Dynamics of Saturn s South Polar Vortex

Size: px
Start display at page:

Download "Dynamics of Saturn s South Polar Vortex"

Transcription

1 Dynamics of Saturn s South Polar Vortex Ulyana A. Dyudina 1, Andrew P. Ingersoll 1,Shawn P. Ewald 1, Ashwin R. Vasavada 2, Robert A. West 2, Anthony D. Del Genio 3, John M. Barbara 3, Carolyn C. Porco 4, Richard K. Achterberg 5, F. Michael Flasar 5, Amy A. Simon-Miller 5, Leigh N. Fletcher 2,6 1 Division of Geological and Planetary Sciences, California Institute of Technology, , Pasadena, CA 91125, USA. 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. 3 Goddard Institute for Space Studies, NASA, 2880 Broadway, New York, NY 10025, USA. 4 Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA. 5 NASA Goddard Space Flight Center, Code 693, Greenbelt, MD 20771, USA. 6 Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK. To whom correspondence should be addressed; ulyana@gps.caltech.edu. 1

2 We present observations of Saturn s south polar vortex (SPV) showing that it shares some properties with terrestrial hurricanes - cyclonic circulation, warm central region (the eye) surrounded by a ring of high clouds (the eyewall), and convective clouds outside the eye. The polar location and absence of an ocean are major differences. It also shares properties with the polar vortices on Venus - polar location, cyclonic circulation, warm center, and long lifetime, but the Venus vortices have cold collars and are not associated with convective clouds. The SPV s combination of properties is unique among vortices in the solar system. 2

3 Most planets with an atmosphere have large vortices. Here we present observations of Saturn s south polar vortex (SPV) showing that it has a unique combination of properties, resembling some vortices in some respects but not any other vortex in all respects. Our data are from observations over three hours by Cassini on 11 October A falsecolor image of cloud heights (Fig. 1A) shows a dark, red central eye indicating a nearly cloud-free upper atmosphere above lower, tropospheric clouds. The blue-green ring outside the eye indicates high clouds and haze, which is consistent with uplifted air. The eye has two concentric boundaries. The eyewall clouds cast shadows that followed the sun in a counterclockwise direction as the planet turned. (See Fig. 1(B-D)). From the shadow lengths, we estimate that the outer wall is 40±20 km high and that the inner wall is 70±30 km high, about twice the pressure scale height of Saturn s atmosphere. The eyewall clouds seem to extend up to the tropopause, which is at the 100 mbar level (1). We tracked the motion of individual cloud features (2). The peak zonal velocity ū was 150±20 m s 1 near the outer eyewall. Absolute vorticity consists of two parts - a part ζ due to motion relative to the planet and a part f due to the planet s rotation (3). Up to latitude -85 the measured ū increased slightly faster than a constant absolute vorticity profile. Poleward of -85 ū increased more slowly. Constant absolute vorticity is consistent with horizontal stirring by eddies. The angular momentum in Saturn s south polar vortex decreased toward its center. We observed no poleward or equatorward mean motion. The relative vorticity ζ estimated from the measured ū was close to zero up to the edge of the eyewall. The puffy red clouds in Fig. 1A are anticyclones (2), with a vorticity of 1 ± s 1, which is 1/3 the magnitude of the planetary vorticity f but of opposite sign. This is consistent with a convective origin, since parcels rising from the convective interior should have ζ + f =0when they spread out in the upper troposphere (3). 3

4 Cassini CIRS data show that the vortex is anomalously warm, particularly just beneath the tropopause (by 5K) but also in the stratosphere (by 3-4K) (1). The warm central core means that the central low pressure, and with it the cyclonic circulation, should weaken with altitude if the flow is balanced. We searched for this weakening, but did not find it (2). The failure of the wind to weaken means that the centrifugal force at high altitudes is not completely balanced by the inward pressure force. This unbalanced force could drive an outward flow. The SPV is a warm-core feature with cyclonic relative vorticity. Like a terrestrial hurricane, it has an eye, eyewall clouds, and multiple convective clouds outside the eye. However hurricanes exist in the tropics, are not stationary, and derive their energy from interaction with the underlying ocean. The SPV is different from Jupiter s Great Red Spot and white ovals, which are anticyclones with uniformly high clouds at their centers (4). Observations do not cover the poles of Jupiter well enough to detect a possible vortex there. In some respects, the SPV resembles the polar vortices on Venus, which are cyclonic and have warm features at the poles, although the features are dipole-shaped, have cold collars, and are not surrounded by convective clouds (5). Neptune s atmosphere is warm poleward of 70 at altitudes near 100 mbar (6). The SPV is different from Earth s Arctic and Antarctic polar vortices, which are cold-core features that are not associated with clouds and/or convection. 4

