Boundary layer controls on extratropical cyclone development

Size: px
Start display at page:

Download "Boundary layer controls on extratropical cyclone development"

Transcription

1 Boundary layer controls on extratropical cyclone development R. S. Plant (With thanks to: I. A. Boutle and S. E. Belcher) 28th May 2010 University of East Anglia

2 Outline Introduction and background Baroclinic wave simulations More than baroclinic instability The role of friction The role of boundary-layer moisture transport Conclusions Boundary layer controls on extratropical cyclone development p.1/37

3 Introduction and background Boundary layer controls on extratropical cyclone development p.2/37

4 Motivation Friction reduces growth rates of baroclinic waves by up to 50% (Valdes and Hoskins 1998) Improved surface winds and minimum pressure (Doyle 1995) from increased drag due to coupling with surface waves Precipitation and long-range moisture transport require evaporated moisture to be ventilated into free troposphere The boundary layer must mediate interactions with surface But what are the interaction mechanisms? Boundary layer controls on extratropical cyclone development p.3/37

5 Role of friction: Ekman pumping tropopause ξ 2 free troposphere ξ 1 ξ1 > ξ 2 boundary layer top boundary layer Boundary layer convergence leads to ascent leads to spin-down of a barotropic vortex Barotropic vorticity equation, Dζ w =ζ, Dt z ζ = f +ξ surface Boundary layer controls on extratropical cyclone development p.4/37

6 Potential vorticity 1 PV = ζ θ ρ Natural analogue of vorticity for a baroclinic system Conserved for adiabtic, frictionless flow Given a balance condition, PV can be inverted to deduce the full dynamics Conversely, PV generation reveals action of friction or diabatic processes High PV must be associated with high stability (stratosphere) or high vorticity (usual in troposphere) Boundary layer controls on extratropical cyclone development p.5/37

7 Baroclinic instability +ve anomaly of PV (eg descent of tropopause) implies a cyclonic circulation Warm temperature anomaly at surface equivalent to +ve PV anomaly (via the boundary condition for the inversion) Co-operative interaction of surface and tropospheric anomalies amplifies a baroclinic wave Strength of interaction governed by static stability Boundary layer controls on extratropical cyclone development p.6/37

8 Main airflows Main flows in a system-relative frame: Boundary layer controls on extratropical cyclone development p.7/37

9 Baroclinic wave simulations Boundary layer controls on extratropical cyclone development p.8/37

10 Simulation set-up Investigations based on simulations of real cases with Met Office Unified Model And also idealized simulations of baroclinic waves (most of the results today from these) These simulations are over ocean only Use a baroclinically-unstable initial state, which is zonally symmetric and based on the mean atmosphere in northern-hemisphere winter Start with small perturbation with wavenumber six Can be run with a dry atmosphere, and with or without a boundary-layer mixing scheme Boundary layer controls on extratropical cyclone development p.9/37

11 Initial conditions (a) 0 (b) Pressure (hpa) Pressure (hpa) N 25N 45N N 85N N N 45N 65N 85N Fixed SST equal to lowest-level atmospheric temperature in initial conditions Boundary layer controls on extratropical cyclone development p.10/37

12 More than baroclinic instability Boundary layer controls on extratropical cyclone development p.11/37

13 Effects of the boundary layer Control simulation, T+60 Simulation with no boundary layer turbulence, T mb 950mb Simulations with (left) and without (right) boundary layer, of storm of 30/10/00 Boundary layer controls on extratropical cyclone development p.12/37

14 Latent heat release Mid-level latent heat release produces +ve PV anomaly Associated cyclonic circulation enhances system development Boundary layer controls on extratropical cyclone development p.13/37

15 Latent heating can dominate By inversion, can measure contributions to the circulation A diabatic PV anomaly drives the intensification Interacts constructively with tropopause feature System does not develop without latent heating Boundary layer controls on extratropical cyclone development p.14/37

16 Diabatic and frictional effects 6 (b) EKE (105Jm-2) Dry BL 2 Dry NoBL Moist BL Moist NoBL Time (d) Does Ekman pumping explain the frictional effect? 2. How reliant is the latent-heating effect (and precipitation) on a boundary-layer moisture source? Boundary layer controls on extratropical cyclone development p.15/37

17 The role of friction Boundary layer controls on extratropical cyclone development p.16/37

18 Baroclinic effects Ekman pumping is barotropic mechanism, but cyclones are baroclinic! Evolution of PV due to friction, DP 1 = F θ Dt ρ Consider evolution of depth-integrated PV, [P] over boundary layer, 1 D[P] = (term wekman ) wh Ph (term vsurf vt ) h Dt Boundary layer controls on extratropical cyclone development p.17/37

19 Baroclinic PV generation? NS temperature gradient in basic state, implies westerly thermal wind Cyclonic circulation implies frictional PV generation to the north of a cyclone (dark shading) and PV destruction to the south (light shading) Boundary layer controls on extratropical cyclone development p.18/37

