current status and developments. P. de Rosnay M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J. Land Surface Analysis: Current status and developments P. de Rosnay M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J. Muñoz Sabater 2 nd Workshop on Remote Sensing and Modeling of Surface Properties,

More information

Snow-atmosphere interactions at Dome C, Antarctica

Snow-atmosphere interactions at Dome C, Antarctica Snow-atmosphere interactions at Dome C, Antarctica Éric Brun, Vincent Vionnet CNRM/GAME (Météo-France and CNRS) Christophe Genthon, Delphine Six, Ghislain Picard LGGE (CNRS and UJF)... and many colleagues

More information

Total water vapour over polar regions from satellite microwave radiometer (AMSU-B) data and from a regional climate model (HIRHAM)

Total water vapour over polar regions from satellite microwave radiometer (AMSU-B) data and from a regional climate model (HIRHAM) Total water vapour over polar regions from satellite microwave radiometer (AMSU-B) data and from a regional climate model (HIRHAM) C. Melsheimer 1, A. Rinke 2, G. Heygster 1, K. Dethloff 2 1 Institut für

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

DANISH METEOROLOGICAL INSTITUTE

DANISH METEOROLOGICAL INSTITUTE DANISH METEOROLOGICAL INSTITUTE TECHNICAL REPORT 98-18 Monthly Arctic Sea Ice Signatures for use in Passive Microwave Algorithms December 1998 Søren Andersen ISSN 0906-897X Summary Copenhagen 1998 The

More information

Exploitation of microwave sounder/imager data over land surfaces in the presence of clouds and precipitation. SAF-HYDROLOGY, Final Report

Exploitation of microwave sounder/imager data over land surfaces in the presence of clouds and precipitation. SAF-HYDROLOGY, Final Report Exploitation of microwave sounder/imager data over land surfaces in the presence of clouds and precipitation SAF-HYDROLOGY, Final Report By Fatima KARBOU 1, Peter BAUER 2, Alan GEER 2 and William BELL

More information

Product Users Manual for the OSI SAF 50GHz sea ice emissivity

Product Users Manual for the OSI SAF 50GHz sea ice emissivity Ocean and Sea Ice SAF Product Users Manual for the OSI SAF 50GHz sea ice emissivity OSI-404 Version 1.5 - Feb. 2016 Rasmus T. Tonboe Document change record: Document Version Date Authors Description v1.0

More information

MACSSIMIZE. Measurements of Arctic Clouds, Snow, and Sea Ice nearby the Marginal Ice ZonE. Principal investigator. Chawn Harlow

MACSSIMIZE. Measurements of Arctic Clouds, Snow, and Sea Ice nearby the Marginal Ice ZonE. Principal investigator. Chawn Harlow MACSSIMIZE Measurements of Arctic Clouds, Snow, and Sea Ice nearby the Marginal Ice ZonE Principal investigator Chawn Harlow chawn.harlow@metoffice.gov.uk Met Office Areas of contribution Polar atmospheric

More information

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes.

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes. INDICATOR FACT SHEET SSPI: Standardized SnowPack Index Indicator definition The availability of water in rivers, lakes and ground is mainly related to precipitation. However, in the cold climate when precipitation

More information

COMPARISON OF GROUND-BASED OBSERVATIONS OF SNOW SLABS WITH EMISSION MODELS

COMPARISON OF GROUND-BASED OBSERVATIONS OF SNOW SLABS WITH EMISSION MODELS MICROSNOW2 Columbia, MD, 13-15 July 2015 COMPARISON OF GROUND-BASED OBSERVATIONS OF SNOW SLABS WITH EMISSION MODELS William Maslanka Mel Sandells, Robert Gurney (University of Reading) Juha Lemmetyinen,

More information

Remote Sensing of SWE in Canada

Remote Sensing of SWE in Canada Remote Sensing of SWE in Canada Anne Walker Climate Research Division, Environment Canada Polar Snowfall Hydrology Mission Workshop, June 26-28, 2007 Satellite Remote Sensing Snow Cover Optical -- Snow