5 References and Notes 1. L. Fletcher, et al., Science 319, 79 (2008). 2. The details of the cloud elevations, the eyewall height measurement, cloud tracking, vorticity measurements, and the cloud movie are available as supporting online material (SOM) at Science Online. 3. J. R. Holton, An Introduction to Dynamic Meteorology (Elsevier Academic Press, Amsterdam, ed. 4, 2004). 4. F. Bagenal, ed., Jupiter - The Planet, Satellites and Magnetosphere (Oxford University Press, 2001). 5. G. Piccioni, et al., Nature 450, 637 (2007). 6. G. S. Orton, T. Encrenaz, C. Leyrat, R. Puetter, A. J. Friedson, A & A 473, L5 (2007). 7. This research was supported by the NASA Cassini Project. Supporting Online Material SOM text Fig. S1 Movie S2 References 5

6 Figure 1: Images of Saturn s south polar clouds taken by the Cassini imaging science subsystem (ISS). The images have been map projected using polar stereographic projection. Latitudes are planetocentric. (A) False-color image from light at 889 nm, 727 nm, and 750 nm projected as blue, green, and red, respectively. In the original images sunlight was attenuated by a factor of e ( ) at the 80 mbar and 300 mbar levels for light at 889 and 727 nm, respectively. Sunlight passes through to deeper levels for light at 750 nm. Thus clouds below 300 mbar appear red, and high thin clouds appear blue or green (2). The eyewalls can be seen in all three color planes, and thus extend above the 80 mbar surface. (B-D) Time sequence showing shadows (the dark crescent-shaped areas inside the walls). The first map is taken on 11 October 2006 at 19 hr 42 min. The maps are labeled by the time lapsed since the first map. The white arrow shows the direction of propagation of the incident sunlight. 6

7

8 Supporting online material Earth-based telescopic observations (S1) revealed a hot spot at Saturn s south pole in Cassini imaging observations (S2, S3) revealed cyclonic rotation around the spot in Our observations from 11 October 2006 have spatial resolution of 20 km/pixel, about ten times the resolution of the previous ISS observations (S2, S3). The SPV eye in Fig. 1 has two boundaries. The inner boundary is oblong (major axis = 2400 km); the outer one is circular (diameter = 4200 km). The 889 nm, 727 nm, and 750 nm ISS filters cover different methane gas absorption bands (S4, S5). In the original images the sun was 15 above the horizon at the pole. We accounted for this slant illumination in calculating the attenuation due to methane absorption, which is used to estimate cloud heights (see also modeling results in (S3)). To reduce the effect of varying solar illumination across the image, each color plane in Fig. 1A is high-pass filtered at the spatial scale of 150 pixels (which is 300 km, or 0.3 of latitude). Figure 1(B-D) shows a sample of three images out of nine that we used to measure the wall heights. To obtain the eyewall height we multiplied each shadow length by the tangent of the solar elevation angle above the horizon, assuming the clouds inside the eye are flat and horizontal. In Fig. S1A, the points represent the zonal velocity (positive eastward) of individual cloud features. We tracked the clouds on 14 images in the continuum band filter at 750 nm taken within a 3-hour period. The average of the points is the mean zonal velocity ū. Without frictional losses by eddies, rings of air moving poleward would produce a profile with constant angular momentum, which is a much steeper curve than the curve in Fig. S1A and did not fit the data. Instead angular momentum decreased toward the pole. In Fig. S1B, the smooth curve is the mean relative vorticity ζ computed from the measured ū in Fig. S1A. Each point is the 1

9 relative vorticity of a puffy red cloud in Fig. 1A. We searched for the weakening of the cyclonic circulation with altitude using a 4-frame color movie S2 of images like the one in Fig. 1A, and found no difference in the wind with altitude, at least at -84 where there were features in the blue-green haze suitable for tracking. 2