20 Baroclinic PV generation? Should also account for EW temperature gradients induced by the wave And frictional turning of the wind within the boundary layer Expect PV generation to the north and east of a cyclone Boundary layer controls on extratropical cyclone development p.19/37

21 Baroclinic PV generation Rate of PV generation at day 4 of a simulated dry baroclinic wave Boundary layer controls on extratropical cyclone development p.20/37

22 Transport of generated PV PV at σ = 0.98 (left), σ = (centre) and σ = 0.92 (right) after 6 days of a simulated dry baroclinic wave Boundary layer controls on extratropical cyclone development p.21/37

23 Transport of generated PV Negative low-level PV in vicinity of low generated by Ekman mechanism remains localised Positive PV North and East of low: generated by Baroclinic mechanism advected out of boundary layer on warm conveyor belt Boundary layer controls on extratropical cyclone development p.22/37

24 Effect on cyclone development Cross-section through low centre Thin PV anomaly, associated with enhanced static stability Boundary layer controls on extratropical cyclone development p.23/37

25 Zonal-mean stability Mid-level feature associated with dry intrusion Baroclinic frictional effects increase low-level stability over the low centre Reduces the strength of coupling between tropopause-level PV feature and surface temperature wave Boundary layer controls on extratropical cyclone development p.24/37

26 Comparison with Ekman effect 2 Frictionless Ekman Pumping 2 Increased N Both changes -1 Growth Rate (day ) 1.5 Increased N 2 shows a similar level of reduction Modified Eady model with Ekman-pumping included shows a reduction in growth rate 5e-07 1e e-06 2e e-06 3e-06-1 Zonal Wavenumber (m ) Both effects together can reduce growth rate by 50% Boundary layer controls on extratropical cyclone development p.25/37

27 Effects of boundary-layer friction PV attributed to frictional generation at T+24 in FASTEX IOP15 Barotropic term on 900mb. Baroclinic term on 850mb. Boundary layer controls on extratropical cyclone development p.26/37

28 The role of boundary-layer moisture transport Boundary layer controls on extratropical cyclone development p.27/37

29 Moisture source for a cyclone Precipitation occurs mainly in the ascending air on the warm conveyor belt In the WCB footprint area, boundary layer is stable (warm air moving over relatively cool surface) and evaporation is weak So where does the moisture come from? Boundary layer controls on extratropical cyclone development p.28/37

30 Moisture transport Schematic based on boundary-layer moisture budget analysis: Divergence from high and convergence towards low within the boundary layer necessary to supply WCB with moisture Boundary layer controls on extratropical cyclone development p.29/37

31 Ventilation mechanisms Warm-conveyor belt and shallow convection behind cold front ventilate similar amounts of moisture from the boundary layer Rainfall rate closely matches warmconveyor belt ventilation: moisture is precipitated out quickly and efficiently Boundary layer controls on extratropical cyclone development p.30/37

32 Convectively-ventilated moisture (b) Consider two tracers emitted at surface 20 ms-1 70N 60N One of them is not passed through convection scheme L 50N 40N H 30N 20N -15E 0 15E 30E 45N Tracer Concentration (All param-no convection) at 3.3 km Tracer difference at 3km Difference reveals that convectively-ventilated air is advected polewards and towards the cold front Boundary layer controls on extratropical cyclone development p.31/37

33 Initial moisture content Standard run has surface RH at 45N of 80% Total Moisture Transported (kg) WCB Advection Shallow Convection WCB Precipitation Rescale moisture content of atmosphere in initial conditions Little impact on total ventilation RH0(%) Less rain for low initial RH as some ventilated moisture retained in troposphere Boundary layer controls on extratropical cyclone development p.32/37

34 Final moisture content Compare final states with no initial moisture (left) and standard initialization (right) (b) (a) N N N Pressure (hpa) Pressure (hpa) N N N 75 35N 80 45N 80 55N 65N Climatological-mean mid-latitude moisture distribution can be regenerated in one wave lifecyle (14 days) Boundary layer controls on extratropical cyclone development p.33/37

35 Scalings for moisture transport Scalings with changes in absolute temperature Total Moisture Transported (kg) WCB Advection Shallow Convection WCB Precipitation Clausius-Clapeyron Like Clausius-Clapeyron based on temperature in the south, where main evaporation occurs T0 (K) 290 But steeper because latent-heat release feeds back on system strength Boundary layer controls on extratropical cyclone development p.34/37

36 Conclusions I Boundary layer friction dampens extratropical cyclones by two mechanisms: 1. Ekman spindown: a barotropic mechanism the directly reduces cyclonic circulations 2. Baroclinic PV generation and ventilation: an indirect mechanism that reduces the coupling between upper and lower levels Both mechanisms are robust Boundary layer controls on extratropical cyclone development p.35/37