More information

Assimilation of precipitation-related observations into global NWP models

Assimilation of precipitation-related observations into global NWP models Assimilation of precipitation-related observations into global NWP models Alan Geer, Katrin Lonitz, Philippe Lopez, Fabrizio Baordo, Niels Bormann, Peter Lean, Stephen English Slide 1 H-SAF workshop 4

More information

Assessing Drift Correction over Antarctica and Amazon

Assessing Drift Correction over Antarctica and Amazon Assessing Drift Correction over Antarctica and Amazon Sidharth Misra and Shannon Brown Aquarius Calibration Meeting 1/29/2013 Objective Antarctica reference model serves as a means to assess the radiometer

More information

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Meteorological Satellite Image Interpretations, Part III Acknowledgement: Dr. S. Kidder at Colorado State Univ. Dates EAS417 Topics Jan 30 Introduction & Matlab tutorial Feb 1 Satellite orbits & navigation

More information

The construction and application of the AMSR-E global microwave emissivity database

The construction and application of the AMSR-E global microwave emissivity database IOP Conference Series: Earth and Environmental Science OPEN ACCESS The construction and application of the AMSR-E global microwave emissivity database To cite this article: Shi Lijuan et al 014 IOP Conf.

More information

THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF

THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom

More information

Modelling the surface emissivity to assimilate SSMI/S observations over Land

Modelling the surface emissivity to assimilate SSMI/S observations over Land Modelling the surface emissivity to assimilate SSMI/S observations over Land Fatima KARBOU and Jean-François MAHFOUF CNRM-GAME Météo-France & CNRS 1) SSMI/S observations SSMI/S = AMSU-A + AMSU-B + SSM/I

More information

ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS,

ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS, ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS, 1982-1998 Vesa Laine Finnish Meteorological Institute (FMI), Helsinki, Finland Abstract Whole-summer and monthly sea ice regional albedo averages, variations

More information

Parameterization of the surface emissivity at microwaves to submillimeter waves

Parameterization of the surface emissivity at microwaves to submillimeter waves Parameterization of the surface emissivity at microwaves to submillimeter waves Catherine Prigent, Filipe Aires, Observatoire de Paris and Estellus Lise Kilic, Die Wang, Observatoire de Paris with contributions

More information

Snow and sea ice temperature profiles from satellite data and ice mass balance buoys

Snow and sea ice temperature profiles from satellite data and ice mass balance buoys Student thesis series INES nr 370 Snow and sea ice temperature profiles from satellite data and ice mass balance buoys Isabella Grönfeldt 2015 Department of Physical Geography and Ecosystem Science Lund

More information

Observing Snow: Conventional Measurements, Satellite and Airborne Remote Sensing. Chris Derksen Climate Research Division, ECCC

Observing Snow: Conventional Measurements, Satellite and Airborne Remote Sensing. Chris Derksen Climate Research Division, ECCC Observing Snow: Conventional Measurements, Satellite and Airborne Remote Sensing Chris Derksen Climate Research Division, ECCC Outline Three Snow Lectures: 1. Why you should care about snow 2. How we measure

More information

IMPACT OF IASI DATA ON FORECASTING POLAR LOWS

IMPACT OF IASI DATA ON FORECASTING POLAR LOWS IMPACT OF IASI DATA ON FORECASTING POLAR LOWS Roger Randriamampianina rwegian Meteorological Institute, Pb. 43 Blindern, N-0313 Oslo, rway rogerr@met.no Abstract The rwegian THORPEX-IPY aims to significantly

More information

Sea ice extent from satellite microwave sensors

Sea ice extent from satellite microwave sensors Sea ice extent from satellite microwave sensors Maria Belmonte Rivas Introduction In 2007, the summer extent of Arctic sea ice observed by the Special Sensor Microwave Imager (SSM/I) reached its lowest

More information

DANISH METEOROLOGICAL INSTITUTE

DANISH METEOROLOGICAL INSTITUTE DANISH METEOROLOGICAL INSTITUTE SCIENTIFIC REPORT 00-10 Evaluation of SSM/I Sea Ice Algorithms for use in the SAF on Ocean and Sea Ice July 2000 Søren Andersen ISSN 0905-3263 (printed version) ISSN 1399-1949