10 Figure S1: Profiles of zonal velocity (eastward) and cyclonic vorticity (clockwise) around Saturn s south pole. The dashed vertical lines indicate the inner and outer eyewalls. (A) Zonal velocity measured by tracking clouds in a sequence of images over a 3-hour period. The solid curves are for constant absolute vorticity ζ + f starting at latitude φ 0 (values labeled on the curves) with ū =0and ζ =0at that point. (B) Relative vorticity ζ. The solid curve is a spline fit to the velocity data of Fig. S1A. The points are the puffy red clouds of Fig. 1A. To determine the relative vorticity of a puffy red cloud, we measured its angular velocity of rotation relative to the rotating planet. Twice this angular velocity is the vorticity of the cloud. We repeated the procedure three to four times for each cloud and assigned error bars from the residuals. 3

11 Movie caption Movie S2: A four-step movie combined from the color images similar to Fig. 1A taken within approximately 2 hr 20 min during the 11 October 2006 ISS observation. References S1. G. S. Orton, P. A. Yanamandra-Fisher, Science 307, 696 (2005). S2. A. R. Vasavada, et al., J. Geophys. Res. (Planets) 111, 5004 (2006). S3. A. Sánchez-Lavega, R. Hueso, S. Pérez-Hoyos, J. F. Rojas, Icarus 184, 524 (2006). S4. C. C. Porco, et al., Space Sci. Rev. 115, 363 (2004). S5. E. Karkoschka, Icarus 133, 134 (1998). 4

Saturn s South Polar Vortex Compared to. Other Large Vortices in the Solar System

Saturn s South Polar Vortex Compared to. Other Large Vortices in the Solar System Saturn s South Polar Vortex Compared to Other Large Vortices in the Solar System Ulyana A. Dyudina, a, Andrew P. Ingersoll a, Shawn P. Ewald a, Ashwin R. Vasavada b, Robert A. West b, Kevin H Baines b,

More information

PUBLICATIONS. Journal of Geophysical Research: Planets. Vortices in Saturn s Northern Hemisphere ( ) observed by Cassini ISS

PUBLICATIONS. Journal of Geophysical Research: Planets. Vortices in Saturn s Northern Hemisphere ( ) observed by Cassini ISS PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Key Points: Hemispheric maps (2008 2015) are processed to explore Saturn s vortices. Spatio-temporal variations of Saturn s vortices

More information

Strong jet and a new thermal wave in Saturn s equatorial stratosphere

Strong jet and a new thermal wave in Saturn s equatorial stratosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L23208, doi:10.1029/2008gl035515, 2008 Strong jet and a new thermal wave in Saturn s equatorial stratosphere Li Liming, 1 Peter J. Gierasch, 1 Richard K. Achterberg,

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Dynamics of Giant Planet Atmospheres. Tapio Schneider (with Junjun Liu) California Institute of Technology

Dynamics of Giant Planet Atmospheres. Tapio Schneider (with Junjun Liu) California Institute of Technology Dynamics of Giant Planet Atmospheres Tapio Schneider (with Junjun Liu) California Institute of Technology Jupiter from Cassini (Cassini Imaging Team 2000) Jupiter from Cassini (Cassini Imaging Team 2000)

More information

arxiv: v2 [astro-ph.ep] 3 Oct 2016

arxiv: v2 [astro-ph.ep] 3 Oct 2016 12 Saturn s Polar Atmosphere K.M. SAYANAGI 1, K.H. BAINES 2, U.A. DYUDINA 3, L.N. FLETCHER 4, A. SÁNCHEZ-LAVEGA5, R.A. WEST 2 arxiv:1609.09626v2 [astro-ph.ep] 3 Oct 2016 1 Department of Atmospheric and

More information

ASTR 380 Possibilities for Life in the Outer Solar System

ASTR 380 Possibilities for Life in the Outer Solar System ASTR 380 Possibilities for Life in the Outer Solar System Possibility of Life in the Inner Solar System The Moon, Mercury, and the Moons of Mars Deimos NO LIFE NOW or EVER This is a 98% conclusion! Phobos

More information

Today. Jovian planets

Today. Jovian planets Today Jovian planets Global Wind Patterns Heat transport Global winds blow in distinctive patterns: Equatorial: E to W Mid-latitudes: W to E High latitudes: E to W 2014 Pearson Education, Inc. Circulation