37 Conclusions II Moisture source for WCB precipitaion may be well away from cyclone Shallow convection is also an important means of moisture ventilation from the mid-latitude boundary layer Scalings can be developed for these ventilation processes Is it possible to develop a bottom-up analysis of changes to the water cycle in a changing climate? Boundary layer controls on extratropical cyclone development p.36/37

38 Conclusions III Mid-latitude cyclogenesis is far from a dead, textbook subject Many important aspects of cyclones can only be understood by unravelling the interactions between large-scale, boundary-layer and moist dynamics Boundary layer controls on extratropical cyclone development p.37/37

Frictional Damping of Baroclinic Waves

Frictional Damping of Baroclinic Waves Frictional Damping of Baroclinic Waves HHH, 26th May 2006 Bob Plant With thanks to Stephen Belcher, Brian Hoskins, Dan Adamson Motivation Control simulation, T+60 Simulation with no boundary layer turbulence,

More information

PV Generation in the Boundary Layer

PV Generation in the Boundary Layer 1 PV Generation in the Boundary Layer Robert Plant 18th February 2003 (With thanks to S. Belcher) 2 Introduction How does the boundary layer modify the behaviour of weather systems? Often regarded as a

More information

Friction in mid latitude cyclones: an Ekman PV mechanism

Friction in mid latitude cyclones: an Ekman PV mechanism Friction in mid latitude cyclones: an Ekman PV mechanism Article Accepted Version Boutle, I. A., Belcher, S. E. and Plant, R. S. (2015) Friction in mid latitude cyclones: an Ekman PV mechanism. Atmospheric

More information

Divergence, Spin, and Tilt. Convergence and Divergence. Midlatitude Cyclones. Large-Scale Setting

Divergence, Spin, and Tilt. Convergence and Divergence. Midlatitude Cyclones. Large-Scale Setting Midlatitude Cyclones Equator-to-pole temperature gradient tilts pressure surfaces and produces westerly jets in midlatitudes Waves in the jet induce divergence and convergence aloft, leading to surface

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

u g z = g T y (1) f T Margules Equation for Frontal Slope

u g z = g T y (1) f T Margules Equation for Frontal Slope Margules Equation for Frontal Slope u g z = g f T T y (1) Equation (1) is the thermal wind relation for the west wind geostrophic component of the flow. For the purposes of this derivation, we assume that

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

The moist boundary layer under a midlatitude

The moist boundary layer under a midlatitude The moist boundary layer under a midlatitude weather system Article Accepted Version Boutle, I., Beare, R.J., Belcher, S. E., Brown, A.R. and Plant, R. S. (1) The moist boundary layer under a mid latitude

More information

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU

Isentropic Analysis. Much of this presentation is due to Jim Moore, SLU Isentropic Analysis Much of this presentation is due to Jim Moore, SLU Utility of Isentropic Analysis Diagnose and visualize vertical motion - through advection of pressure and system-relative flow Depict

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

Synoptic Meteorology II: Self-Development in the IPV Framework. 5-7 May 2015

Synoptic Meteorology II: Self-Development in the IPV Framework. 5-7 May 2015 Synoptic Meteorology II: Self-Development in the IPV Framework 5-7 May 2015 Readings: Section 5.3.6 of Midlatitude Synoptic Meteorology. Introduction In this and other recent lectures, we have developed

More information

Diabatic processes and the structure of the warm conveyor belt

Diabatic processes and the structure of the warm conveyor belt 2 nd European Windstorm Workshop Leeds, 3-4 September 2012 Diabatic processes and the structure of the warm conveyor belt Oscar Martínez-Alvarado J. Chagnon, S. Gray, R. Plant, J. Methven Department of

More information

Mesoscale analysis of a comma cloud observed during FASTEX

Mesoscale analysis of a comma cloud observed during FASTEX Meteorol. Appl. 7, 129 134 (2000) Mesoscale analysis of a comma cloud observed during FASTEX K D Williams, Joint Centre for Mesoscale Meteorology, Department of Meteorology, University of Reading, PO Box

More information

http://www.ssec.wisc.edu/data/composites.html Red curve: Incoming solar radiation Blue curve: Outgoing infrared radiation. Three-cell model of general circulation Mid-latitudes: 30 to 60 latitude MID-LATITUDES

More information

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean Lecture 3: Weather/Disturbance Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies Transient and Eddy Transient: deviations from time mean Time Mean Eddy: deviations

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Summary of the climatic responses to the Gulf Stream. On the offshore flank of the SST front (black dashed curve) of the Gulf Stream (green long arrow), surface wind convergence associated with

More information

Diabatic processes and the structure of extratropical cyclones

Diabatic processes and the structure of extratropical cyclones Geophysical and Nonlinear Fluid Dynamics Seminar AOPP, Oxford, 23 October 2012 Diabatic processes and the structure of extratropical cyclones Oscar Martínez-Alvarado R. Plant, J. Chagnon, S. Gray, J. Methven

More information

Why rainfall may reduce when the ocean warms

Why rainfall may reduce when the ocean warms Why rainfall may reduce when the ocean warms Tim Hewson*, Ian Boutle** and Benedetta Dini** *ECMWF, Reading, UK **Met Office, Exeter, UK Work mainly undertaken at the Met Office Slide 1 Contents Introduction

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Vertical structure. To conclude, we will review the critical factors invloved in the development of extratropical storms.