More information

ON COMBINING AMSU AND POLAR MM5 OUTPUTS TO DETECT PRECIPITATING CLOUDS OVER ANTARCTICA

ON COMBINING AMSU AND POLAR MM5 OUTPUTS TO DETECT PRECIPITATING CLOUDS OVER ANTARCTICA ON COMBINING AMSU AND POLAR MM5 OUTPUTS TO DETECT PRECIPITATING CLOUDS OVER ANTARCTICA Stefano Dietrich, Francesco Di Paola, Elena Santorelli (CNR-ISAC, Roma, Italy) 2nd Antarctic Meteorological Observation,

More information

High resolving sea ice concentration: ASI continuity, transition to AMSR2, comparisons

High resolving sea ice concentration: ASI continuity, transition to AMSR2, comparisons Institute of Environmental Physics University of Bremen High resolving sea ice concentration: ASI continuity, transition to AMSR2, comparisons Georg Heygster 1, Raul Scarlat 1, Øystein Rudjord 2, Rune

More information

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) 4 Land, biosphere, cryosphere 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere 4.1 Land

More information

Instrumentation planned for MetOp-SG

Instrumentation planned for MetOp-SG Instrumentation planned for MetOp-SG Bill Bell Satellite Radiance Assimilation Group Met Office Crown copyright Met Office Outline Background - the MetOp-SG programme The MetOp-SG instruments Summary Acknowledgements:

More information

Lambertian surface scattering at AMSU-B frequencies:

Lambertian surface scattering at AMSU-B frequencies: Lambertian surface scattering at AMSU-B frequencies: An analysis of airborne microwave data measured over snowcovered surfaces Chawn Harlow, 2nd Workshop on Remote Sensing and Modeling of Land Surface

More information

Evaluation of sub-kilometric numerical simulations of C-band radar backscatter over the french Alps against Sentinel-1 observations

Evaluation of sub-kilometric numerical simulations of C-band radar backscatter over the french Alps against Sentinel-1 observations Evaluation of sub-kilometric numerical simulations of C-band radar backscatter over the french Alps against Sentinel-1 observations Gaëlle Veyssière, Fatima Karbou, Samuel Morin, Matthieu Lafaysse Monterey,

More information

Assimilation of Snow and Ice Data (Incomplete list)

Assimilation of Snow and Ice Data (Incomplete list) Assimilation of Snow and Ice Data (Incomplete list) Snow/ice Sea ice motion (sat): experimental, climate model Sea ice extent (sat): operational, U.S. Navy PIPs model; Canada; others? Sea ice concentration

More information

NOVEL SNOW DEPTH RETRIEVAL METHOD USING TIME SERIES SSMI PASSIVE MICROWAVE IMAGERY

NOVEL SNOW DEPTH RETRIEVAL METHOD USING TIME SERIES SSMI PASSIVE MICROWAVE IMAGERY NOVEL SNOW DEPTH RETRIEVAL METHOD USING TIME SERIES SSMI PASSIVE MICROWAVE IMAGERY Z. Nikraftar a, M. Hasanlou a,*, M. Esmaeilzadeh a a School of Surveying and Geospatial Engineering, College of Engineering,

More information

Differentiation between melt and freeze stages of the melt cycle using SSM/I channel ratios

Differentiation between melt and freeze stages of the melt cycle using SSM/I channel ratios Brigham Young University BYU ScholarsArchive All Faculty Publications 2005-06-01 Differentiation between melt and freeze stages of the melt cycle using SSM/I channel ratios David G. Long david_long@byu.edu

More information

NWP SAF. Quantitative precipitation estimation from satellite data. Satellite Application Facility for Numerical Weather Prediction

NWP SAF. Quantitative precipitation estimation from satellite data. Satellite Application Facility for Numerical Weather Prediction NWP SAF Satellite Application Facility for Numerical Weather Prediction Document NWPSAF-MO-VS-011 Version 1.0 15 April 2006 Quantitative precipitation estimation from satellite data Sante Laviola University

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations

Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L12207, doi:10.1029/2004gl020067, 2004 Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations Axel J. Schweiger Applied Physics

More information

Soil frost from microwave data. Kimmo Rautiainen, Jouni Pulliainen, Juha Lemmetyinen, Jaakko Ikonen, Mika Aurela