More information

Chapter 6 Saturn Atmospheric Structure and Dynamics

Chapter 6 Saturn Atmospheric Structure and Dynamics Chapter 6 Saturn Atmospheric Structure and Dynamics AnthonyD.DelGenio,RichardK.Achterberg,KevinH.Baines,F.MichaelFlasar,PeterL.Read, Agustín Sánchez-Lavega, and Adam P. Showman Abstract Saturn inhabits

More information

The three-dimensional structure of Saturn s equatorial jet at cloud level

The three-dimensional structure of Saturn s equatorial jet at cloud level Icarus 187 (2007) 510 519 www.elsevier.com/locate/icarus The three-dimensional structure of Saturn s equatorial jet at cloud level A. Sánchez-Lavega, R. Hueso, S. Pérez-Hoyos Departamento de Física Aplicada

More information

Turbulence in Jupiter s Clouds

Turbulence in Jupiter s Clouds Turbulence in Jupiter s Clouds N. Barrado-Izagirre, S. Pérez-Hoyos, and A. Sánchez-Lavega Abstract We have studied the spatial distribution of Jupiter s higher clouds in order to characterize the turbulent

More information

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley 12. Jovian Planet Systems Jovian Planet Properties Compared to the terrestrial planets, the Jovians: are much larger & more massive 2. are composed mostly of Hydrogen, Helium, & Hydrogen compounds 3. have

More information

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere Earth s atmospheric layers Earth s atmosphere is the layer of gases that surrounds the planet and makes conditions on Earth suitable for living things. Layers Earth s atmosphere is divided into several

More information

Waves in Jupiter s Atmosphere Observed by the Cassini ISS and CIRS Instruments

Waves in Jupiter s Atmosphere Observed by the Cassini ISS and CIRS Instruments Waves in Jupiter s Atmosphere Observed by the Cassini ISS and CIRS Instruments Liming Li a,*, Andrew P. Ingersoll a, Ashwin R. Vasavada b, Amy A. Simon-Miller c, Richard K. Achterberg d, Shawn P. Ewald

More information

Meridional Transport in the Stratosphere of Jupiter

Meridional Transport in the Stratosphere of Jupiter Submitted to Astrophysical Journal Letters Meridional Transport in the Stratosphere of Jupiter Mao-Chang Liang 1, Run-Lie Shia 1, Anthony Y.-T. Lee 1, Mark Allen 1,2,A.James Friedson 2, and Yuk L. Yung

More information

High-resolution Global Climate Modeling of Saturn s and Jupiter s tropospheric and stratospheric circulations

High-resolution Global Climate Modeling of Saturn s and Jupiter s tropospheric and stratospheric circulations High-resolution Global Climate Modeling of Saturn s and Jupiter s tropospheric and stratospheric circulations Aymeric SPIGA, S. Guerlet, E. Millour, Y. Meurdesoif (LSCE/CEA), M. Indurain, S. Cabanes, M.

More information

Saturn and Planetary Rings 4/5/07

Saturn and Planetary Rings 4/5/07 Saturn and Planetary Rings Announcements Reading Assignment Chapter 15 5 th homework due next Thursday, April 12 (currently posted on the website). Reminder about term paper due April 17. There will be

More information

Waves in Jupiter s atmosphere observed by the Cassini ISS and CIRS instruments

Waves in Jupiter s atmosphere observed by the Cassini ISS and CIRS instruments Icarus 185 (2006) 416 429 www.elsevier.com/locate/icarus Waves in Jupiter s atmosphere observed by the Cassini ISS and CIRS instruments Liming Li a,, Andrew P. Ingersoll a, Ashwin R. Vasavada b, Amy A.

More information

The Turbulent Wake of the Jupiter's Great Red Spot observed with MAD

The Turbulent Wake of the Jupiter's Great Red Spot observed with MAD The Turbulent Wake of the Jupiter's Great Red Spot observed with MAD F. Marchis (UC-Berkeley), M. Wong (UC-Berkeley), E. Marchetti (ESO), J. Kolb (ESO) ABSTRACT The turbulent wake of Jupiter's Great Red

More information

Lightning on Jupiter observed in the H α line by the Cassini imaging science subsystem

Lightning on Jupiter observed in the H α line by the Cassini imaging science subsystem Icarus 172 (2004) 24 36 www.elsevier.com/locate/icarus Lightning on Jupiter observed in the H α line by the Cassini imaging science subsystem Ulyana A. Dyudina a,, Anthony D. Del Genio a, Andrew P. Ingersoll