Vertical structure. To conclude, we will review the critical factors invloved in the development of extratropical storms. Vertical structure Now we will examine the vertical structure of the intense baroclinic wave using three visualization tools: Upper level charts at selected pressure levels Vertical soundings for selected

More information

Sensitivity of zonal-mean circulation to air-sea roughness in climate models

Sensitivity of zonal-mean circulation to air-sea roughness in climate models Sensitivity of zonal-mean circulation to air-sea roughness in climate models Inna Polichtchouk & Ted Shepherd Royal Meteorological Society National Meeting 16.11.2016 MOTIVATION Question: How sensitive

More information

Numerical Simulation of Baroclinic Waves with a Parameterized Boundary Layer

Numerical Simulation of Baroclinic Waves with a Parameterized Boundary Layer DECEMBER 2007 P L A N T A N D BELCHER 4383 Numerical Simulation of Baroclinic Waves with a Parameterized Boundary Layer R. S. PLANT AND S. E. BELCHER Joint Centre for Mesoscale Meteorology, University

More information

Governing Equations and Scaling in the Tropics

Governing Equations and Scaling in the Tropics Governing Equations and Scaling in the Tropics M 1 ( ) e R ε er Tropical v Midlatitude Meteorology Why is the general circulation and synoptic weather systems in the tropics different to the those in the

More information

Mid-Latitude Dynamics and Atmospheric Rivers

Mid-Latitude Dynamics and Atmospheric Rivers Mid-Latitude Dynamics and Atmospheric Rivers Session: Theory, Structure, Processes 1 Wednesday, 10 August 2016 Contribution from: Heini Werni Peter Knippertz Harold Sodemann Andreas Stohl Francina Dominguez

More information

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997)

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Matthew Potter, Lance Bosart, and Daniel Keyser Department of Atmospheric and Environmental

More information

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means?

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means? Lecture 7: Disturbance (Outline) Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies (From Weather & Climate) Flux Components (1) (2) (3) Three components contribute

More information

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations Cristiana Stan School and Conference on the General Circulation of the Atmosphere and Oceans: a Modern Perspective

More information

1.4 CONNECTIONS BETWEEN PV INTRUSIONS AND TROPICAL CONVECTION. Beatriz M. Funatsu* and Darryn Waugh The Johns Hopkins University, Baltimore, MD

1.4 CONNECTIONS BETWEEN PV INTRUSIONS AND TROPICAL CONVECTION. Beatriz M. Funatsu* and Darryn Waugh The Johns Hopkins University, Baltimore, MD 1.4 CONNECTIONS BETWEEN PV INTRUSIONS AND TROPICAL CONVECTION Beatriz M. Funatsu* and Darryn Waugh The Johns Hopkins University, Baltimore, MD 1. INTRODUCTION Stratospheric intrusions into the tropical

More information

Fixed Rossby Waves: Quasigeostrophic Explanations and Conservation of Potential Vorticity

Fixed Rossby Waves: Quasigeostrophic Explanations and Conservation of Potential Vorticity Fixed Rossby Waves: Quasigeostrophic Explanations and Conservation of Potential Vorticity 1. Observed Planetary Wave Patterns After upper air observations became routine, it became easy to produce contour

More information

Synoptic Meteorology

Synoptic Meteorology M.Sc. in Meteorology Synoptic Meteorology [MAPH P312] Prof Peter Lynch Second Semester, 2004 2005 Seminar Room Dept. of Maths. Physics, UCD, Belfield. Part 9 Extratropical Weather Systems These lectures

More information

Microphysical heating rates and PV modification in a warm conveyor belt: Comparison of a COSMO and IFS simulation

Microphysical heating rates and PV modification in a warm conveyor belt: Comparison of a COSMO and IFS simulation Microphysical heating rates and PV modification in a warm conveyor belt: Comparison of a COSMO and IFS simulation Montreal, August 18th 2014 H. Joos1, M. Böttcher1, R. Forbes2 and H. Wernli1 1) IAC, ETH

More information

Schematic from Vallis: Rossby waves and the jet

Schematic from Vallis: Rossby waves and the jet Schematic from Vallis: Rossby waves and the jet Schematic from Vallis: Rossby waves and the jet A Barotropic Model Stochastic stirring + linear damping Force barotropic vort. eqn. with white noise in storm