Soil frost from microwave data. Kimmo Rautiainen, Jouni Pulliainen, Juha Lemmetyinen, Jaakko Ikonen, Mika Aurela Soil frost from microwave data Kimmo Rautiainen, Jouni Pulliainen, Juha Lemmetyinen, Jaakko Ikonen, Mika Aurela Why landscape freeze/thaw? Latitudinal variation in mean correlations (r) between annual

More information

Atmospheric Boundary Layer over Land, Ocean, and Ice. Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona

Atmospheric Boundary Layer over Land, Ocean, and Ice. Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona Atmospheric Boundary Layer over Land, Ocean, and Ice Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona xubin@email.arizona.edu 24 October 2017 Future of ABL Observations Workshop

More information

ELEVATION ANGULAR DEPENDENCE OF WIDEBAND AUTOCORRELATION RADIOMETRIC (WIBAR) REMOTE SENSING OF DRY SNOWPACK AND LAKE ICEPACK

ELEVATION ANGULAR DEPENDENCE OF WIDEBAND AUTOCORRELATION RADIOMETRIC (WIBAR) REMOTE SENSING OF DRY SNOWPACK AND LAKE ICEPACK ELEVATION ANGULAR DEPENDENCE OF WIDEBAND AUTOCORRELATION RADIOMETRIC (WIBAR) REMOTE SENSING OF DRY SNOWPACK AND LAKE ICEPACK Seyedmohammad Mousavi 1, Roger De Roo 2, Kamal Sarabandi 1, and Anthony W. England

More information

Knowledge-based sea ice classification by polarimetric SAR

Knowledge-based sea ice classification by polarimetric SAR Downloaded from orbit.dtu.dk on: Dec 17, 217 Knowledge-based sea ice classification by polarimetric SAR Skriver, Henning; Dierking, Wolfgang Published in: IEEE International Geoscience Remote Sensing Symposium,

More information

Improving numerical sea ice predictions in the Arctic Ocean by data assimilation using satellite observations

Improving numerical sea ice predictions in the Arctic Ocean by data assimilation using satellite observations Okhotsk Sea and Polar Oceans Research 1 (2017) 7-11 Okhotsk Sea and Polar Oceans Research Association Article Improving numerical sea ice predictions in the Arctic Ocean by data assimilation using satellite

More information

ICE DRIFT IN THE FRAM STRAIT FROM ENVISAT ASAR DATA

ICE DRIFT IN THE FRAM STRAIT FROM ENVISAT ASAR DATA ICE DRIFT IN THE FRAM STRAIT FROM ENVISAT ASAR DATA Stein Sandven (1), Kjell Kloster (1), and Knut F. Dagestad (1) (1) Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgte 47, N-5006

More information

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM Niels Bormann 1, Graeme Kelly 1, Peter Bauer 1, and Bill Bell 2 1 ECMWF,

More information

Multi- Sensor Ground- based Microwave Snow Experiment at Altay, CHINA

Multi- Sensor Ground- based Microwave Snow Experiment at Altay, CHINA Multi- Sensor Ground- based Microwave Snow Experiment at Altay, CHINA Jiancheng Shi 1, Chuan Xiong 1, Jinmei Pan 1, Tao Che 2, Tianjie Zhao 1, Haokui Xu 1, Lu Hu 1, Xiang Ji 1, Shunli Chang 3, Suhong Liu

More information

Sea Ice Model for Marginal Ice Zone

Sea Ice Model for Marginal Ice Zone Sea Ice Model for Marginal Ice Zone Max D. Coon Northwest Research Associates, Inc. 14508 N.E. 20 th Street Bellevue, WA 98007-3713 Phone: (425) 644-9660 ext. 332 Fax: (425) 644-8422 E-mail: max@nwra.com

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

OSI SAF Sea Ice Products

OSI SAF Sea Ice Products OSI SAF Sea Ice Products Steinar Eastwood, Matilde Jensen, Thomas Lavergne, Gorm Dybkjær, Signe Aaboe, Rasmus Tonboe, Atle Sørensen, Jacob Høyer, Lars-Anders Breivik, RolfHelge Pfeiffer, Mari Anne Killie

More information