More information

Waves in Jupiter s Atmosphere Observed by the Cassini ISS and CIRS Instruments

Waves in Jupiter s Atmosphere Observed by the Cassini ISS and CIRS Instruments Waves in Jupiter s Atmosphere Observed by the Cassini ISS and CIRS Instruments Liming Li a,*, Andrew P. Ingersoll a, Ashwin R. Vasavada b, Amy A. Simon-Miller c, Richard K. Achterberg d, Shawn P. Ewald

More information

SATURN EDDY MOMENTUM FLUXES AND CONVECTION: FIRST ESTIMATES FROM CASSINI IMAGES

SATURN EDDY MOMENTUM FLUXES AND CONVECTION: FIRST ESTIMATES FROM CASSINI IMAGES SATURN EDDY MOMENTUM FLUXES AND CONVECTION: FIRST ESTIMATES FROM CASSINI IMAGES Anthony D. Del Genio 1, John M. Barbara 2, Joseph Ferrier 2, Andrew P. Ingersoll 3, Robert A. West 4, Ashwin R. Vasavada

More information

Weather in the Solar System

Weather in the Solar System Weather in the Solar System Sanjay S. Limaye Space Science and Engineering Center University of Wisconsin-Madison 8 February 2002 What is Weather? Webster s New Collegiate Dictionary: state of the atmosphere

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

Icarus 223 (2013) Contents lists available at SciVerse ScienceDirect. Icarus. journal homepage:

Icarus 223 (2013) Contents lists available at SciVerse ScienceDirect. Icarus. journal homepage: Icarus 223 (2013) 460 478 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Dynamics of Saturn s great storm of 2010 2011 from Cassini ISS and RPWS

More information

Cassini ISS. The Imaging Science Subsystem. (The Cameras)

Cassini ISS. The Imaging Science Subsystem. (The Cameras) Cassini ISS The Imaging Science Subsystem (The Cameras) "We are the eyes of Cassini, our cameras capture all the dramatic sights and vistas there are to see around Saturn. And through their imagery, they

More information

Jupiter. Notes compiled by Paul Woodward Department of Astronomy

Jupiter. Notes compiled by Paul Woodward Department of Astronomy Jupiter Notes compiled by Paul Woodward Department of Astronomy We will spend about one week on the outer, gaseous planets, focusing first on Jupiter, then on Saturn. We will not spend time on Uranus and

More information

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it ATMO 436a The General Circulation Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it Scales of Atmospheric Motion vs. Lifespan The general circulation Atmospheric oscillations

More information

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Planetary Atmospheres Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Photochemistry We can characterize chemical reactions in the atmosphere in the following way: 1. Photolysis:

More information

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru A Look at Our Solar System: The Sun, the planets and more by Firdevs Duru Week 1 An overview of our place in the universe An overview of our solar system History of the astronomy Physics of motion of the

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

AN OBJECTIVE CLASSIFICATION OF SATURN CLOUD FEATURES

AN OBJECTIVE CLASSIFICATION OF SATURN CLOUD FEATURES 1 AN OBJECTIVE CLASSIFICATION OF SATURN CLOUD FEATURES FROM CASSINI ISS IMAGES Anthony D. Del Genio a* and John M. Barbara b a NASA Goddard Institute for Space Studies, New York, NY 10025 USA b Trinnovim

More information

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers 12a. Jupiter Jupiter & Saturn data Jupiter & Saturn seen from the Earth Jupiter & Saturn rotation & structure Jupiter & Saturn clouds Jupiter & Saturn atmospheric motions Jupiter & Saturn rocky cores Jupiter

More information

Jupiter: Giant of the Solar System

Jupiter: Giant of the Solar System Jupiter: Giant of the Solar System Jupiter s Red spot : A huge storm that has raged for over 300 years that is ~2x size of the Earth. Gas Giant is really a Liquid Giant! Pictures over ~7 years from Hubble

More information

Astro 101 Lecture 12 The Jovian Planets

Astro 101 Lecture 12 The Jovian Planets Astro 101 Lecture 12 The Jovian Planets 2-28-2018 Jupiter, Saturn, Uranus and Neptune ASTR-101 Section 004 Bulk Properties of Terrestrial and Jovian Planets All Jovian planets have strong magnetic fields