More information

Satellites, Weather and Climate Module 9: Air/sea interactions winter cyclogenesis

Satellites, Weather and Climate Module 9: Air/sea interactions winter cyclogenesis Satellites, Weather and Climate Module 9: Air/sea interactions winter cyclogenesis Winter storms things to consider Deep moisture Thermal discontinuity Favorable surface and upper level features Geographical

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

Isentropic flows and monsoonal circulations

Isentropic flows and monsoonal circulations Isentropic flows and monsoonal circulations Olivier Pauluis (NYU) Monsoons- Past, Present and future May 20th, 2015 Caltech, Pasadena Outline Introduction Global monsoon in isentropic coordinates Dry ventilation

More information

Synoptic-Dynamic Meteorology in Midlatitudes

Synoptic-Dynamic Meteorology in Midlatitudes Synoptic-Dynamic Meteorology in Midlatitudes VOLUME II Observations and Theory of Weather Systems HOWARD B. BLUESTEIN New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents 1. THE BEHAVIOR OF SYNOPTIC-SCALE,

More information

Tropical Cyclone Genesis: What we know, and what we don t!

Tropical Cyclone Genesis: What we know, and what we don t! Tropical Cyclone Genesis: What we know, and what we don t! Allison Wing! NSF Postdoctoral Research Fellow! Lamont-Doherty Earth Observatory! Columbia University! Overview! Climatology! What We Know! Theories!

More information

The Impact of the Extratropical Transition of Typhoon Dale (1996) on the Early Wintertime Stratospheric Circulation

The Impact of the Extratropical Transition of Typhoon Dale (1996) on the Early Wintertime Stratospheric Circulation The Impact of the Extratropical Transition of Typhoon Dale (1996) on the Early 1996-97 Wintertime Stratospheric Circulation Andrea L. Lang 1, Jason M. Cordeira 2, Lance F. Bosart 1 and Daniel Keyser 1

More information

The Impact of air-sea interaction on the extratropical transition of tropical cyclones

The Impact of air-sea interaction on the extratropical transition of tropical cyclones The Impact of air-sea interaction on the extratropical transition of tropical cyclones Sarah Jones Institut für Meteorologie und Klimaforschung Universität Karlsruhe / Forschungszentrum Karlsruhe 1. Introduction

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

10B.2 THE ROLE OF THE OCCLUSION PROCESS IN THE EXTRATROPICAL-TO-TROPICAL TRANSITION OF ATLANTIC HURRICANE KAREN

10B.2 THE ROLE OF THE OCCLUSION PROCESS IN THE EXTRATROPICAL-TO-TROPICAL TRANSITION OF ATLANTIC HURRICANE KAREN 10B.2 THE ROLE OF THE OCCLUSION PROCESS IN THE EXTRATROPICAL-TO-TROPICAL TRANSITION OF ATLANTIC HURRICANE KAREN Andrew L. Hulme* and Jonathan E. Martin University of Wisconsin-Madison, Madison, Wisconsin

More information

Occlusion Cyclogenesis

Occlusion Cyclogenesis Occlusion Cyclogenesis Part I: Occlusion cloud bands in comparison to CF and WFs Concepts for cyclogenesis Different types of cyclogenesis and examples Numerical parameters on isobaric and isentropic surfaces

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

On the effect of forward shear and reversed shear baroclinic flows for polar low developments. Thor Erik Nordeng Norwegian Meteorological Institute

On the effect of forward shear and reversed shear baroclinic flows for polar low developments. Thor Erik Nordeng Norwegian Meteorological Institute On the effect of forward shear and reversed shear baroclinic flows for polar low developments Thor Erik Nordeng Norwegian Meteorological Institute Outline Baroclinic growth a) Normal mode solution b) Initial

More information

Chapter 10: Mid-latitude Cyclones Mid-Latitude Cyclones

Chapter 10: Mid-latitude Cyclones Mid-Latitude Cyclones Chapter 10: Mid-latitude Cyclones Mid-Latitude Cyclones Mid-latitude cyclones form along a boundary separating polar air from warmer air to the south. Life Cycle of Cyclone Cyclone Structures Steering

More information

Chapter 10: Mid-latitude Cyclones

Chapter 10: Mid-latitude Cyclones Chapter 10: Mid-latitude Cyclones Life Cycle of Cyclone Cyclone Structures Steering of Cyclone Mid-Latitude Cyclones Mid-latitude cyclones form along a boundary separating polar air from warmer air to

More information

Mid-latitude Ocean Influence on North Pacific Sector Climate Variability

Mid-latitude Ocean Influence on North Pacific Sector Climate Variability Mid-latitude Ocean Influence on North Pacific Sector Climate Variability Guidi Zhou 1, Mojib Latif 1,2, Richard Greatbatch 1,2, Wonsun Park 1 1 GEOMAR Helmholtz-Centre for Ocean Research Kiel 2 Kiel University

More information

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values 3.2 Composite analysis 3.2.1 Pure gradient composites The composite initial NE report in the pure gradient northwest composite (N = 32) occurs where the mean sea level pressure (MSLP) gradient is strongest

More information

Mesoscale Atmospheric Systems. Surface fronts and frontogenesis. 06 March 2018 Heini Wernli. 06 March 2018 H. Wernli 1

Mesoscale Atmospheric Systems. Surface fronts and frontogenesis. 06 March 2018 Heini Wernli. 06 March 2018 H. Wernli 1 Mesoscale Atmospheric Systems Surface fronts and frontogenesis 06 March 2018 Heini Wernli 06 March 2018 H. Wernli 1 Temperature (degc) Frontal passage in Mainz on 26 March 2010 06 March 2018 H. Wernli

More information

Dynamics of the Extratropical Response to Tropical Heating

Dynamics of the Extratropical Response to Tropical Heating Regional and Local Climate Modeling and Analysis Research Group R e L o C l i m Dynamics of the Extratropical Response to Tropical Heating (1) Wegener Center for Climate and Global Change (WegCenter) and

More information

Middle-Latitude Cyclone

Middle-Latitude Cyclone Middle-Latitude Cyclone What is a mid-latitude cyclone? - The mid-latitude cyclone is a synoptic scale low pressure system that has cyclonic (counter-clockwise in northern hemisphere) flow that is found

More information

7 The General Circulation

7 The General Circulation 7 The General Circulation 7.1 The axisymmetric state At the beginning of the class, we discussed the nonlinear, inviscid, axisymmetric theory of the meridional structure of the atmosphere. The important

More information

AN EXTRATROPICAL CYCLONE ATLAS

AN EXTRATROPICAL CYCLONE ATLAS AN EXTRATROPICAL CYCLONE ATLAS A tool for illustrating cyclone structure and evolution characteristics BY H. F. DACRE, M. K. HAWCROFT, M. A. STRINGER AND K. I. HODGES Authors Affiliations H.F.Dacre, Department

More information

Climatology of dry air intrusions and their relation to strong surface winds in extratropical cyclones

Climatology of dry air intrusions and their relation to strong surface winds in extratropical cyclones Climatology of dry air intrusions and their relation to strong surface winds in extratropical cyclones...and intro to synoptic and meso-scale cyclone dynamics Shira Raveh-Rubin and Heini Wernli Institute

More information

Extratropical and Polar Cloud Systems

Extratropical and Polar Cloud Systems Extratropical and Polar Cloud Systems Gunilla Svensson Department of Meteorology & Bolin Centre for Climate Research George Tselioudis Extratropical and Polar Cloud Systems Lecture 1 Extratropical cyclones

More information

4/29/2011. Mid-latitude cyclones form along a

4/29/2011. Mid-latitude cyclones form along a Chapter 10: Cyclones: East of the Rocky Mountain Extratropical Cyclones Environment prior to the development of the Cyclone Initial Development of the Extratropical Cyclone Early Weather Along the Fronts

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

The Role of Post Cold Frontal Cumulus Clouds in an Extratropical Cyclone Case Study

The Role of Post Cold Frontal Cumulus Clouds in an Extratropical Cyclone Case Study The Role of Post Cold Frontal Cumulus Clouds in an Extratropical Cyclone Case Study Amanda M. Sheffield and Susan C. van den Heever Colorado State University Dynamics and Predictability of Middle Latitude

More information

1. Rossby and Ertel 2. Conservation and invertibility - a useful combination 2.1 Action at a distance

1. Rossby and Ertel 2. Conservation and invertibility - a useful combination 2.1 Action at a distance Met Office College - Course Notes Potential vorticity Contents 1. Rossby and Ertel 2. Conservation and invertibility - a useful combination 2.1 Action at a distance 3. Conceptual models of development

More information

Thunderstorms and Severe Weather. (Chapt 15)

Thunderstorms and Severe Weather. (Chapt 15) Thunderstorms and Severe Weather (Chapt 15) The Big Picture We ve emphasized horizontal transport of energy to balance the planetary energy budget: Hadley Cell Subtropical divergence Midlatitude cyclones

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it ATMO 436a The General Circulation Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it Scales of Atmospheric Motion vs. Lifespan The general circulation Atmospheric oscillations

More information

8 Mechanisms for tropical rainfall responses to equatorial

8 Mechanisms for tropical rainfall responses to equatorial 8 Mechanisms for tropical rainfall responses to equatorial heating More reading: 1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving Precipitation anomalies in Response to Equatorial

More information

Baroclinic Adjustment in an Atmosphere Ocean Thermally Coupled Model: The Role of the Boundary Layer Processes

Baroclinic Adjustment in an Atmosphere Ocean Thermally Coupled Model: The Role of the Boundary Layer Processes 2710 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 68 Baroclinic Adjustment in an Atmosphere Ocean Thermally Coupled Model: The Role of the Boundary Layer Processes YANG ZHANG School