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Behavioral Changes of Jupiter s Little and Great Red Spot: a Survey

Behavioral Changes of Jupiter s Little and Great Red Spot: a Survey Behavioral Changes of Jupiter s Little and Great Red Spot: a Survey Asit Baran Bhattacharya, Mintu Debnath and Bipasa Raha Department of Physics, University of Kalyani, Kalyani 741235, West Bengal, India

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Cloud Fraction Dice Results from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/

More information

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 1 2 Jovian Planets 3 Jovian Planets -- Basic Information Jupiter Saturn Uranus Neptune Distance 5.2 AU 9.5 AU 19 AU 30 AU Spin

More information

STUDIES OF ATMOSPHERIC PHENOMENA IN THE GIANT PLANETS WITH GRANTECAN

STUDIES OF ATMOSPHERIC PHENOMENA IN THE GIANT PLANETS WITH GRANTECAN RevMexAA (Serie de Conferencias), 16, 98 102 (2003) STUDIES OF ATMOSPHERIC PHENOMENA IN THE GIANT PLANETS WITH GRANTECAN A. Sánchez-Lavega Escuela Superior de Ingenieros, UPV-EHU, Bilbao, Spain RESUMEN

More information

Power Spectral Analysis of Jupiter s Clouds and Kinetic Energy from Cassini

Power Spectral Analysis of Jupiter s Clouds and Kinetic Energy from Cassini 1 2 3 4 Power Spectral Analysis of Jupiter s Clouds and Kinetic Energy from Cassini David S. Choi a, Adam P. Showman a a Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (U.S.A.)

More information

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition.

More information

OVERVIEW OF SATURN LIGHTNING OBSERVATIONS

OVERVIEW OF SATURN LIGHTNING OBSERVATIONS OVERVIEW OF SATURN LIGHTNING OBSERVATIONS G. Fischer, U. A. Dyudina, W. S. Kurth, D. A. Gurnett, P. Zarka, T. Barry, M. Delcroix, C. Go, D. Peach, R. Vandebergh, and A. Wesley Abstract The lightning activity

More information

Climate Change on Jupiter. Philip Marcus University of California at Berkeley

Climate Change on Jupiter. Philip Marcus University of California at Berkeley Climate Change on Jupiter Philip Marcus University of California at Berkeley 1998 2007 Climate Change on Jupiter? Starting in 2001 we began publishing claims that Jupiter would have a significant climate

More information

Name Date Class. Earth in Space

Name Date Class. Earth in Space Chapter Review Earth in Space Part A. Vocabulary Review Directions: Select the term from the following list that matches each description. axis orbit rotation revolution equinox solstice lunar eclipse

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial planets are made mostly of rock and have similar characteristics to Earth. There are four terrestrial

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information

The Fathers of the Gods: Jupiter and Saturn

The Fathers of the Gods: Jupiter and Saturn The Fathers of the Gods: Jupiter and Saturn Learning Objectives! Order all the planets by size and distance from the Sun! How are clouds on Jupiter (and Saturn) different to the Earth? What 2 factors drive

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

Grand Challenges in Global Circulation Dynamics

Grand Challenges in Global Circulation Dynamics Grand Challenges in Global Circulation Dynamics Tapio Schneider ETH Zurich, Caltech (Source: CLAUS, http://badc.nerc.ac.uk/data/claus/) Grand Challenges in Global Circulation Dynamics Tapio Schneider ETH

More information

The Saturn s Atmosphere

The Saturn s Atmosphere The Saturn s Atmosphere Ben Wei Peng Lew May 2, 2017 1 Introduction Saturn is 9.5 AU away from the Sun. Given a radius of 58000 km (0.84 R Jup ) and mass of 5.68 10 26 kg (0.28M Jup ), the surface gravity

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Icarus 216 (2011) Contents lists available at SciVerse ScienceDirect. Icarus. journal homepage:

Icarus 216 (2011) Contents lists available at SciVerse ScienceDirect. Icarus. journal homepage: Icarus 216 (2011) 597 609 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Power spectral analysis of Jupiter s clouds and kinetic energy from

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune Uranus & Neptune: The Ice Giants Discovery of Uranus Discovery of Uranus & Neptune Properties Density & Composition Internal Heat Source Magnetic fields Rings Uranus Rotational Axis by William Herschel