More information

Weak Temperature Gradient Simulations For Different Convective Environments

Weak Temperature Gradient Simulations For Different Convective Environments Weak Temperature Gradient Simulations For Different Convective Environments 1 Benjamin Hatchett and Sharon Sessions 1 2 Division of Atmospheric Science, Desert Research Institute, Reno, Nevada 2 Department

More information

TROPICAL-EXTRATROPICAL INTERACTIONS

TROPICAL-EXTRATROPICAL INTERACTIONS Notes of the tutorial lectures for the Natural Sciences part by Alice Grimm Fourth lecture TROPICAL-EXTRATROPICAL INTERACTIONS Anomalous tropical SST Anomalous convection Anomalous latent heat source Anomalous

More information

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification References: A Global View of Tropical Cyclones, Elsberry (ed.) Global Perspectives on Tropical Cylones:

More information

Stratospheric Processes: Influence on Storm Tracks and the NAO. Mark P. Baldwin

Stratospheric Processes: Influence on Storm Tracks and the NAO. Mark P. Baldwin Stratospheric Processes: Influence on Storm Tracks and the NAO Mark P. Baldwin Mark P. Baldwin, University of Exeter Imperial College 12 December 2012 (From Baldwin and Dunkerton, Science 2001) 60 Days

More information

Idealised simulations of sting jet cyclones

Idealised simulations of sting jet cyclones Idealised simulations of sting jet cyclones Article Published Version Baker, L. H., Gray, S. L. and Clark, P. A. (214) Idealised simulations of sting jet cyclones. Quarterly Journal of the Royal Meteorological

More information

Moist static energy budget diagnostics for. monsoon research. H. Annamalai

Moist static energy budget diagnostics for. monsoon research. H. Annamalai Moist static energy budget diagnostics for monsoon research H. Annamalai JJAS Precipitation and SST Climatology I III II Multiple regional heat sources - EIO and SPCZ still experience high precipitation

More information

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Large-scale Circulation G E O F F R E Y K. V A L L I S Princeton University, New Jersey CAMBRIDGE UNIVERSITY PRESS An asterisk indicates more advanced

More information

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

Chapter 9: Weather Patterns

Chapter 9: Weather Patterns Chapter 9: Weather Patterns Mid Latitude Cyclones: extratropical cyclones, Nor easters Region southern FL to Alaska Lifecycle and associated weather Regional Influence Polar Front Theory: -Norwegian Cyclone

More information

Vertical Structure of Atmosphere

Vertical Structure of Atmosphere ATMOS 3110 Introduction to Atmospheric Sciences Distribution of atmospheric mass and gaseous constituents Because of the earth s gravitational field, the atmosphere exerts a downward forces on the earth

More information

Tropical Cyclones. Objectives

Tropical Cyclones. Objectives Tropical Cyclones FIU Undergraduate Hurricane Internship Lecture 2 8/8/2012 Objectives From this lecture you should understand: Global tracks of TCs and the seasons when they are most common General circulation

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

Occlusion cyclogenesis II

Occlusion cyclogenesis II Occlusion cyclogenesis II Upper level influences on cyclogenesis Vorticity Advection (CVA) and the 4-quadrant jet streak model (Uccellini) Potential Vorticity (PV) (Hoskins Theory) Rapid cyclogenesis 14

More information

Katherine E. Lukens and E. Hugo Berbery. Acknowledgements: Kevin I. Hodges 1 and Matthew Hawcroft 2. University of Reading, Reading, Berkshire, UK

Katherine E. Lukens and E. Hugo Berbery. Acknowledgements: Kevin I. Hodges 1 and Matthew Hawcroft 2. University of Reading, Reading, Berkshire, UK Boreal Winter Storm Tracks and Related Precipitation in North America: A Potential Vorticity Perspective Katherine E. Lukens and E. Hugo Berbery Acknowledgements: Kevin I. Hodges 1 and Matthew Hawcroft

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

Clouds and turbulent moist convection

Clouds and turbulent moist convection Clouds and turbulent moist convection Lecture 2: Cloud formation and Physics Caroline Muller Les Houches summer school Lectures Outline : Cloud fundamentals - global distribution, types, visualization

More information

Tropical Meridional Circulations: The Hadley Cell

Tropical Meridional Circulations: The Hadley Cell Tropical Meridional Circulations: The Hadley Cell Introduction Throughout much of the previous sections, we have alluded to but not fully described the mean meridional overturning circulation of the tropics

More information

Rotating stratified turbulence in the Earth s atmosphere

Rotating stratified turbulence in the Earth s atmosphere Rotating stratified turbulence in the Earth s atmosphere Peter Haynes, Centre for Atmospheric Science, DAMTP, University of Cambridge. Outline 1. Introduction 2. Momentum transport in the atmosphere 3.

More information

Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation

Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES 1-28-16 Today What determines

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Introductory Oceanography Instructor: Ray Rector Atmospheric Circulation Key Topics Composition and Structure Solar Heating and Convection The Coriolis Effect Global Wind Patterns

More information

P R O L O G U E CORRELATION COEF. dsst/dt during wintertime (i.e., end of Feb. minus beginning of Dec, using 11-day averaged climatology)

P R O L O G U E CORRELATION COEF. dsst/dt during wintertime (i.e., end of Feb. minus beginning of Dec, using 11-day averaged climatology) P R O L O G U E dsst/dt during wintertime (i.e., end of Feb. minus beginning of Dec, using 11-day averaged climatology) Correlation between total precipitable water (from NVAP-M) and total cloud (from

More information

Effective Depth of Ekman Layer.

Effective Depth of Ekman Layer. 5.5: Ekman Pumping Effective Depth of Ekman Layer. 2 Effective Depth of Ekman Layer. Defining γ = f/2k, we derived the solution u = u g (1 e γz cos γz) v = u g e γz sin γz corresponding to the Ekman spiral.

More information

Rapid cyclogenesis over Poland on 28 March 1997

Rapid cyclogenesis over Poland on 28 March 1997 Meteorol. Appl. 6, 363 370 (1999) Rapid cyclogenesis over Poland on 28 March 1997 Jan Waclaw Parfiniewicz, Institute of Meteorology and Water Management, ul. Podleœna 61, 01 673 Warszawa, Poland A small

More information

Benguela Niño/Niña events and their connection with southern Africa rainfall have been documented before. They involve a weakening of the trade winds

Benguela Niño/Niña events and their connection with southern Africa rainfall have been documented before. They involve a weakening of the trade winds Benguela Niño/Niña events and their connection with southern Africa rainfall have been documented before. They involve a weakening of the trade winds in the equatorial western Atlantic in the early monsoon,

More information

ESCI 344 Tropical Meteorology Lesson 8 Tropical Weather Systems

ESCI 344 Tropical Meteorology Lesson 8 Tropical Weather Systems ESCI 344 Tropical Meteorology Lesson 8 Tropical Weather Systems References: Tropical Climatology (2 nd Ed.), McGregor and Nieuwolt Climate and Weather in the Tropics, Riehl Climate Dynamics of the Tropics,

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

On the Instability of the African Easterly Jet and the Generation of AfricanWaves: Reversals of the Potential Vorticity Gradient

On the Instability of the African Easterly Jet and the Generation of AfricanWaves: Reversals of the Potential Vorticity Gradient On the Instability of the African Easterly Jet and the Generation of AfricanWaves: Reversals of the Potential Vorticity Gradient Jen-Shan Hsieh * and Kerry H. Cook Department of Earth and Atmospheric Sciences,

More information

General Circulation of the Atmosphere. René Garreaud

General Circulation of the Atmosphere. René Garreaud General Circulation of the Atmosphere René Garreaud www.dgf.uchile.cl/rene General circulation of the Atmosphere Low latitude areas receive more solar energy than high latitudes (because of earth sphericity).

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

ESS 111 Climate & Global Change. Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts

ESS 111 Climate & Global Change. Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts ESS 111 Climate & Global Change Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts Weather is the state of the atmosphere at a given place and time. For example, right now, the temperature

More information

Name SOLUTIONS T.A./Section Atmospheric Science 101 Homework #6 Due Thursday, May 30 th (in class)

Name SOLUTIONS T.A./Section Atmospheric Science 101 Homework #6 Due Thursday, May 30 th (in class) Name SOLUTIONS T.A./Section Atmospheric Science 101 Homework #6 Due Thursday, May 30 th (in class) 1. General Circulation Briefly describe where each of the following features is found in the earth s general

More information

Isentropic analysis and atmospheric circulation.

Isentropic analysis and atmospheric circulation. Isentropic analysis and atmospheric circulation. Olivier Pauluis Courant Institute of Mathematical Sciences Thanks to Arnaud Czaja, Robert Korty and Frederic Laliberte Sept. 1, 2009 Keck Institute for

More information

General Atmospheric Circulation

General Atmospheric Circulation General Atmospheric Circulation Take away Concepts and Ideas Global circulation: The mean meridional (N-S) circulation Trade winds and westerlies The Jet Stream Earth s climate zones Monsoonal climate

More information

How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo

How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo Mark P. Baldwin, University of Exeter Imperial College 12 December 2012 a Observed Average Surface Pressure

More information

p = ρrt p = ρr d = T( q v ) dp dz = ρg

p = ρrt p = ρr d = T( q v ) dp dz = ρg Chapter 1: Properties of the Atmosphere What are the major chemical components of the atmosphere? Atmospheric Layers and their major characteristics: Troposphere, Stratosphere Mesosphere, Thermosphere

More information