More information

K32: The Structure of the Earth s Atmosphere

K32: The Structure of the Earth s Atmosphere K32: The Structure of the Earth s Atmosphere Chemical composition Vertical Layers Temperature structure Coriolis Force and horizontal structure Hadley Cells and Heat sources Current Molecular Composition

More information

Meteorology Lecture 21

Meteorology Lecture 21 Meteorology Lecture 21 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

Global Warming and Climate Change Part I: Ozone Depletion

Global Warming and Climate Change Part I: Ozone Depletion GCOE-ARS : November 18, 2010 Global Warming and Climate Change Part I: Ozone Depletion YODEN Shigeo Department of Geophysics, Kyoto University 1. Stratospheric Ozone and History of the Earth 2. Observations

More information

KY16 9SS, Scotland. Available online: 13 Jul 2011

KY16 9SS, Scotland. Available online: 13 Jul 2011 This article was downloaded by: [R.K. Scott] On: 13 July 2011, At: 12:03 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,

More information

1. The vertical structure of the atmosphere. Temperature profile.

1. The vertical structure of the atmosphere. Temperature profile. Lecture 4. The structure of the atmosphere. Air in motion. Objectives: 1. The vertical structure of the atmosphere. Temperature profile. 2. Temperature in the lower atmosphere: dry adiabatic lapse rate.

More information

Jupiter and Saturn: Lords of the Planets

Jupiter and Saturn: Lords of the Planets 11/5/14 Jupiter and Saturn: Lords of the Planets Guiding Questions 1. Why is the best month to see Jupiter different from one year to the next? 2. Why are there important differences between the atmospheres

More information

Astronomy 1 Winter Lecture 15; February

Astronomy 1 Winter Lecture 15; February Astronomy 1 Winter 2011 Lecture 15; February 9 2011 Previously on Astro-1 Mercury, Venus, Mars (and Earth) Size and composition Crusts and cores Volcanism and internal activity Stargazing Events Santa

More information

The Great Saturn Storm of

The Great Saturn Storm of 1 13 The Great Saturn Storm of 2010-2011 Agustín Sánchez-Lavega 1 Georg Fischer 2 Leigh N. Fletcher 3 Enrique García-Melendo 1, 4 Brigette Hesman 5 Santiago Pérez-Hoyos 1 Kunio M. Sayanagi 6 Lawrence A.

More information

Effects of a large convective storm on Saturn s equatorial jet

Effects of a large convective storm on Saturn s equatorial jet Icarus 187 (2007) 520 539 www.elsevier.com/locate/icarus Effects of a large convective storm on Saturn s equatorial jet Kunio M. Sayanagi a,, Adam P. Showman b a Department of Physics, Lunar and Planetary

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

Imperial College London

Imperial College London Solar Influence on Stratosphere-Troposphere Dynamical Coupling Isla Simpson, Joanna D. Haigh, Space and Atmospheric Physics, Imperial College London Mike Blackburn, Department of Meteorology, University

More information

PLATO - 6. The outer solar system. Tethis eclipsed by Titan; Cassini (NASA)

PLATO - 6. The outer solar system. Tethis eclipsed by Titan; Cassini (NASA) PLATO - 6 The outer solar system Tethis eclipsed by Titan; Cassini (NASA) 1 The Jovian Planets Cassini image of Jupiter, Io, and Io s shadow (NASA/JPL) 2 The Jovian Planets Gas giants in the outer solar

More information

Icarus 215 (2011) Contents lists available at ScienceDirect. Icarus. journal homepage:

Icarus 215 (2011) Contents lists available at ScienceDirect. Icarus. journal homepage: Icarus 215 (2011) 211 225 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Vertical structure of Jupiter s Oval BA before and after it reddened: What changed?

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

The Transfer of Heat

The Transfer of Heat The Transfer of Heat Outcomes: S2-4-03 Explain effects of heat transfer within the atmosphere and hydrosphere on the development and movement of wind and ocean currents. Coriolis Effect In our ecology

More information

Transport of stratospheric aerosols in the field of averaged vertical wind

Transport of stratospheric aerosols in the field of averaged vertical wind Transport of stratospheric aerosols in the field of averaged vertical wind V.I. Gryazin, S.A. Beresnev Ural State University Lenin Ave. 51, Ekaterinburg, 620083, Russia The latitudinal and seasonal dependences

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 11 Astronomy Today 8th Edition Chaisson/McMillan Chapter 11 Jupiter Units of Chapter 11 11.1 Orbital and Physical Properties 11.2 Jupiter s Atmosphere Discovery 11.1 A Cometary

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Modeling the atmosphere of Jupiter

Modeling the atmosphere of Jupiter Modeling the atmosphere of Jupiter Bruce Turkington UMass Amherst Collaborators: Richard S. Ellis (UMass Professor) Andrew Majda (NYU Professor) Mark DiBattista (NYU Postdoc) Kyle Haven (UMass PhD Student)

More information

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets Giant planets of the Solar System Planets and Astrobiology (2016-2017) G. Vladilo Giant planets Effective temperature Low values with respect to the rocky planets of the Solar System Below the condensation

More information

The Circulation of the Atmosphere:

The Circulation of the Atmosphere: The Circulation of the Atmosphere: Laboratory Experiments (see next slide) Fluid held in an annular container is at rest and is subjected to a temperature gradient. The less dense fluid near the warm wall

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Mechanisms of Jet Formation on the Giant Planets

Mechanisms of Jet Formation on the Giant Planets 3652 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67 Mechanisms of Jet Formation on the Giant Planets JUNJUN LIU AND TAPIO SCHNEIDER California Institute of Technology, Pasadena,

More information

NUMERICAL SIMULATIONS OF ATMOSPHERIC DYNAMICS ON THE GIANT PLANETS

NUMERICAL SIMULATIONS OF ATMOSPHERIC DYNAMICS ON THE GIANT PLANETS NUMERICAL SIMULATIONS OF ATMOSPHERIC DYNAMICS ON THE GIANT PLANETS Item Type text; Electronic Dissertation Authors Lian, Yuan Publisher The University of Arizona. Rights Copyright is held by the author.

More information

IV. Atmospheric Science Section

IV. Atmospheric Science Section EAPS 100 Planet Earth Lecture Topics Brief Outlines IV. Atmospheric Science Section 1. Introduction, Composition and Structure of the Atmosphere Learning objectives: Understand the basic characteristics

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

RETHINKING GRAVITY. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to it.

RETHINKING GRAVITY. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to it. RETHINKING GRAVITY. What causes gravity? The mass of an atom is the source of gravity. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

The Outer Planets (pages )

The Outer Planets (pages ) The Outer Planets (pages 720 727) Gas Giants and Pluto (page 721) Key Concept: The first four outer planets Jupiter, Saturn, Uranus, and Neptune are much larger and more massive than Earth, and they do

More information

u g z = g T y (1) f T Margules Equation for Frontal Slope

u g z = g T y (1) f T Margules Equation for Frontal Slope Margules Equation for Frontal Slope u g z = g f T T y (1) Equation (1) is the thermal wind relation for the west wind geostrophic component of the flow. For the purposes of this derivation, we assume that

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean Lecture 3: Weather/Disturbance Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies Transient and Eddy Transient: deviations from time mean Time Mean Eddy: deviations

More information

10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp of BC Science 10)

10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp of BC Science 10) 10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp. 424-435 of BC Science 10) kinetic molecular theory: explains that matter is made up of tiny that are constantly. These atoms

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

Equatorial Superrotation on Tidally Locked Exoplanets

Equatorial Superrotation on Tidally Locked Exoplanets Equatorial Superrotation on Tidally Locked Exoplanets Adam P. Showman University of Arizona Lorenzo M. Polvani Columbia University Synopsis Most 3D atmospheric circulation models of tidally locked exoplanets

More information

Suppression of the Rhines effect and the location of vortices on Saturn

Suppression of the Rhines effect and the location of vortices on Saturn Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009je003384, 2010 Suppression of the Rhines effect and the location of vortices on Saturn A. B. Penny, 1 A. P. Showman,

More information

Key Concepts Solar System, Movements, Shadows Recall that Earth is one of many planets in the solar system that orbit the Sun.

Key Concepts Solar System, Movements, Shadows Recall that Earth is one of many planets in the solar system that orbit the Sun. Key Concepts Solar System, Movements, Shadows 4-3.1 Recall that Earth is one of many planets in the solar system that orbit the Sun. It is essential for students to know that Earth is a planet that orbits

More information